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GeMes, Clusters of DNA Methylation
under Genetic Control, Can Inform
Genetic and Epigenetic Analysis of Disease

Yun Liu,1,2,9 Xin Li,1,2,9 Martin J. Aryee,1,3 Tomas J. Ekström,4,5 Leonid Padyukov,4,6 Lars Klareskog,4,6

Amy Vandiver,1,2 Ann Zenobia Moore,7 Toshiko Tanaka,7 Luigi Ferrucci,7 M. Daniele Fallin,1,8,*
and Andrew P. Feinberg1,2,*

Epigenetic marks such as DNA methylation have generated great interest in the study of human disease. However, studies of DNA

methylation have not established population-epigenetics principles to guide design, efficient statistics, or interpretation. Here, we

show that the clustering of correlated DNAmethylation at CpGs was similar to that of linkage-disequilibrium (LD) correlation in genetic

SNP variation but for much shorter distances. Some clustering of methylated CpGs appeared to be genetically driven. Further, a set of

correlated methylated CpGs related to a single SNP-based LD block was not always physically contiguous—segments of uncorrelated

methylation as long as 300 kb could be interspersed in the cluster. Thus, we denoted these sets of correlated CpGs as GeMes, defined

as potentially noncontiguous methylation clusters under the control of one or more methylation quantitative trait loci. This type of

correlated methylation structure has implications for both biological functions of DNA methylation and for the design, analysis, and

interpretation of epigenome-wide association studies.
Introduction

Epigenetic marks such as DNAmethylation have generated

great interest in the study of human disease and in epide-

miology broadly, given the potential for epigenetic media-

tion of genetic or environmental risk factors for disease

and their potential as biomarkers of exposure or disease

risk and progression.1,2 Because of this, several recent pub-

lications have examined genome-scale DNA-methylation

data through either array-based or whole-genome bisul-

fite-sequencing technologies.3–7 However, studies of DNA

methylation have not yet established population-epige-

netics principles to guide design, efficient statistics, or

interpretation. For example, SNP analyses rely on the pop-

ulation-genetics concept of linkage disequilibrium (LD) to

inform the design of custom arrays, efficient statistical

approaches such as haplotype analyses, and interpretation

of associations observed with respect to localization and

putative functional relevance.8 Epigenetic epidemiology

would benefit greatly from a similar set of population-epi-

genetics concepts.

We and others have shown that variable methylation—

across tissues within individuals or for a given tissue across

individuals in a population—tends to occur in ‘‘regions’’ of

several CpGs;9,10 however, little is currently documented

and understood about the specific genomic locations of

such ‘‘regions,’’ the amount of variability, or the spatial

properties of correlated DNA methylation within people,
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within populations, and across populations. Because

some of the variability at particular DNA-methylation sites

is indeed dependent on genotype,6,11,12 these epigenetic

properties might parallel population-genetic properties.

However, no one to date has attempted to document this

in parallel to sequence-variation properties at a population

level. The accumulation of several recent epigenetic-epide-

miology projects using genome-scale array data, such as

the Illumina HumanMethylation450 array, in concert

with sequence information such as SNP data from

genome-wide association studies (GWASs), now makes

such description possible.6

Here, we show that the correlation of DNA methylation

at CpGs within variably methylated regions (VMRs) was

similar to the LD correlation in genetic SNP variation but

for much shorter distances when contiguous CpGs were

considered. Some clustering of methylated CpGs appeared

to be genetically driven; SNPs in LD blocks associated with

correlated methylated CpGs. Further, the set of correlated

methylated CpGs associated with a single SNP-based LD

block showed ‘‘gap’’ patterns in which segments as long

as 300 kb had uncorrelatedmethylation between segments

correlated with each other and associated with a particular

SNP signal. We termed these correlated CpGs ‘‘GeMes’’

for genetically controlled methylation clusters. Thus,

although proximal, the spatial clustering of methylation

patterns was not directly contiguous, and the structure

was most likely controlled by DNA sequence. Even though
ore, MD 21205, USA; 2Department of Medicine, Johns Hopkins University

ssachusetts General Hospital and HarvardMedical School, Charlestown,MA

sity Hospital, Stockholm 17176, Sweden; 5Department of Clinical Neurosci-

Department of Medicine, Solna, Karolinska Institutet, Stockholm 17176,

l Institutes of Health, Baltimore, MD 21224, USA; 8Deparment of Mental

ore, MD 21205, USA

y of Human Genetics. All rights reserved.

erican Journal of Human Genetics 94, 485–495, April 3, 2014 485

mailto:dfallin@jhsph.edu
mailto:afeinberg@jhu.edu
http://dx.doi.org/10.1016/j.ajhg.2014.02.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2014.02.011&domain=pdf


genetic variants, such as methylation quantitative trait loci

(meQTLs), have been previously reported11–15 to control

CpG methylation, we conducted a genome-wide study of

GeMes at a population level. This type of correlated

methylation structure has implications for both biological

functions of DNA methylation and the design, analysis,

and interpretation of epigenome-wide associations studies

(EWASs).
Material and Methods

DNA Methylation and Genotype Data
We obtained two publicly available data sets for DNAmethylation.

