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Abstract
Fundamental to our perception of a unified and stable environment is the capacity to combine
information across the senses. Although this process appears seamless as an adult, the brain’s
ability to successfully perform multisensory cue combination takes years to develop and relies on
a number of complex processes including cue integration, cue calibration, causal inference, and
reference frame transformations. Further complexities exist because multisensory cue combination
is implemented by populations of noisy neurons. In this review, we discuss recent behavioral
studies exploring how the brain combines information from different sensory systems,
neurophysiological studies relating behavior to neuronal activity, and a theory of neural sensory
encoding that can account for many of these experimental findings.

Introduction
To make sense of a world that is noisy and ambiguous, neural systems combine information
across senses to create unified and stable percepts. Numerous examples highlight the vital
role of this process. When driving, we decide whether it is safe to change lanes based on a
combination of sights and sounds, our perceived acceleration, and the force applied to the
gas pedal. To better comprehend what someone is saying, we often look at their lips while
listening to them speak. If you tilt your head to the side, the scene does not appear rotated
because information from the inner ear is used to stabilize your visual perception of the
world.

Because the brain often integrates the senses seamlessly, it is easy to overlook the
complexities of multisensory cue combination. When presented with two sensory signals
(say, light and sound), the brain must determine if they have a common source, reconcile
differences in the reference frames in which they are encoded, and integrate information
across time to form a coherent percept (Figure 1a). In this review, we discuss how
information is combined across senses and examine how theoretical and computational
neuroscience has informed our understanding of the neural underpinnings of multisensory
cue combination.

Bayesian cue integration
Because sensory information is noisy and subject to ambiguity, we must infer the state of the
world [1]. To improve this inference, information from different senses is combined through
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multisensory integration. Behavioral studies suggest that sensory signals are often combined
in a Bayes-optimal (or nearly optimal) fashion [2, 3, 4**, 5, 6**] to create a probability
distribution over the range of possible stimuli that could have given rise to the signals. This
process is probabilistic in the sense that the reliability of each sensory cue is taken into
account, and Bayesian because prior information can be combined with available sensory
information [7, 8**, 9**] (Figure 1b). Choosing the stimulus with the highest probability
results in optimal inference in that it maximizes the observer’s precision [10].

In recent studies, monkeys judging their direction of self-motion were shown to be near-
optimal in integrating visual and vestibular information, and to reweight each cue according
to its reliability on a trial-by-trial basis [4**, 11]. To examine the neural underpinnings of
this behavior, the activity of single neurons in the dorsal medial superior temporal area
(MSTd) was recorded while the task was performed. These neurons respond to both visual
and vestibular signals and were found to modulate their weighting of each cue dynamically
with changes in reliability, demonstrating a neural correlate of reliability-based cue
combination [4**].

Humans are also near-optimal in deciding whether or not information should be integrated.
This process, called causal inference, judges whether different sensory signals (e.g., visual
and auditory) originated from either the same or separate sources. Ideally, different sensory
signals should be integrated if they originated from the same source, but otherwise kept
separate. To examine how this inference is performed, one study presented human subjects
with synchronized visual flashes and auditory clicks that originated from either the same or
different locations, and asked them to indicate both the locations of the stimuli and whether
they had one or two causes [12]. Behavior in this, and a number of other tasks, can be
largely accounted for by a model of Bayesian causal inference in which the probability that
two sensory cues have the same underlying cause is computed first, and then Bayesian cue
integration is performed taking into account the observer’s belief about the number of causes
[13]. In the next section, we discuss a theoretical framework that describes how neural
systems can implement Bayesian inference and multisensory integration.

A theory of how neurons implement multisensory integration
The behavioral observation that cue integration is probabilistic and Bayesian suggests that
the brain may directly encode the reliability of sensory information. This led to the
investigation of how the brain can simultaneously represent multiple pieces of sensory
information along with their reliabilities, and combine them optimally to implement
Bayesian cue integration [14].

An intriguing possibility is that this is achieved by populations of neurons whose combined
activity describes the likelihood of a sensory input. Given that the inherent variability of
neural responses can be described as p(r|s) (i.e., the likelihood that a stimulus s will elicit a
population activity r), a neural population can encode a posterior probability distribution
over possible stimuli, p(s|r), through Bayes’ rule [15]. Specifically, the posterior can be
encoded simply through multiplication: p(s|r) ∝ p(r|s) · p(s), where p(s) is a prior probability
distribution describing how likely particular stimuli are to be encountered. This idea is
formalized mathematically by a framework called the Poisson-like probabilistic population
code (PPC), in which variability in neural populations follows distributions of the form

