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Abstract
Purpose—This review summarizes the most recent advances in stem cell and regenerative
approaches to treat kidney injury, and highlights areas of active controversy. Over the last year a
number of findings have been reported that have brought this field much closer to clinical
translation.

Recent Findings—Recent progress in regenerative nephrology includes the directed
differentiation of embryonic stem cells to kidney fates, understanding the proliferative capacity of
tubules after injury, the use of mesenchymal stem cells for kidney disease and tissue engineering
approaches to renal replacement. Controversies persist, however, including whether adult
epithelial stem cells exist at all, the best therapeutic strategy for the treatment of kidney injury and
how to use mesenchymal stem cells optimally for the prevention of acute kidney injury.

Summary—While recent progress in kidney regeneration is very encouraging, current
controversies must be resolved before clinical breakthroughs can occur.
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INTRODUCTION
Stem cell and regenerative medicine approaches to kidney injury are among the most
exciting concepts to have emerged in nephrology over the last decade. While progress has
been slow until recently, the field now appears poised to advance rapidly. I will review the
discoveries driving this innovation, but first summarize some fundamental principles of
kidney regenerative biology already established and widely agreed upon. These include the
discovery that multipotent renal stem cells exist in the developing mammalian kidney; that
adult nephron has a robust but not inexhaustible capacity to repair after acute injury; and the
revelation that lower vertebrates such as zebrafish are capable of generating entirely new
nephrons from an adult kidney stem cell population.

During nephrogenesis, the kidney develops from intermediate mesoderm through a process
of reciprocal inductive signals exchanged between the ureteric bud and the cap
mesenchyme. Cells from cap mesenchyme, itself derived from intermediate mesoderm,
condenses to form the pre-tubular aggregate and subsequently undergoes mesenchymal-to-
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epithelial transition to form the renal vesicle. This further develops into an increasingly
complicated structure ultimately forming the entire nephron 1. Elegant studies have shown
conclusively that the cap mesenchyme contains multipotent kidney progenitors that both
self-renew and differentiate, forming all the epithelial cells found along the nephron except
for collecting duct 2–4. These findings have provided important markers, such as Six2 or
OSR1, to aim for when inducing embryonic stem cells toward kidney progenitor fates, as
discussed below.

Another established concept is that proximal tubule epithelia undergo proliferative
expansion after acute injury to repair acute damage 5, 6. Epithelial cell proliferation helps
restore cells lost to apoptosis or necrosis during the insult 7. While the burst of proliferation
in proximal tubule after injury is widely accepted, understanding the signals that drive
epithelial proliferation is now a major focus of AKI research. Importantly, the cellular
source of these dividing cells remains unresolved.

Finally, although mammals cannot grow new nephrons after kidney development ceases,
one of the most exciting recent findings has been the indisputable demonstration that lower
vertebrates are able to regenerate entire nephrons after injury. Elger and colleagues first
provided strong histologic evidence that the elasmobranch skate kidney could generate new
nephrons after partial nephrectomy 8. But the elegant work of Davidson provided
indisputable evidence that adult kidney stem cells exist in zebrafish, and can be serially
transplanted 9. Collectively these studies raise an important question: Why have lower
vertebrates retained a capacity for post-natal nephron neogenesis that mammals have lost? A
better understanding of this issue will provide critical insight into kidney regeneration.

In the following sections I outline four areas of ongoing controversy in the field of
regenerative nephrology. While not comprehensive, for example I will not cover glomerular
regeneration 10, 11, this list includes controversies that are especially relevant to acute kidney
injury.

DO TUBULAR STEM CELLS EXIST?
A basic prerequisite for the design of a stem cell or regenerative approach to kidney injury is
a clear understanding of how the adult kidney repairs itself normally. Yet this remains a
contentious and controversial area. Two competing theories have arisen to explain the origin
of proliferating tubular epithelia after acute injury: (1) A stem or progenitor cell generates
new epithelia, or (2) fully differentiated epithelia dedifferentiate, re-enter the cell cycle and
generate new epithelial cells through self-duplication. Support for both theories exists.

Arguing for the epithelial stem cell theory, a variety of candidate progenitors cells have been
described. Genetic fate mapping of nFatC1+ cells in AKI suggest that these may represent
an intratubular progenitor population 12. Importantly, individual proximal tubule cells in
humans that express vimentin, CD24 and CD133 have been recently identified, and these
putative progenitor cells are present both in parietal epithelium and also scattered throughout
the proximal tubule. When isolated ex vivo, these cells can form spheres and clonally
expand, and they ameliorate AKI and apparently contribute to epithelial lineage in
experimental models 13–16. Recently LGR5 was shown by lineage analysis to mark a distal
tubule progenitor population during development, providing further support to the notion
that epithelial progenitors could exist in adult kidney 17. Other characteristics including side
population, label retention and clonality have been reported to enrich for putative
intratubular epithelial stem cells 18–21.