We used data from the Gene Expression Omnibus (GEO) for the

Illumina HumanMethylation450 array data on whole blood

(accession number GSE42861). These individuals were selected

from the Epidemiological Investigation of Rheumatoid Arthritis

(EIRA), a Swedish population-based case-control study. Only

control individuals from one batch (hybridized in 2012) were

included in these analyses. EIRA control subjects were selected

to match rheumatoid arthritis (RA [MIM 180300]) case subjects

in terms of age, gender, and residential area at the time of diag-

nosis. All individuals were of self-reported European ancestry

and did not have obvious population stratification according to

ancestry estimation from genome-wide SNP data.16 More detailed

recruitment procedure for the EIRA study was described previ-

ously.16 After exclusion of three samples that failed our quality-

control procedures, the final methylation data set included 247

individuals. The genotyping procedures for these 247 samples

have been described previously.16

We obtained the other DNA-methylation data set also fromGEO

(accession number GSE43414).17 These individuals were selected

from one cohort of the Medical Research Council London Brain

Bank for Neurodegenerative Diseases.17 After exclusion of individ-

uals who failed our quality-control procedures, the final data set

on whole blood used for replication included 91 individuals.

The Baltimore Longitudinal Study of Aging (BLSA) is an ongoing,

long-term,open-panel studyonnormalhumanaging. Studydesign

and recruitment for the BLSA have been described previously.18

Most of the participants were community-dwelling individuals

from the Washington-Baltimore area. The DNA-methylation data

were generated with the Illumina HumanMethylation450 array

according to the manufacturer’s recommendations. A total of 305

individuals of Europeandescent, as estimated via ancestry principle

components from genome-wide SNP data, were included in the

analyses. TheDNA-methylation data are available fromGEOunder

accession number GSE54882.

Initial Identification of Contiguous Methylation

Clusters
Ultimately, we recommend defining GeMes by a combination of

information about genetic control and CpG methylation correla-

tion, as described formally below. However, to initially describe

correlation patterns of CpGs at the genome level, we began with

solely contiguous definitions based on observed methylation cor-

relation alone. We used probes only on autosomes and excluded

probes containing SNPs (dbSNP v.132) at the probed CpG sites

to eliminate artifacts due to differential hybridization, resulting

in a data set of 417,457 CpGs. We estimated cell-type distribution

for each individual on the basis of his or her methylation data19
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and used methylation residuals after adjusting for estimated cell

proportions6 and sex. We then only focused on the top 25% of

the most variably methylated CpG sites (vCpGs) in the data set

for downstream analyses.

We defined a potential contiguous methylation cluster as con-

taining at least three neighboring vCpG sites on the Illumina

HumanMethylation450 array and having at least 50% of its vCpG

pairs showing a methylation correlation coefficient (r2) R 0.4. To

avoid biases potentially drivenbyoutliers,we performedbootstrap-

ping with sample replacement (1,000 times) and only kept the

contiguous methylation clusters present in at least 99% of all

bootstrap samples.

To identify contiguous methylation clusters after adjusting for

potential confounding by ancestry mixture, we further calculated

methylation residuals by using a linear regression model predict-

ingmethylation at each CpG site as a function of the top two prin-

cipal components of genotype data, in addition to estimated cell

proportions and gender. We then used these residuals to identify

contiguous methylation clusters as described above.

Analysis of Methylation-Correlation Decay and

Genetic-LD Decay
To determine the spatial rate of decay for vCpGs, we computed a

Pearson correlation coefficient (r2) between each pair of vCpGs.

We generated the decay-rate plot by fitting a cubic smoothing

spline of r2 against genomic distance. In the case of SNPs, we

used the software package Haploview to determine the LD correla-

tion between all pairs of SNPs. Given the density of SNPs, we

filtered to only those with a minor allele frequency (MAF) > 10%

for this genome-wide evaluation.

Enrichment of DHSs and Smoking-Associated DMPs

in Contiguous Methylation Clusters
DNase I hypersensitive sites (DHSs) are based on the manufacture

annotation file from the Illumina HumanMethylation450 array.