(equation 1)

where h(s) is a neuronal weighting function, g is the gain of the population (proportional to
the reliability of s), and ϕ(r, g) is a function of the population activity and gain (Box 1).
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Such distributions have the property that all information about the stimulus s is contained in
a weighted linear sum of the population activity (h(s) · r), and this information can be
decoded by taking the logarithm of p(r|s, g). The weighting function h(s) depends on the
neurons’ tuning curves and the correlations in the population, but is independent of stimulus
reliability (e.g., image contrast). This generalizes a widely used model which assumes that
neurons’ firing rates are independent and governed by Poisson statistics to allow for, among
other things, correlated neural variability [16, 17] and different mean–variance relationships
in firing rates [18]. Consistent with the defining properties of the Poisson-like PPC
described here, recent studies have shown that primary visual cortex can represent stimuli
with a linear, contrast-invariant code [19] that takes into account neural correlations [20].

The Poisson-like PPC provides a surprisingly straightforward neural solution to optimal cue
integration. If two neural populations each represent a stimulus through a Poisson-like PPC,
then Bayesian cue integration can be achieved by a third population which simply sums the
activities of the other two populations [14]. The integration of visual and vestibular signals
by MSTd neurons is generally consistent with this framework, but the weights placed on
each cue appear to be dependent on reliability [4**]. This finding can, however, be
accounted for by incorporating divisive normalization at the level of multisensory
integration [21*]. Divisive normalization is a network-level computation found throughout
the nervous system that scales the responses of individual neurons by the population activity
[22**, 23]. When the multisensory responses of MSTd neurons are modeled as a linear
combination of unisensory visual and vestibular responses [4**], divisive normalization can
explain the dependency of sensory weights on cue reliability as follows. An increase in the
reliability of one sensory cue (say, an increase in visual motion coherence) facilitates the
associated unisensory (i.e., visual) response by increasing the response gain [4**, 14, 24],
but has no effect on the other unisensory (i.e., vestibular) response. At the same time, the
increase in visual cue reliability also increases the magnitude of the normalization term
acting on the population of multisensory neurons. This suppresses both unisensory responses
equally at the level of cue integration (i.e., when they are summed together by a
multisensory neuron). Combined with the increased gain of the visual response, this directly
translates into an increased visual weight and a decreased vestibular weight. Divisive
normalization can additionally account for a number of properties of multisensory neurons
found in the superior colliculus [21*], and is important for tasks involving marginalization
such as visual search and reference frame transformations [25*, 26] (Figure 2).

Reference frame transformations
In primates, the posterior parietal cortex is an important locus of multisensory cue
combination. Individual parietal neurons often encode information from multiple senses; for
example, neurons in the ventral intraparietal area (VIP) can respond to visual, vestibular,
tactile, and auditory stimuli [27–30]. Considering that different sensory systems encode
information relative to different egocentric reference frames (e.g., the eyes, head, or body),
an important question to ask is: how can information represented in different reference
frames be combined?

While it was previously thought that the brain must re-map sensory signals into a common
reference frame in order for multisensory cue combination to occur (see [31] for an
example) this does not seem to be the general case. For example, single VIP neurons
represent tactile signals in a head-centered reference frame, visual signals in a range of
intermediate reference frames distributed between eye- and head-centered, and vestibular
signals in a body-centered reference frame [27, 32]. Visual and vestibular signals in MSTd
are also encoded in different reference frames, with visual signals in an eye-centered frame
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and vestibular signals in a range of intermediate reference frames distributed between eye-
and head-centered [32, 33].

These findings indicate that neural signals need not be in a common reference frame to be
combined [25*, 34, 35]. Computational studies have shown how the activities of two
unisensory populations encoding information in different reference frames with Poisson-like
PPCs can be combined to form a population of multisensory units that perform optimal
statistical inference [25*, 27, 34] (Figure 2a). Many of these multisensory units represent
sensory information in intermediate reference frames, as observed in MSTd, VIP, and other
parietal areas [27, 32, 34]. A fourth population also implementing a Poisson-like PPC can
then combine the activity of the multisensory units to re-express the sensory information in a
different reference frame than either of the unisensory populations [25*]. Compared to cue
integration, performing reference frame transformations with a Poisson-like PPC requires
more complex (but widely observed) neural computations including a quadratic nonlinearity
(multiplying the activity of neurons) and divisive normalization [25*] (Figure 2b,c).
However, once these biologically plausible nonlinearities are incorporated at the level of
neural computation, the Poisson-like PPC framework can account for multiple contemporary
observations regarding both optimality and the combination of sensory signals represented
in different reference frames.