On the other hand, we have shown using a genetic lineage analysis strategy that no
extratubular stem or progenitor population migrates into the tubule during repair from
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AKI 22. Moreover, the traditional model for AKI repair holds that epithelial repair after
injury occurs by dedifferentiation and proliferation of surviving epithelial cells 6, 23. Support
from this model derives from the finding that differentiated proximal tubule cells are poised
in G1, ready to re-enter the cycle after injury 24. Because our genetic approach could not
distinguish a dedifferentiation model from a stem cell model of epithelial repair, we have
also tracked the proliferative history of proximal tubule epithelia after acute injury using
sequential pulses of thymidine analog. This study showed that cell division at different
timepoints during repair is by separate, random, fractions of the total epithelium. These
results argue strongly that repair is not through a minority population of stem cells that
proliferate rapidly, but rather all surviving epithelial cells have an equivalent capacity for
repair 25. On the other hand, this result has actually been interpreted by others to support a
stem cell based repair mechanism, reasoning that tubular progenitors preferentially survive
and therefore represent the dominant population among surviving cells and thus divide only
once or twice during repair 26, 27.

Thus it remains unclear whether an intratubular progenitor may exist or not. Importantly,
Smeets et al. has recently showed that Kidney injury molecule-1 (KIM-1) is coexpressed
with human vimentin+CD24+CD133+ tubule cells. Vimentin and Kim-1 are tubular injury
markers 28, 29 and these authors observed no basal expression of either marker in healthy rat
kidney but upregulation of both proteins after injury. Therefore they argue that vimentin
+CD24+CD133+ cells do not reflect a preexisting progenitor population but rather reflect
transient dedifferentiation 30. This is a provocative concept because it may explain the
consistent observations of CD24+CD133+ cells in human, suggesting that these may reflect
individual cells undergoing dedifferentiation, perhaps due to local stresses or homeostatic
repair. Resolution of this debate, however, will require definitive evidence from genetic
lineage analysis in vivo. The two possible mechanisms of epithelial repair are summarized
in Figure 1. Those studies are currently underway in several laboratories, so expect more
developments in this rapidly moving field.

WHAT IS THE ROLE OF MSC-BASED THERAPIES FOR TREATMENT OF
AKI?

As a regenerative approach already in translation, with mesenchymal stem cell (MSC) -
based clinical trials for treatment of kidney disease underway, MSC have attracted intense
attention for their potential therapeutic use 31. MSCs act in a paracrine fashion to exert anti-
inflammatory, pro-repair, immunomodulatory effects 32. These are accomplished through
secretion of soluble factors including growth factors and angiogenic cytokines. MSCs also
secrete exosomes containing microRNAs that mediate part ofthe beneficial effects of these
cells after injection 33, 34. A series of careful studies have proven that MSCs do not integrate
into kidney parenchyma, and in fact reside in kidney only transiently after injection 35.
Nevertheless, MSCs have been shown to ameliorate a wide variety of kidney diseases, from
AKI to CKD to glomerular disease 36.

Unique among stem cell approaches to kidney disease, a Phase I clinical trial has recently
been completed testing the safety of MSCs in patients undergoing on-pump cardiac surgery
at high risk for developing AKI. This study enrolled 16 patients, and administered escalating
doses of MSCs into the distal thoracic aorta. Study participants were followed up for six
months, and no specific adverse events were reported. A secondary objective of the trial was
to compare patients that received MSC with matched historical controls that had not
received stem cell therapy. This analysis suggests that MSCs afford early and late kidney
protection, as well as decreased hospital length of stay 37. These results have allowed a
privately held company, allocure, to initiate a Phase II trial designed as a randomized,
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double-blind, placebo-controlled multicenter trial to assess the efficacy of MSCs in
approximately 200 cardiac surgery patients (NCT01602328, www.allocure.com).

Despite the compelling progress that these two clinical trials demonstrate, unanswered
questions remain concerning the how best to apply MSCs to kidney disease. A central
problem is the therapeutic mechanism, which remains poorly defined. MSCs do not engraft
in kidney when injected intra-arterially, and when injected intravenously, they embolize in
lung 38. Therefore these studies are not cell transplantation, but rather infusion of cells that
exert effects through paracrine mechanisms – so this is not a stem cell replacement therapy,
because the cells do not engraft. This implies that if we can identify the bioactive substances
secreted by MSCs, that infusion of these alone, without cells, would be just as good or
better. Whether MSC release bioactive molecules in a temporal sequence – in effect
responding to a changing environment – is not known. In preclinical studies, however,
conditioned media from MSCs protected kidneys from acute injury just as well as injection
of the cells did 39. Clearly an incomplete understanding of the mechanism of action of this
therapy is no reason not to pursue these clinical trials but more basic research into MSC
biology and kidney protection is required.