Twenty-six smoking-associated differentially methylated posi-

tions (DMPs) were obtained from previously published results.20

These DMPs were checked against contiguous methylation clus-

ters generated from whole blood (Tables S1 and S2, available

online). The p values for enrichment were computed with Fisher’s

exact test.

Identification of GeMes
Correlated CpG clusters, in which CpGmethylation is most likely

controlled by the same genetic signal, are designated GeMes.

These are not necessarily contiguous but are rather defined via

the following steps: (1) identify all vCpGs whose methylation

level is associated with at least one SNP within 5 Mb (i.e., identify

all statistically significant vCpG-meQTL pairs at p< 13 10�13), (2)

group one or more vCpGs associated with the same SNP into a

vCpG cluster, (3) merge vCpG clusters if any of their members

share a common meQTL, (4) and retain only clusters with more

than two vCpGs. These vCpG clusters are labeled GeMes, and

we refer to all SNPs associated with any vCpG methylation in

that GeMe as a SNP cluster.

These steps were based on genome-wide association analyses for

all vCpGs to identify SNPs that might be meQTLs at each vCpG.

For this analysis, all Illumina HumanMethylation450 probes on

sex chromosomes or probes containing SNPs (dbSNP v.132) any-

where in the sequence (which might affect the interpretation of

meQTL results) were excluded, leaving 68,561 vCpGs. These
014



vCpGs were subsequently tested for association with autosome

SNPs withMAF> 1% and at least ten individuals in each genotype

group in these data (total 609,162 SNPs) via an additive minor-

allele dosage model. vCpG-SNP associations were corrected for

multiple testing with a stringent Bonferroni-adjusted threshold

of 1 3 10�13 (<0.05 / (68,561 3 60,9162) ¼ 1.20 3 10�12). Cis-

meQTLs were then identified for sets of genome-wide significant

vCpG-SNP pairs (or vCpG-specific meQTLs), in which the distance

between the vCpG and SNP was less than 5 Mb.

Enrichment of GWAS SNPs among meQTLs and

GeMes
The GWAS SNP set used for analysis was derived from the National

Human Genome Research Institute (NHGRI) Catalog of Published

GWASs21 and was processed as described previously.22 The

p values for enrichment were computed with Fisher’s exact test.

Bisulfite Pyrosequencing
To replicate the relationship between GeMes and GWAS SNPs at

the FADS1 (MIM 606148)-FADS2 (MIM 606149) and GSDMA

(MIM 611218)-GSDMB (MIM 611221) regions, we selected an in-

dependent set of 90 EIRA healthy individuals for the experiment.

We bisulfite converted 200 ng of genomic DNA from each sample

with an EZ DNA Methylation-Gold Kit (ZYMO Research) accord-

ing to the manufacturer’s recommendations. We amplified bisul-

fite-converted genomic DNA by PCRwith unbiased nested primers

and carried out quantitative pyrosequencing to measure DNA

methylation at each CpG site with a PSQ HS96 (Biotage). The per-

centage of DNA methylation was determined with Pyro Q-CpG

methylation software (Biotage). Genomic DNA amplified by the

REPLI-g Mini Kit (QIAGEN) was used as the nonmethylated DNA

control, and SssI-treated genomic DNA was used as the 100%

methylation control. Different percentage mixtures containing

nonmethylated and 100% methylated controls were also used as

25%, 50%, and 75% methylation controls. Genomic coordinates

and primer sequences for all bisulfite-pyrosequencing reactions

are provided in Table S3.

Analysis Software
All analyses were performed in R 2.15 and Bioconductor 2.9.

Illumina HumanMethylation450 array data were analyzed with

the ‘‘minfi’’ package.
Results

Genome-Level Spatial Correlation of DNA

Methylation versus LD

To initially compare methylation structure to SNP struc-

ture in genetic studies, we first examined the observed

correlation in DNA-methylation data generated from

Illumina HumanMethylation450 arrays on whole-blood-

derived DNA from 247 healthy individuals from the

EIRA study.6,16 We focused on the top 25% of CpG sites

with the largest methylation variation (vCpGs) because

these are epigenetic variants informative for methylation

studies, just as polymorphic SNPs are for genetic studies.

Of these vCpGs, 41,772 could be separated into 9,836

regions containing at least three contiguous variable

probes, a pattern similar to what we observed previously
The Am
as VMRs.9,10 Figure 1A shows a typical pattern of DNA

methylation in a region where there is variable methyl-

ation between individuals and spatial correlation in

methylation levels within individuals (Figures 1A and 1B).