Whereas sensory information is first encoded relative to egocentric reference frames, the
perceptual stability of the environment is suggestive of an allocentric (world-centered)
representation in the brain. An object’s spatial orientation, for example, is perceived to
remain constant relative to the gravitational vector even when your head is tilted to the side.
This reflects that the brain uses gravitational (vestibular/proprioceptive) signals to transform
the visual representation of the scene from an eye into a world reference frame [36, 37].
Recently, gravitational signals were found to modify the visual responses of neurons in the
macaque caudal intraparietal area (CIP) such that object orientation was encoded in a range
of intermediate reference frames distributed between head-, eye-, and world-centered
(Rosenberg & Angelaki, abstract in Computational and Systems Neuroscience 2013, Salt
Lake City, UT, February 2013). A neural network like the one in Figure 2a reproduced this
finding in the intermediate layer and created a purely world-centered representation of
object orientation in the output layer.

Decision making and speed-accuracy trade-off
In many studies, the dynamics of the decision process are hidden because subjects only
report a final percept. A common approach to studying how a decision is formed is to use a
reaction-time paradigm, in which the subjects control when the decision is reported.
Previous work using this paradigm showed that observers make trade-offs between speed
and accuracy [38] and that more reliable evidence leads to faster decisions [39], suggesting
that perceptual evidence is accumulated over time until a decision boundary is reached. The
activity of neurons in the macaque lateral intraparietal area (LIP) correlates with this
decision process, temporally integrating sensory information until a decision is made [39–
41]. A Poisson-like PPC can reproduce this property of LIP neurons [42], and may be
superior to other models in describing the decision process in that it allows for moment-to-
moment fluctuations in the reliability of sensory evidence and can account for observer
uncertainty [43*].

While evidence accumulation is well studied in unisensory perceptual tasks, it is unclear
how evidence from multiple senses is accumulated and combined across time. A recent
human psychophysical study using a reaction-time version of a heading discrimination task
reported that visual-vestibular discrimination thresholds during cue combination were worse
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than those predicted by conventional optimal cue combination theory, and sometimes worse
than that of the more reliable unisensory cue alone (Drugowitsch et al., abstract in
Computational and Systems Neuroscience 2011, Salt Lake City, UT, February 2011). This
unanticipated result could be explained by a model in which evidence from each sense was
weighted and accumulated according to its reliability at each point in time in order to
maximize the correct decision rate, implying a more general notion of optimal cue
combination which takes into account the time required to integrate information and the
time-dependent reliability of the senses. As of now, the neural correlates of these properties
remain unexplored.

Development and calibration of multisensory integration
Although Bayesian multisensory integration appears normative in adults, children are far
from optimal. Instead, one sense dominates childrens’ judgments, suggesting that the brain
may forgo multisensory integration while it is learning to calibrate sensory systems relative
to each other [44, 45*, 46]. Consider, for example, the use of vision and touch to perceive an
object. Recent studies have shown that children with congenital visual deficits have an
impaired ability to determine the object’s orientation by touch [47], and children with
movement disorders have an impaired ability to visually discriminate the object’s size [48].
These studies provide evidence that impairments in one sense may hinder the calibration of
another. There is also evidence that cross-sensory calibration is a normative process in
adults. For example, during a heading discrimination task, the presentation of discrepant
visual and vestibular information leads to a re-calibration of the perceived heading elicited
by either sensory signal on its own, with each estimate shifting towards the other [49].
Interestingly, cross-sensory calibration can also influence the interaction of mothers with
their newborns: the odor of a newborn mouse pup can induce changes in the auditory cortex
of its mother, allowing the mother to better detect the pup’s vocalizations [50].

Neurophysiological experiments conducted in the cat superior colliculus (SC), a non-cortical
locus of multisensory integration for sensory detection and orienting responses, have
illuminated some aspects of the development of multisensory integration. When visual and
auditory stimuli are simultaneously presented, neurons in the SC normally display
multisensory responses that are super-additive (greater than the sum of the unisensory
responses). However, this only develops if the animal is reared in an environment with
spatiotemporally coherent multisensory stimulation [51**] (Figure 3). Likewise, when
reared in an environment in which multisensory stimuli are only presented with a fixed
spatial disparity, SC neurons only develop a super-additive response at that disparity [52].
These results indicate that multisensory integration is learned, but how does it develop?

Ideas originating from machine learning theory and statistics may help us understand how
multisensory cue combination develops in the brain. For example, artificial neural networks
can be trained to perform Bayesian cue integration and causal inference using reinforcement
learning [53]. Specifically, the network learns to optimally combine sensory information by
predicting the reward that an action will produce for a given set of sensory information.
Another study showed that a class of neural networks called restricted Boltzmann machines
(RBMs) can learn optimal cue integration, causal inference, reference frame
transformations, and the encoding of priors via density estimation [54*]. This is appealing
since density estimation is a statistical technique for learning probability distributions of
hidden variables, allowing the network to encode posterior distributions. In multisensory
integration, an RBM learns to estimate a posterior distribution using a feedback loop in
which the multisensory units learn a set of weights capturing all of the relevant information
contained in the unisensory units. Such studies thus describe computational mechanisms the
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brain may use to develop the ability to perform multisensory cue combination in a
probabilistic, Bayesian fashion.