HOW CAN EMBRYONIC STEM CELLS AND INDUCED PLURIPOTENT
CELLS BE USED TO TREAT KIDNEY INJURY?

The ability to direct the differentiation of embryonic stem cells to any cell type of interest
has always been recognized as a powerful and inexhaustible source for cell replacement
therapies. Yamanaka’s Nobel prize-winning discovery that mature somatic cells can be
reprogrammed to become pluripotent stem cells (induced pluripotent stem cells, iPSCs) by
expression of four transcription factors has shifted paradigms and accelerated the clinical
development of cell therapies 40, 41. Because iPSCs can be generated easily from any
patient, they offer the promise of disease modeling, toxicity testing and personalized cell
therapies without fear of immunologic rejection.

Progress towards generating kidney cell types from embryonic stem cells (ES cells) or
iPSCs has been notably slow compared to other fields, until recently. Full protocols for the
derivation of hepatocytes, neurons and cardiac myocytes were established years ago 42–44,
and these have catalyzed important new discoveries such as the possibility of completing a
clinical trial in a petri dish 45, 46. No efficient protocol has existed in kidney, but recent
progress gives encouragement that this field is about to break open.

Several groups have demonstrated that exposure of ES or iPS cells to factors required for
renal specification, such as retinoic acid, activin A and bone moorphogenic proteins does
induce differentiation into renal lineage cells including intermediate mesoderm, as well as
individual apparently differentiated cells, such as proximal tubule or podocyte 47–51.
However, a limitation to these efforts has been the relatively inefficient differentiation
process, which can take weeks, as well as the low yield of differentiated cells. The field has
also been held back by the absence of a robust assay to test the functional capacity of these
cells, in addition to their expression of typical markers. Recently the Little group has
described a novel reaggregation assay, in which embryonic mouse kidney is disaggregated,
then re-aggregated along with exogenous cell populations, and subsequently cultured 52.
This in vitro system provides a powerful platform on which to assess the differentiation and
incorporation potential of cells derived from ES or iPSC cultures, and should stimulate
further development of directed differentiation protocols.

Mae has reported a protocol for the most efficient differentiation of intermediate mesoderm,
from human ES cells, to date. Taking advantage of the fact that OSR1 expression defines
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intermediate mesoderm, these authors knocked in a green fluorescent protein (GFP) reporter
into the OSR1 locus. This allowed them to assay different differentiation protocols, using
gain of GFP fluorescence as a readout for intermediate mesoderm fates. Their protocol,
which involves sequential activin A and BMP7 treatment with continuous canonical Wnt
pathway activation, resulted in 90% purity for OSR1-GFP cells after about 15–20 days 53.
Notably, they also showed incorporation of these cells into differentiated tubular structures
during re-aggregation organ culture, albeit at a relatively low frequency of 5%. This is an
important finding, one that is sure to stimulate further refinements in the directed
differentiation of ES and iPS cells to kidney fates.

Besides generating more efficient and robust differentiation protocols, an additional
challenge in this field is to understand the stability of the differentiation state achieved. This
will require a deeper understanding of the mechanisms driving and maintaining renal cell
fates which remain obscure. Rather than induce the differentiation of kidney cell types from
multipotent progenitors, an important new question in the field is whether direct
reprogramming, from one differentiated cell type to another, ca achieve the same goals as
directed differentiation. This concept was first shown by Zhou et al. in reprogramming
pancreatic exocrine cells to pancreatic beta-cells 54. Very recently, the first instance of
kidney reprogramming was reported by Little’s group. This elegant paper screened various
combinations of transcription factors and identified the combination of SIX1, SIX2, OSR1,
EYA1, HOXA11, and SNAI2 that were able to reprogram epithelial cells into Six2+
nephron progenitors 55. These cells were fully able to differentiate into epithelial cells in a
re-aggregation assay. Whether created through differentiation or reprogramming, new
strategies for achieving integration of these cells within the kidney parenchyma will be
required. Certainly one promising use is in tissue engineering, as discussed below.

ARE TISSUE ENGINEERING APPROACHES VIABLE AS A RENAL
REPLACEMENT STRATEGY?

At the beginning of the stem cell era, there was enthusiasm for the concept of growing a new
kidney, either in a dish, or through transplantation of embryonic tissue into a host (reviewed
in 56). But the challenges to growing a functional kidney soon became evident, dampening
enthusiasm. Unlike single cell disorders like diabetes or amyotrophic lateral sclerosis, the
challenge with kidney failure is the creation of a functional organ comprised of about 30 cell
types organized in a precise 3-dimensional structure. Even after this, how can the host blood
supply integrate into the graft? How to plumb in the collecting system to existing ureters?
Over the last two years, however, substantial progress in tissue engineering approaches has
been made that suggest that many of these problems are at least tractable, though far from
being solved.