These patterns could be seen at the chromosome and

genome level. Figure 1C shows a heat map of the pairwise

correlation in DNA-methylation levels across a 1 Mb re-

gion of chromosome 9, where there was clearly clustering

of highly spatially correlated vCpGs. Similar to patterns

of LD, such patterns tended to show decay in correlation

strength with increasing distance and existed regardless

of epigenetic annotation, such as CpG islands, shores, or

open seas (Figure 1D). However, the length of these contig-

uous methylation clusters appeared to be much shorter

than that of LD blocks—the methylation correlation was

reduced by half in less than 500 bp, whereas SNP-based

LD correlation was reduced by half in approximately 3 kb

in these same individuals (Figures 1D and 1E), although a

direct comparison between SNP-based LD-correlation

decay and spatial-methylation decay is difficult given the

density of the 450K array. This does demonstrate, however,

that the normal human methylome includes groups of

CpGs that vary coordinately in the population.

To examine the locations and patterns of these contigu-

ously correlated methylation sites, we began with a

working definition of a contiguous methylation cluster

according to rules similar to those applied for defining

LD blocks23 (see Material and Methods). In our 247 sam-

ples, and on the basis of 450K array density, we identified

2,100 contiguous methylation clusters (Table S1), contain-

ing a total of 8,491 vCpG sites. To evaluate the biological

relevance of these contiguous methylation clusters, we

then checked the enrichment of DHSs, given that DHSs

mark accessible chromatin regions for active transcrip-

tion.22,24 Compared to the 450K array background, the

proportion of DHS-located CpGs that were also in a contig-

uous methylation cluster showed a 1.89-fold enrichment

(Table S4). This enrichment was further increased to

2.17-fold when we changed the definition of a contiguous

methylation cluster to include at least five vCpG sites

(Table S4), implying that areas of contiguous methylation

clusters might be relevant areas of accessible epigenome.

We replicated these results in two additional data sets. In

the first, containing DNA-methylation data from Illumina

HumanMethylation450 array for 91 whole-blood-derived

DNA samples17 (GEO accession number GSE43414), we

identified 2,434 contiguous methylation clusters, contain-

ing a total of 10,099 vCpG sites (Table S2); of these, 6,875

(81.0%) CpG sites overlapped with our primary data sets

(Figure S1). With the same approach, we also identified

2,334 contiguous methylation clusters, containing a total

of 9,518 vCpG sites, from a third data set (the BLSA) (Table

S2); of these, 7,550 (88.9%) CpG sites overlapped with our

primary data set (Figure S1).

Although the blood-derived contiguous-methylation-

cluster patterns were consistent across three independent

samples, it is possible that these correlation patterns
erican Journal of Human Genetics 94, 485–495, April 3, 2014 487



Figure 1. Clustering of Correlated Methylated CpGs
(A) An example of a contiguousmethylation cluster identified on chromosome 9. Each line shows the smoothedmethylation residual of
one individual with the use of the smooth.spline function from R. A random 50 individuals was plotted here for easy visualization.
(B) Detailed DNA-methylation levels among populations for the CpG sites within the contiguousmethylation cluster shown in (A). Each
row represents the methylation residual of one individual, and each column represents a different CpG site. Values of methylation
residuals range from low (blue) to high (green) on the color scale.
(C) DNA-methylation correlation for the contiguous methylation cluster shown in (A). The ticks in the top panel represent CpG sites
that were covered in the arrays. The bottom panel shows a zoomed-in heatmap image of the region indicated in the top panel. The
measure of the correlation coefficient (r2) of methylation residuals among all possible pairs of CpGs is shown graphically according
to the shade of red; gray represents low r2, and red represents high r2. Probes from identified contiguous methylation clusters are
highlighted in red.
(D) Plot of the decay rate of r2 against the distance for DNAmethylation on vCpG sites. Different color lines represent probes of different
vCpG context from the Illumina HumanMethylation450 arrays.
(E) Plot of the correlation decay for genetic variants (black line) or for DNA methylation (red line).
represent the effects of common underlying confounders,

such as ancestry mixtures. We thus evaluated the potential

confounding by ancestry mixtures by performing contig-

uous-methylation-cluster analysis with methylation resid-

uals after further adjusting for the top two principal

components of genotype data, the surrogate measure-

ments of ancestry mixtures,25 and noticed that almost all

the contiguous methylation clusters (99%) from our pri-

mary data set were still present after ancestry adjustment

(Figure S2).