Conclusions
In this review we discussed several key components of multisensory cue combination,
explored our understanding of each at the behavioral and neural levels, and examined a
theoretical framework describing how single neurons might combine sensory information.
However, we are far from fully understanding the complexities of how information from
different senses is combined. For example, while several studies have considered the
influence of naturally occurring priors on perception [7, 55–57], little has been done to
directly manipulate priors in the study of multisensory integration. Without this
manipulation, Bayesian inference is indistinguishable from maximum-likelihood estimation.
Thus, full validation of the Bayesian model for multisensory integration (Figure 1b) still
requires this manipulation.

Additionally, our focus on the Poisson-like PPC as a theory for how the brain combines
sensory information in part reflects that there is currently no clear alternative theory. While
the Poisson-like PPC framework does account for several important aspects of multisensory
cue combination, some of its underlying assumptions may not always be valid. For example,
neural weights appear to depend on stimulus reliability in MSTd [4**, 24], and although the
theory assumes unisensory representations are independent, sensory interactions may begin
before multisensory integration occurs [58*, 59]. Furthermore, computations like causal
inference cannot be performed explicitly using Poisson-like PPCs [60]. Thus, significant
challenges in understanding multisensory cue combination remain, but the continuing
endeavor to combine experimental neuroscience with computation and theory promises to
elucidate this complex process. In the near future, such work is likely to reveal how stable
allocentric representations of the environment are created, how evidence is temporally
accumulated across multiple senses, and how the brain develops the ability to effectively
integrate information from different sensory systems.

Acknowledgments
We thank Greg DeAngelis, Eliana Klier, Wei Ji Ma, and Adhira Sunkara for their comments on the manuscript.
This work was supported by NIH grants EY019087 and EY022538 (D.E.A.).

References and recommended reading
1. Knill, DC.; Richards, W. Perception as Bayesian inference. Cambridge University Press; 1996.

2. Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal
fashion. Nature. 2002; 415:429–433. [PubMed: 11807554]

3. Alais D, Burr D. The ventriloquist effect results from near-optimal bimodal integration. Curr Biol.
2004; 14:257–262. [PubMed: 14761661]

4. Fetsch CR, Pouget A, DeAngelis GC, Angelaki DE. Neural correlates of reliability-based cue
weighting during multisensory integration. Nat Neurosci. 2011; 15:146–154. [PubMed: 22101645]
**This study provides neural evidence for reliability-based cue reweighting. Using a visual-
vestibular cue conflict experiment, the authors demonstrated that monkeys integrate the two sensory
signals near optimally. Simultaneously measured neural recordings suggest that multisensory
neurons reweight the individual sensory signals on a trial-by-trial basis depending on cue reliability.

5. Raposo D, Sheppard JP, Schrater PR, Churchland AK. Multisensory decision-making in rats and
humans. J Neurosci. 2012; 32:3726–3735. [PubMed: 22423093]

6. Sheppard JP, Raposo D, Churchland AK. Dynamic weighting of multisensory stimuli shapes
decision-making in rats and humans. J Vis. 2013:13. *Using an auditory-visual rate discrimination
task, this paper demonstrated dynamic reweighting of multisensory stimuli in rodents. Tests in both

Seilheimer et al. Page 6

Curr Opin Neurobiol. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



humans and rats using a time-varying stimulus further revealed that both species integrate
information over the entire stimulus duration.

7. Laurens J, Angelaki DE. The functional significance of velocity storage and its dependence on
gravity. Exp Brain Res. 2011; 210:407–422. [PubMed: 21293850]

8. Laurens J, Meng H, Angelaki DE. Computation of linear acceleration through an internal model in
the macaque cerebellum. Nat Neurosci. In Press. **This study provides evidence that the
cerebellum is involved in constructing internal models of physical principles to interpret sensory
signals. Using un-natural motion stimuli inducing incorrect self-motion perceptions, Purkinje cells
in the caudal cerebellar vermis and neurons in the cerebellar nuclei of the macaque monkey were
found to encode erroneous linear acceleration, consistent with the internal model hypothesis.