Historically, two different strategies have been employed to engineer a kidney: combining
synthetic components with cells in a hybrid device, and generating a transplantable kidney
entirely from cells. While hybrid devices continue to develop, they will be only briefly
summarized here. Humes and colleagues successfully designed renal assist device (RAD),
consisting of a conventional hemofilter in series with a bioreactor containing thousands of
hollow microfibers lined by kidney epithelial cells. After filtration in the conventional
hemofilter, the ultrafiltrate passes through the lumen of the bioreactor while the blood is
pumped through the extracapillary space. Although not in direct contact with the cells, the
blood is modified by the cells, including reduction in pro-inflammatory cytokines and other
mediators (reviewed in 57). The RAD made it into clinical trials, as far as a Phase 2a safety
and preliminary efficacy trial, but ran into manufacturing and the Phase 2b trial was not
completed 58, 59. Despite the suspended clinical trial of the RAD, these devices continue to
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be developed, including portable or even implantable ones, and this field remains promising
for treatment of ESRD.

A strategy combing renal progenitor cells with a biocompatible scaffold, rather than an
engineered synthetic one has recently been reported and represents a remarkable technical
feat. Song and colleagues decellurized an isolated rat kidney with a detergent solution to
reveal the extracellular matrix, including vasculature, glomerular basement membrane and
tubular basement membranes 60. They subsequently devised methods to seed the vasculature
with cultured endothelial cells, and the tubules and glomeruli with rat kidney progenitor
cells isolated from embryonic rat kidney. These single cells contained progenitors for all
tubule components as well as interstitium. After reseeding of the kidney scaffold, cells
differentiated and expressed appropriate cell-cell contacts and markers of differentiated
cells. When delivered perfusate, these regenerated kidneys produced urine and filtrate that
suggested active absorptive and secretory function. Most remarkably, when transplanted
orthotopically in rat, with renal artery and vein anastomosed to the regenerated kidney, it
also produced a filtrate with less glycosuria and albuminuria than simple decellurized
kidneys, strong evidence suggesting the regenerated kidney restored macromolecular sieving
and glucose reabsorption. This study focuses attention on the importance of kidney
scaffolding in providing cues for progenitors to differentiate apropriately. It will be
particularly interesting to combine this decellularization approach with other sources of
kidney progenitors, such as directed differentiation or reprogramming. Figure 2 summarizes
the ways that stem cell biology and artificial kidneys may be combined to provide a source
for transplantable engineered kidneys to patients.

CONCLUSION
The recent advances in stem cell and regenerative approaches to treating kidney injury show
remarkable promise. While it is not clear to what extent some of these approaches are truly
“regenerative,” since they may actually target endogenous repair programs, there is no
question that we are much closer now to new and innovative approaches to treat kidney
disease than at any other point in the stem cell era.
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Key Bullet Points

1. Whether or not adult kidney harbors a proximal tubule stem cell population
remains an unresolved controversy.

2. The use of MSC to prevent AKI is already in Phase II clinical trials, but
important gaps in our understanding of how these unique cells exert their reno-
protective effects exist.

3. Research into the use of ES and iPS cells as inexhaustible sources of
differentiated cell types has grown rapidly in the last year, and promises to be
one of the most active areas in kidney stem cell research in the near future.

4. Substantial progress has been made in efforts to generate bioengineered kidneys,
either from a decellularized scaffold, or using nano-biotenchnology approaches.
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Figure 1. Dueling Models for Epithelial Repair after Injury
(a) In the stem/progenitor model, scattered progenitors located adjacent to differentiated
proximal tubule epithelium. After injury, these cells preferentially survive and selectively
proliferate. Their progeny differentiate into proximal tubule epithelial cells. The progenitors
express CD24, CD133, Kim-1 and Vimentin, among other markers. (b) In the self-
duplication model, any fully differentiated cell that survives the injury has an equivalent
capacity to dedifferentiate and proliferate. The progeny the re-differentiate into proximal
tubule epithelium. In this case, CD24, CD133, Kim-1 and Vimentin are not markers of a
separate stem cell compartment, but are injury markers expressed by a dedifferentiated
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epithelial cell. Thus new epithelia derive from their fully differentiated neighbors in a
process of self-duplication.
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Figure 2. Models to Combine Stem Cells and Kidney Engineering
(a) ES or iPS cells are differentiated into kidney progenitors. Alternatively, somatic cells
may be directly reprogrammed into progenitors. These cells are then combined either with a
decellularized kidney scaffold, or alternatively with a synthetic cartridge, to differentiate
into functional kidney cell types. The goal with both types of engineered kidney is to
transplant into humans with kidney failure.
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