Smoking-Associated DMPs Are Enriched in

Contiguous Methylation Clusters

Given the interest in DNA methylation and environ-

mental exposures,20,26–28 particularly the growing associa-

tions with smoking,20,29 we examined whether variation at
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these contiguous methylation clusters was associated with

these factors and whether such correlated regions were

enriched with smoking associations. We observed that 16

of 26 smoking-associated DMPs20 were present in contig-

uous methylation clusters identified from our primary

data set (Table 1); this represented a 30.26-fold enrichment

in comparison to the 450K array background (p value <

2.2 3 10�16) (Table S5). The enrichment of smoking-

associated DMPs in contiguous methylation clusters was

also observed in the other two replication data sets (Table

S5). This implies that the epigenome susceptible to

environmental exposures might be enriched with contig-

uous methylation clusters and that focus on spatially

correlated units such as contiguous methylation clusters

might be particularly efficient for environmental epige-

netic analyses.
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Table 1. Smoking DMPs Are Enriched in Contiguous Methylation
Clusters

CpG Chr Gene
Contiguous
Methylation Clusters

cg05575921 5 AHRR no

cg05549655 15 CYP1A1 yes

cg11924019 15 CYP1A1 yes

cg09935388 1 GFI1 yes

cg12876356 1 GFI1 yes

cg18316974 1 GFI1 yes

cg09662411 1 GFI1 yes

cg25949550 7 CNTNAP2 no

cg06338710 1 GFI1 yes

cg04180046 7 MYO1G yes

cg04598670 7 ENSG00000225718 no

cg23067299 5 AHRR no

cg18146737 1 GFI1 yes

cg12803068 7 MYO1G yes

cg14179389 1 GFI1 no

cg22549041 15 CYP1A1 yes

cg18092474 15 CYP1A1 yes

cg19089201 7 MYO1G no

cg22132788 7 MYO1G yes

cg10399789 1 GFI1 yes

cg21161138 5 AHRR no

cg03991871 5 AHRR no

cg12477880 21 RUNX1 yes

cg03346806 8 EXT1 no

cg18655025 14 TTC7B no

cg11715943 6 HLA-DPB2 yes

The following abbreviation is used: chr, chromosome.
GeMes: Potentially Noncontiguous Genetically

Controlled Methylation Clusters

Considering previous reports of genome-wide existence

of meQTLs,11–15 we next sought to determine the rela-

tionship between contiguous methylation clusters and

genotype at a population level by examining whether

methylation correlation in clusters is driven by genetic var-

iants. We identified 24,887 vCpG-SNP pairs in which the

DNA methylation level was significantly associated with

genotype (p value < 1.0 3 10�13). When visualized graph-

ically, many of these vCpG-SNP association pairs formed

clusters where a distinct group of vCpGs were controlled

by a distinct group of SNPs. In these occasions, the methyl-

ation levels of the vCpGs controlled by the same group of

SNPs were correlated, and this might have been the origin

of some of the observed methylation correlation in contig-

uous methylation clusters (Figure 2A). Interestingly, we
The Am
noticed that some distinct methylation clusters, as previ-

ously defined by contiguous spatial rules, were associated

with the same underlying SNP cluster but were not

spatially defined as a single cluster because uncorrelated

vCpGs existed between them (Figure 2A). Methylation

levels among all vCpGs controlled by the same SNP cluster

were mostly correlated and would have been defined as a

single spatial cluster if the vCpGs in between had not

been measured (Figure 2B shows a correlation plot

collapsed from Figure 2A to include only CpGs controlled

by the SNP cluster). Thus, we considered these potentially

noncontiguous genetically controlled methylation clus-

ters, GeMes.

In order to identify GeMes across the genome, we

expanded our genotype-methylation association analysis

by using all 104,365 individual vCpGs, i.e., not starting

with the contiguous correlated CpGs but rather excluding

any 450K probes containing SNPs because theymight have

affected the measurement of DNA methylation. This re-

sulted in a data set composed of 609,162 SNPs and

68,561 vCpGs. We then identified the individual vCpGs

that were associated with SNPs, i.e., the meQTLs.11–15

We identified 97,658 vCpG-SNP pairs in which the

DNA-methylation level was significantly associated with

genotype (meQTLs; p value < 1.0 3 10�13) (Table S6).