9. Laurens J, Meng H, Angelaki DE. Neural representation of gravity in the macaque
vestibulocerebellum. Neuron. In Press. **Because gravitational and inertial accelerations are
physically indistinguishable (i.e., Einstein’s equivalence principle), sensing gravity is a complicated
process which is thought to be solved by tracking head orientation through multisensory integration.
In this study, the responses of a group of Purkinje cells in the caudal cerebellar vermis of the
macaque monkey were shown to reflect an estimate of the orientation of the self relative to gravity.

10. Ma WJ. Organizing probabilistic models of perception. Trends Cogn Sci. 2012; 16:511–518.
[PubMed: 22981359]

11. Gu Y, Angelaki DE, Deangelis GC. Neural correlates of multisensory cue integration in macaque
MSTd. Nat Neurosci. 2008; 11:1201–1210. [PubMed: 18776893]

12. Kording KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L. Causal inference in
multisensory perception. PLoS One. 2007; 2:e943. [PubMed: 17895984]

13. Shams L, Beierholm UR. Causal inference in perception. Trends Cogn Sci. 2010; 14:425–432.
[PubMed: 20705502]

14. Ma WJ, Beck JM, Latham PE, Pouget A. Bayesian inference with probabilistic population codes.
Nat Neurosci. 2006; 9:1432–1438. [PubMed: 17057707]

15. Zemel RS, Dayan P, Pouget A. Probabilistic interpretation of population codes. Neural Comput.
1998; 10:403–430. [PubMed: 9472488]

16. Zohary E, Shadlen MN, Newsome WT. Correlated neuronal discharge rate and its implications for
psychophysical performance. Nature. 1994; 370:140–143. [PubMed: 8022482]

17. Gu Y, Liu S, Fetsch CR, Yang Y, Fok S, Sunkara A, DeAngelis GC, Angelaki DE. Perceptual
learning reduces interneuronal correlations in macaque visual cortex. Neuron. 2011; 71:750–761.
[PubMed: 21867889]

18. Gur M, Snodderly DM. High response reliability of neurons in primary visual cortex (V1) of alert,
trained monkeys. Cereb Cortex. 2006; 16:888–895. [PubMed: 16151177]

19. Berens P, Ecker AS, Cotton RJ, Ma WJ, Bethge M, Tolias AS. A fast and simple population code
for orientation in primate V1. J Neurosci. 2012; 32:10618–10626. [PubMed: 22855811]

20. Graf AB, Kohn A, Jazayeri M, Movshon JA. Decoding the activity of neuronal populations in
macaque primary visual cortex. Nat Neurosci. 2011; 14:239–245. [PubMed: 21217762]

21. Ohshiro T, Angelaki DE, DeAngelis GC. A normalization model of multisensory integration. Nat
Neurosci. 2011; 14:775–782. [PubMed: 21552274] *This computational paper shows that divisive
normalization can account for several properties of multisensory neurons in the superior colliculus
and area MSTd, including reliability-based cue reweighting (see reference 4).

22. Carandini M, Heeger DJ. Normalization as a canonical neural computation. Nat Rev Neurosci.
2011; 13:51–62. [PubMed: 22108672] **This review provides a thorough treatment of divisive
normalization in sensory representations, covering physiological evidence that it occurs at multiple
levels of the nervous system and across multiple species, potential cellular circuits that could
implement the computation, and behavioral evidence that divisive normalization contributes to
perception.

23. Louie K, Khaw MW, Glimcher PW. Normalization is a general neural mechanism for context-
dependent decision making. Proc Natl Acad Sci U S A. 2013; 110:6139–6144. [PubMed:
23530203]

24. Morgan ML, Deangelis GC, Angelaki DE. Multisensory integration in macaque visual cortex
depends on cue reliability. Neuron. 2008; 59:662–673. [PubMed: 18760701]

Seilheimer et al. Page 7

Curr Opin Neurobiol. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



25. Beck JM, Latham PE, Pouget A. Marginalization in neural circuits with divisive normalization. J
Neurosci. 2011; 31:15310–15319. [PubMed: 22031877] *This theoretical study shows how
neurons implementing a Poisson-like PPC can perform marginalization using two canonical neural
phenomena: divisive normalization and quadratic nonlinearities.

26. Mazyar H, van den Berg R, Seilheimer RL, Ma WJ. Independence is elusive: Set size effects on
encoding precision in visual search. J Vis. 2013:13.

27. Avillac M, Deneve S, Olivier E, Pouget A, Duhamel JR. Reference frames for representing visual
and tactile locations in parietal cortex. Nat Neurosci. 2005; 8:941–949. [PubMed: 15951810]

28. Schlack A, Sterbing-D’Angelo SJ, Hartung K, Hoffmann KP, Bremmer F. Multisensory space
representations in the macaque ventral intraparietal area. J Neurosci. 2005; 25:4616–4625.
[PubMed: 15872109]

29. Chen A, DeAngelis GC, Angelaki DE. Representation of vestibular and visual cues to self-motion
in ventral intraparietal cortex. J Neurosci. 2011; 31:12036–12052. [PubMed: 21849564]

30. Chen A, Deangelis GC, Angelaki DE. Functional specializations of the ventral intraparietal area
for multisensory heading discrimination. J Neurosci. 2013; 33:3567–3581. [PubMed: 23426684]

31. Cohen YE, Andersen RA. A common reference frame for movement plans in the posterior parietal
cortex. Nat Rev Neurosci. 2002; 3:553–562. [PubMed: 12094211]

32. Chen X, Deangelis GC, Angelaki DE. Diverse spatial reference frames of vestibular signals in
parietal cortex. Neuron. In Press

33. Fetsch CR, Wang S, Gu Y, Deangelis GC, Angelaki DE. Spatial reference frames of visual,
vestibular, and multimodal heading signals in the dorsal subdivision of the medial superior
temporal area. J Neurosci. 2007; 27:700–712. [PubMed: 17234602]

34. Deneve S, Latham PE, Pouget A. Efficient computation and cue integration with noisy population
codes. Nat Neurosci. 2001; 4:826–831. [PubMed: 11477429]

35. De Meyer K, Spratling MW. A model of partial reference frame transforms through pooling of
gain-modulated responses. Cereb Cortex. 2013; 23:1230–1239. [PubMed: 22595037]

36. Funk J, Finke K, Muller HJ, Utz KS, Kerkhoff G. Effects of lateral head inclination on multimodal
spatial orientation judgments in neglect: evidence for impaired spatial orientation constancy.
Neuropsychologia. 2010; 48:1616–1627. [PubMed: 20138897]

37. Baier B, Thomke F, Wilting J, Heinze C, Geber C, Dieterich M. A pathway in the brainstem for
roll-tilt of the subjective visual vertical: evidence from a lesionbehavior mapping study. J
Neurosci. 2012; 32:14854–14858. [PubMed: 23100408]

38. Palmer J, Huk AC, Shadlen MN. The effect of stimulus strength on the speed and accuracy of a
perceptual decision. J Vis. 2005; 5:376–404. [PubMed: 16097871]

39. Roitman JD, Shadlen MN. Response of neurons in the lateral intraparietal area during a combined
visual discrimination reaction time task. J Neurosci. 2002; 22:9475–9489. [PubMed: 12417672]

40. Kiani R, Shadlen MN. Representation of confidence associated with a decision by neurons in the
parietal cortex. Science. 2009; 324:759–764. [PubMed: 19423820]

41. Churchland AK, Kiani R, Chaudhuri R, Wang XJ, Pouget A, Shadlen MN. Variance as a signature
of neural computations during decision making. Neuron. 2011; 69:818–831. [PubMed: 21338889]

42. Beck JM, Ma WJ, Kiani R, Hanks T, Churchland AK, Roitman J, Shadlen MN, Latham PE, Pouget
A. Probabilistic population codes for Bayesian decision making. Neuron. 2008; 60:1142–1152.
[PubMed: 19109917]

43. Drugowitsch J, Pouget A. Probabilistic vs. non-probabilistic approaches to the neurobiology of
perceptual decision-making. Curr Opin Neurobiol. 2012; 22:963–969. [PubMed: 22884815] *This
review covers experimental work and computational modeling of evidence accumulation for
making perceptual decisions. The authors conclude that the Poisson-like PPC is superior to drift-
diffusion models and neural networks with attractor dynamics in modeling perceptual decision-
making.

44. Gori M, Del Viva M, Sandini G, Burr DC. Young children do not integrate visual and haptic form
information. Curr Biol. 2008; 18:694–698. [PubMed: 18450446]

45. Gori M, Giuliana L, Sandini G, Burr D. Visual size perception and haptic calibration during
development. Dev Sci. 2012; 15:854–862. [PubMed: 23106739] *This comprehensive study
examined visual-haptic integration throughout development. The authors tested size discrimination

Seilheimer et al. Page 8

Curr Opin Neurobiol. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in children and adults and found that visual size discrimination is better when the object is within
arm’s reach, providing evidence for haptic calibration of vision. For objects outside of arms’
reach, the authors found age-related changes in visual biases from underestimation to
overestimation of object size.