Among these vCpG-SNP pairs, 91,589 (93.8%) of the

CpGs lay < 5 Mb from the associated SNP (Figure S3), sug-

gesting that the majority of genetically influenced methyl-

ation was controlled through cis-regulation, similar to

what has been reported (cis-meQTLs).11–15 These vCpG-

SNP pairs comprised 5,919 unique vCpGs and 52,170

unique SNPs. We then separated vCpG clusters to include

any vCpGs controlled by any SNP in a distinct group of

cis-meQTLs so that each genotype-controlled methylation

cluster contained an independent set of vCpGs and cis-

meQTLs. We identified a total of 3,404 such clusters, in

which the average number of SNPs for each cluster was

15.3 and the average number of vCpGs was 1.7 (Table

S7). Of these clusters, 1,019 contained at least two vCpG

sites, defined as GeMes. Using this expanded definition,

we note that some of them now included additional rela-

tively distant vCpGs, which had not been identified from

the previous contiguous definitions (Figures 2C and 2D),

suggesting that the structure of GeMes is not simply based

on spatial patterns. For example, in Figure 2C, CpG sites

more than 300 kb away (C3 and C5) are in the same

GeMe, even though SNPs near the former CpG site (C3)

do not control its methylation level and further are not

in LD with the associated SNP cluster.

To confirm the finding of GeMes, we replicated the find-

ings in the BLSA data set for 50 randomly chosen GeMes

from our primary data set, plus the two examples shown

in Figures 2A and 2C.We tested whether DNA-methylation

levels were controlled by the same group of SNPs. These

52 GeMes contained 991 CpG-SNP pairs with both

genotype and methylation information in the BLSA. The

associations between genotype and methylation were
erican Journal of Human Genetics 94, 485–495, April 3, 2014 489



Figure 2. GeMes: Genetically Controlled Methylation Clusters
(A and C) Examples of GeMes on chromosomes 21 (A) and 1 (C). In the middle panels, each dashed line represents a significant asso-
ciation between a CpG and a SNP. The shades of black for these lines indicate significance of the associations. The ticks represent CpGs
(top) and SNPs (bottom) that were covered in the arrays. Identified CpG probes whose methylation levels are controlled by genotype are
indicated and highlighted in red. The methylation correlation (top panels) and genetic-LD correlation (bottom panels) for all the probes
covered in the region are shown correspondingly. The measure of the correlation coefficient of the methylation level, as well as the
genetic-LD correlation, is shown graphically according to the shades of red; gray represents low r2, and red represents high r2.
(B and D) Plots of detailed DNA-methylation levels, as well as their correlations, are shown; (B) is collapsed from (A) and (D) is collapsed
from (C) to include only sites on GeMes. Bottom panels: each row represents the methylation residual of one individual, and each
column represents a different CpG site whose location is indicated and highlighted in (A) or (C). Values of DNA-methylation residuals
range from low (blue) to high (green) on the color scale. Top panels: the measure of the correlation coefficient of the methylation level
for the corresponding CpG sites.
(E) Associations between CpG sites and SNPs upstream of (top panel), within (middle panel), or downstream of (bottom panel) themajor
histocompatibility complex (MHC) region. Each dashed line represents a significant association, and the shades of black indicate signif-
icance of the associations.
replicated in the 984 pairs (99.3%) with a Bonferroni-

adjusted p value < 0.05 (Figure S4).

Given the complex and elongated LD structure of the

major histocompatibility complex (MHC) region on chro-

mosome 6, we examined the vCpG-SNP structure in that

region. In the MHC region, there were clear vCpG-SNP

clusters connected over small distances (similar to Figures

2A and 2C) but also SNP connections to the same vCpGs

across distinct LD blocks (Figure 2E). This complex pattern

of genetic control of methylation might inform genetic

associations in this region6 and might help to localize sig-

nals more precisely than LD associations can resolve.

Relationship between GeMes and GWASs

Given that SNPs were found to control GeMes and that

clusters of methylated CpGs are smaller than LD blocks,

we examined whether incorporating CpG-methylation
490 The American Journal of Human Genetics 94, 485–495, April 3, 2
data with GWAS SNP-association data could help us better

understand the functional effects of genome-wide associa-

tions. We first examined the enrichment of 5,654 non-

coding disease-associated SNPs from the NHGRI Catalog

of Published GWASs (5,134 unique SNPs)21,22 among

the SNPs we found associated with DNA methylation

(meQTLs). Among 2,336 GWAS-identified SNPs avail-

able in our study, 322 were meQTLs, representing a

1.61-fold enrichment in comparison to all available SNPs

(p value¼ 5.123 10�14). This is consistent with others’ ob-

servations that GWAS SNPs are enriched among certain

functionally annotated categories30 and suggests that

SNPs associated with disease might be related to epigenetic

mechanisms.