46. Nardini M, Begus K, Mareschal D. Multisensory uncertainty reduction for hand localization in
children and adults. J Exp Psychol Hum Percept Perform. 2013; 39:773–787. [PubMed:
23163790]

47. Gori M, Sandini G, Martinoli C, Burr D. Poor haptic orientation discrimination in nonsighted
children may reflect disruption of cross-sensory calibration. Curr Biol. 2010; 20:223–225.
[PubMed: 20116249]

48. Gori M, Tinelli F, Sandini G, Cioni G, Burr D. Impaired visual size-discrimination in children with
movement disorders. Neuropsychologia. 2012; 50:1838–1843. [PubMed: 22569216]

49. Zaidel A, Turner AH, Angelaki DE. Multisensory calibration is independent of cue reliability. J
Neurosci. 2011; 31:13949–13962. [PubMed: 21957256]

50. Cohen L, Rothschild G, Mizrahi A. Multisensory integration of natural odors and sounds in the
auditory cortex. Neuron. 2011; 72:357–369. [PubMed: 22017993]

51. Xu J, Yu L, Rowland BA, Stanford TR, Stein BE. Incorporating cross-modal statistics in the
development and maintenance of multisensory integration. J Neurosci. 2012; 32:2287–2298.
[PubMed: 22396404] **This paper demonstrated that spatiotemporally coherent multisensory
stimulation is required for the development of super-additive multisensory responses in the
superior colliculus. Cats were reared in environments in which auditory and visual stimuli were
either spatiotemporally coincident or not. Only cats that were exposed to coincident auditory and
visual stimulation developed neurons with super-additive multisensory responses, reflecting that
multisensory integration is a developmental phenomenon.

52. Wallace MT, Stein BE. Early experience determines how the senses will interact. J Neurophysiol.
2007; 97:921–926. [PubMed: 16914616]

53. Weisswange TH, Rothkopf CA, Rodemann T, Triesch J. Bayesian cue integration as a
developmental outcome of reward mediated learning. PLoS One. 2011; 6:e21575. [PubMed:
21750717]

54. Makin JG, Fellows MR, Sabes PN. Learning multisensory integration and coordinate
transformation via density estimation. PLoS Comput Biol. 2013; 9:e1003035. [PubMed:
23637588] *In this work, the authors use a restricted Boltzmann machine implementing density
estimation (a technique for estimating parameters of a probability distribution) to model how
several key features of multisensory combination including cue integration, reference frame
transformations, and the encoding of prior information can arise through a single developmental
process.

55. Stocker AA, Simoncelli EP. Noise characteristics and prior expectations in human visual speed
perception. Nat Neurosci. 2006; 9:578–585. [PubMed: 16547513]

56. MacNeilage PR, Banks MS, Berger DR, Bulthoff HH. A Bayesian model of the disambiguation of
gravitoinertial force by visual cues. Exp Brain Res. 2007; 179:263–290. [PubMed: 17136526]

57. De Vrijer M, Medendorp WP, Van Gisbergen JA. Shared computational mechanism for tilt
compensation accounts for biased verticality percepts in motion and pattern vision. J
Neurophysiol. 2008; 99:915–930. [PubMed: 18094098]

58. Kim R, Peters MA, Shams L. 0 + 1 >1: How adding noninformative sound improves performance
on a visual task. Psychol Sci. 2012; 23:6–12. [PubMed: 22127367] *This paper used behavioral
evidence to argue for the existence of interactions between the senses at the level of sensory
representations, before they are combined. The authors had subjects perform a two-alternative
forced choice task for detecting visual motion in the presence of various types of auditory stimuli
(congruent/incongruent with the visual stimulus and informative/non-informative about the visual
stimulus). They found that a congruent, non-informative auditory stimulus improved performance
on the visual motion task.

59. Hedger SC, Nusbaum HC, Lescop O, Wallisch P, Hoeckner B. Music can elicit a visual motion
aftereffect. Atten Percept Psychophys. 2013; 75:1039–1047. [PubMed: 23456973]

60. Ma WJ, Rahmati M. Towards a Neural Implementation of Causal Inference in Cue Combination.
Multisensory Research. 2013; 26:159–176. [PubMed: 23713204]

Seilheimer et al. Page 9

Curr Opin Neurobiol. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Box 1

The Poisson-like PPC formalizes the idea that variability in neuronal populations reflects
the encoding of probability distributions over a set of stimuli. This provides a framework
in which many processes of multisensory combination can be performed through
biologically plausible computations. To provide a concrete example, we walk through the
case of a population of neurons with independent Poisson variability for a fixed gain [14,
25*].

For a stimulus s, the probability that response r (a count of action potentials fired) is
elicited from the ith neuron in the population is given by a Poisson distribution:

where fi(s) is that neuron’s tuning curve over the possible stimuli.

Because probabilities multiply and neural variability is assumed to be independent, the
probability of observing a particular population response r is given by the product of the
individual p(ri|s):

where n is the number of neurons in the population. With some algebra, this can be
rewritten in the more general form of the Poisson-like PPC presented in the text (equation
1):

In this case,

and assuming that the sum of tuning curves is constant ( ), then
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Highlights

• The brain can optimally integrate information across sensory systems

• Probabilistic population codes solve many problems in multisensory cue
combination

• Multisensory neurons can represent different senses in different reference
frames

• Sensory evidence is temporally weighted based on its moment-by-moment
reliability

• Multisensory integration requires cross-sensory calibration throughout life
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Figure 1. Multisensory cue combination
(a) Multisensory combination (e.g., of visual and auditory information) entails a number of
processes which the brain learns to implement during development. These processes include,
but are not limited to, causal inference to determine if the sensory cues have a common
source, integration to improve precision, calibration to improve accuracy, reconciliation of
the reference frames in which each sense is encoded, a speed-accuracy trade-off (including
accumulation of evidence from each cue across time), and the incorporation of prior
information. Together, these processes result in a coherent percept of the sensory stimulus.
(b) The most well-studied aspect of multisensory cue combination (a general term widely
encompassing situations in which information from different sensory systems is combined)
is cue integration, which improves precision. Consider the task of localizing a bird in a tree
(s) using auditory (xA) and visual (xV) cues. Behavioral experiments suggest that the brain
represents each sensory cue probabilistically with a likelihood function –p(xA|s) and p(xV|a)
– and combines them with prior information p(s) to produce a posterior p(s|xA, xV)
describing how likely the bird is to be perceived at a particular location. Bayes’ rule states
that when the noise in each sense is independent, the posterior (purple) is proportional to the
product of the likelihood of each sensory cue (blue and red) and the prior (black). The graph
on the left shows the likelihood functions for each sensory cue (blue and red) and the
resulting posterior (purple). Without prior information, this is equivalent to maximum-
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likelihood estimation. The graph on the right shows the same sensory likelihood functions,
but also includes a prior reflecting past experience (here, a tendency for the bird to be further
to the left than the current sensory information suggests). The inclusion of this prior
information produces a Bayesian estimate, shifting the posterior to the left (for comparison,
the dashed curve re-plots the posterior without prior information).
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Figure 2. Poisson-like PPCs and reference frame transformations
(a) Neural network performing a reference frame transformation in which the activity of a
population of units representing eye position is used to transform an eye-centered
representation of object position into a head-centered representation. The network has two
input layers (bottom) using Poisson-like PPCs to represent the object’s eye-centered position
(rR; blue) and the position of the eyes in the head (rE; red). The response curves show the
activity of each unit for a single object position and eye position. The height of the activity
represents the population gain (gR and gE), which is proportional to stimulus reliability. The
activity of the two input layers is combined by an intermediate layer (middle) that serves as
a set of basis functions for computing the object’s head-centered position in the output layer
at the top (rA; green). The output layer also encodes object position using a Poisson-like
PPC, and its gain (gA) is less than that of either input layer due to divisive normalization. (b)
This equation shows that the activity of the output layer units (rA) can be expressed as a sum
of weighted products (a quadratic nonlinearity) of the activity of input layers units (rE and
rR) divided by the weighted sum of activity in each layer (i.e., divisive normalization). Here,
the w and c terms are weight parameters. (c) The percentage of information loss in a
simulated neural network, calculated as the difference between the true posterior and that
estimated by the output layer, depends on the computations performed by the network. With
a quadratic nonlinearity and divisive normalization (QDN) as depicted in a, the network
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loses less than 1% of information. With only the quadratic nonlinearity (Q), there is a 16%
loss of information. With neither divisive normalization nor a quadratic nonlinearity (L),
there is a 32% loss of information. This demonstrates the importance of both the quadratic
nonlinearity and divisive normalization in maintaining information when performing
reference frame transformations. Figure adapted with permission from Beck et al., 2011
[25*].
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Figure 3. Development of multisensory integration
(a) (Left) Cats in the coincident exposure group were reared in an environment in which
auditory and visual stimulation always occurred at coincident locations and times. (Middle)
Visual (V) and auditory (A) receptive fields of a superior colliculus neuron from an animal
reared in the coincident exposure group. (Right) Unisensory (visual V; auditory A) and
multisensory (VA) responses of the same neuron, demonstrating a super-additive response
to multisensory stimulation. (b) (Left) Cats in the random exposure group were reared in an
environment in which auditory and visual stimuli were presented separately at random
locations and times. (Middle) Visual and auditory receptive fields of a superior colliculus
neuron from an animal reared in the random exposure group. (Right) Unisensory and
multisensory responses of the same neuron, demonstrating the lack of a super-additive
multisensory response. Figure adapted with permission from Xu et al., 2012 [51**].
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