We then performed the same analysis but limited it

to the 1,019 GeMes in which the same SNP cluster con-

trolled at least two vCpG sites. We observed a 1.86-fold
014



Figure 3. Implications for Disease-Asso-
ciated SNPs
(A) SNPs controlling DNA methylation in
meQTLs or GeMes were enriched in
GWAS variants (overall), and this enrich-
ment was phenotypic-class specific. Grey
bars represent SNPs associated with DNA-
methylation levels (meQTLs), and black
bars represent SNPs associated with
GeMes. Asterisks indicate significant en-
richment of GWAS variants in comparison
to all available SNPs (p value < 0.01,
Fisher’s exact test).
(B and C) Two selected examples (the
FADS1-FADS2 region in B and the
GSDMA-GSDMB region in C) in which
identifying GeMes controlled by GWAS
SNPs might help in fine mapping the vari-
ants important for disease phenotype. The
GWAS variants identified from other
studies are indicated in red. The ticks
represent CpGs (top) and SNPs (bottom)
covered in the arrays. Each dashed line rep-
resents a significant association between a
CpG and a SNP. The shades of black indi-
cate significance of the associations.
enrichment for these SNP in comparison to all available

SNPs (p value ¼ 1.39 3 10�13); this was further enhanced

when we considered all meQTLs, although the difference

between GeMe enrichment and meQTL enrichment was

just outside the range of statistical significance (p value ¼
0.07; Figure 3A). When we considered GWAS SNPs on

the basis of their phenotypic classes, the largest enrich-

ment groups were in autoimmune diseases, serum metab-

olites, and hematological parameters. For these, GeMe

enrichment was higher than meQTLs enrichment, and

the difference between them achieved statistical signifi-

cance for autoimmune diseases (p value¼ 0.03; Figure 3A),

consistent with the fact that we identified these GeMes

from whole blood. This result indicates that these GeMes

might be epigenetically relevant units in interpreting dis-

ease-associated SNPs.
The American Journal of Huma
Several examples highlight the

potential utility of GeMes for better

understanding GWAS data. A SNP on

chromosome 11 (rs102275) is associ-

ated with circulating phospholipid

levels and proportions,31,32 whereas

a different SNP (rs174448) 100 kb

away is associated with plasma phos-

pholipid n-3 fatty-acid levels.33 By

analyzing CpGs whose methylation

levels are regulated by genotypes,

we noticed that both SNPs, even

though they belong to separate LD

blocks (r2 < 0.5, CEU [Utah residents

with ancestry from northern and

western Europe from the CEPH collec-

tion] population in HapMap), were
associated with the same GeMe near the promoter

regions of genes FADS1 and FADS2 (Figure 3B), which are

members of the fatty-acid desaturase gene family. This

might enhance interpretation and understanding of these

GWAS signals. As another example, SNP rs2872507 is asso-

ciated with Crohn disease (CD [MIM 266600]),34 whereas a

different SNP (rs9303277) 50 kb away is associated with

primary biliary cirrhosis (PBC [MIM 109720]).35 SNPs

within this region control the DNA-methylation level of

a GeMe near the promoter regions of genes GSDMA and

GSDMB (Figure 3C), indicating that DNA methylation

might be important for disease mechanism. In fact, an

earlier report showed that the disease-associated genetic

variants are linked with changes in expression of GSDMB

transcripts in human lymphoblastoid cell lines,36 further

suggesting that DNA methylation potentially mediates
n Genetics 94, 485–495, April 3, 2014 491



genetic risk for CD and PBC. More examples can be seen in

Figure S5. To further replicate the relationship between

GWAS SNPs and DNA-methylation levels at GeMes at the

FADS1-FADS2 and GSDMA-GSDMB regions, we performed

bisulfite pyrosequencing on an independent set of 90

normal individuals. The associations between genotype

and methylation were replicated at all eight tested SNP-

CpG pairs with a p value < 0.05 (Figure S6). These results

suggest that DNA-methylation information can help us

fine map the genetic variants that might be responsible

for the disease phenotype and that investigating these

DNA-methylation sites might help us better understand

disease mechanisms.
Discussion

In summary, we have observed clustering of correlated

methylation sites that vary in the population, and this

clustering represents a new type of epigenetic structure.

Some clusters of methylated CpGs, termed GeMes, are

driven by one or more meQTLs and can result in non-

contiguous methylation clustering. Thus, the spatial

clustering of methylation patterns is not directly con-

tiguous, and the structure is most likely controlled by

DNA sequence. Even though genetic variants, such as

meQTLs, have been previously reported to control CpG

methylation,11–15 our genome-wide study has shown the

structures of DNA methylation, GeMes, at a population

level.

These methylation structures were found by examina-

tion of the Illumina HumanMethylation450 array, and

the data described here are subject to the same limitations

of interpretation of any data from this source; these limita-

tions include (1) potential batch effects,37 which we

addressed by comparing across data sets; (2) limitations

and coverage bias of the array themselves, which limit

the ability to quantify objectively the number or distribu-

tion of methylation clusters; and (3) the lack of allele-spe-

cific measurements, which require whole-genome bisulfite

sequencing with particularly long-read sequencing to

include genetic polymorphisms within the methylation

reads38 in a large population. Regarding the third point,

this is the same problem as in assigning phase information

to SNPs from array data, and the imputation of phase de-

pends on a large body of pre-existing knowledge, which

does not yet exist for DNA methylation. In fact, a recent

study analyzed five targeted regions in a reasonably large

number of samples with the added advantage of long-

range 454 sequencing, permitting statements about

allele-specific DNA methylation.39 This work is highly

consistent and, in fact, would represent what we are now

calling GeMes here. With our genome-wide identification

of GeMes, it will be interesting to see how many of these

are allele specific.

There are other considerations regarding our approach

to identifying correlatedmethylation regions. For example,
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to be most comparative with SNP-based LD, we initially

used the statistical approach from population genetics of

pairwise associations to define contiguous methylation

clusters. An alternative approach uses ‘‘bump hunting’’

to identify VMRs in data from comprehensive high-

throughput array-based relative methylation without re-

gard for directional correlation,10 but we would expect

VMRs to largely overlap with contiguous methylation clus-

ters. A test of this idea will require generation of similar

algorithms for 450K data.

Further, there is an alternative explanation for the find-

ings we describe. The SNPs driving GeMes might in fact be

driving subtle cell-type differences, perhaps those that

cannot be defined with cell-surface markers, and/or cell

differentiation. The association with SNPs could be related

to those driving cell-type proportion,40–43 which might

also explain the enrichment of hematological parameters

and autoimmune disease in GWASs. Arguing against this

idea is the fact that most of such loci did not overlap our

SNPs associated with GeMes. Another argument against

this is that 94% of the vCpG-SNP pairs we identified

were located within 5 Mb of each other, which is inconsis-

tent with the idea that a SNP that drives cell-type propor-

tion should be associated with many cell-type-associated

differentially methylated regions across the genome.

Even if that were the case, the regional nature of the clus-

ters, particularly at a distance, would be of biological

interest (but for the mechanism of normal development

rather than for disease).

With these limitations in mind, however, several reason-

able inferences can be made from these analyses. First,

DNA methylation is correlated over regions with a

median length of 274 bp from our data set an order of

magnitude less than is SNP association. This rapid decay

in DNA-methylation correlation is similar to what has

been observed in wild Arabidopsis thaliana accessions,12

and DNA-methylation dependency over short regions is

consistent with a recent study on bisulfite sequencing of

several loci with haplotype-dependent methylation.39

However, what is different here is the examination of a

large number of individuals showing that the methylation

codependency itself varies across the genome and thus rep-

resents a kind of related epigenetic unit—a counterpart to

LD blocks but with very different potential mechanisms.

Similar to LD blocks in GWASs, this type of correlated

methylation structure can be a useful tool for guiding

custom array design, efficient statistical approaches, and

interpretation of EWASs.

Second, some GeMes skip genomic regions to include

sites at considerable genomic distance (more than 300 kb

in some cases) but are apparently controlled by the same

genetic architecture. This is a surprise, especially given

that correlated methylation sites at a large distance can

be under the influence of SNPs at one end of the interval

while skipping vCpG-SNP combinations in the middle.

The most plausible explanation for these data is that

GeMes have a structural basis in nuclear organization,
014



i.e., the DNA is looped within interacting domains,44

which will require future studies.

Third, methylation clusters can also reflect differences in

environmental exposure and not genotype, such as smok-

ing here. Thus, environmental agents might act to modify

nuclear structure, potentially in collaboration with genetic

variation, affecting the regulation of genes in contiguous

or even noncontiguous regions.

Fourth, these data suggest that a potential component of

GWAS disease association acts in partnership with epige-

netic mechanisms. Even with a small number of DNA-

methylation data sets on a limited portion of the genome,

i.e., 450K, 8% of positive GWAS associations appear to

converge on GeMes. This number will only increase with

similar analyses using data from whole-genome bisulfite

sequencing. At the very least, these results suggest that a

more productive genomic research target for association

studies might be the GeMes described here.

In summary, despite inherent limitations to this study,

GeMes should provide a useful tool in the design and anal-

ysis of GWASs, combining conventional GWASs with tar-

geted epigenome analysis. Such an approach might allow

higher resolution than what is possible for the analogous

SNP associations by themselves, given that regardless of

mechanism, the sites of SNP-linked GeMes appear to

bridge genomic regions and focus attention on small

methylation regions within much larger LD blocks.
Supplemental Data

Supplemental Data include six figures and seven tables and can be

found with this article online at http://www.cell.com/ajhg.
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