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Abstract
There is considerable debate about the most efficient way to interrogate rare coding variants in
association studies. The options include direct genotyping of specific known coding variants in
genes or, alternatively, sequencing across the entire exome to capture known as well as novel
variants. Each strategy has advantages and disadvantages, but the availability of cost-efficient
exome arrays has made the former appealing. Here we consider the utility of a direct genotyping
chip, the Illumina HumanExome array (HE), by evaluating its content based on: 1. functionality;
and 2. amenability to imputation. We explored these issues by genotyping a large, ethnically
diverse cohort on the HumanOmniExpressExome array (HOEE) which combines the HE with
content from the GWAS array (HOE). We find that the use of the HE is likely to be a cost-
effective way of expanding GWAS, but does have some drawbacks that deserve consideration
when planning studies.
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INTRODUCTION
Methods to extend genome-wide association studies (GWAS) have recently become a topic
of high interest. Despite a large number of notable successes in the discovery of genetic
variants associated with various traits, including disease via GWAS, the variants identified
to date collectively only explain a small fraction of the estimated heritability of most
common, chronic diseases (Manolio et al., 2009). Unknown genetic factors, including
polymorphisms that have yet to be identified through GWAS studies, likely account for the
‘missing heritability’ associated with complex traits (Yang et al., 2011; Visscher et al.,
2012). One explanation for this missing heritability is that widely-used genotyping platforms
for GWAS are designed to directly interrogate only common single nucleotide
polymorphisms (SNPs). Therefore, rare coding variants, which have been shown to play a
role in the etiology of many diseases, tend to be entirely omitted by most genotyping
platforms used in GWAS as they are not in linkage disequilibrium (hence not imputable)
with SNPs interrogated on these arrays (Evans et al., 2008; Sun et al., 2011). Thus, the
examination of rare coding variants requires either sequencing technology or the direct
genotyping of variants which have previously been identified. While the former may lead to
a more comprehensive assessment of all forms of variation in coding regions, including the
discovery of extremely rare and/or de novo variants, the latter provides an efficient, cost-
effective alternative for interrogating a subset of known variants in coding regions (Flannick
et al., 2012; Pasaniuc et al., 2012).

The value of direct genotyping of previously identified coding variants, as opposed to de
novo sequencing of coding regions, is dependent on a few key issues. First, if one can
identify known functionally relevant variants in coding regions it might be more expedient
to focus on them in cost-effective direct genotyping studies than pursuing more costly
sequencing studies that may identify many likely neutral variants. Second, if coding variants
identified via sequencing are easily imputable from variants genotyped on standard GWAS
platforms, then the need for directly genotyping these coding regions would be minimized
and greater attention could be given to more reliable imputation strategies. Third, many
coding variants, whether they are functional or amenable to imputation or not, are very rare
and hence likely to be absent in many global populations. Thus, direct genotyping certain
coding variants may only be useful for specific populations.

Here we assessed the potential benefits of directly genotyping rare coding variants on the
Illumina Human Exome (HE) array by addressing these issues. As such, our assessment
includes an examination of the functional content of variants included on the array. We also
evaluated the amenability of the HE markers to imputation from the Illumina Human Omni
Express (HOE). And lastly, we evaluated the allele frequency spectrum of the variants
included on the HE chip. We find that, overall, the HE chip does not suffer severe
drawbacks in the context of these issues, but of course is limited to assessments of known
(i.e., previously identified) variants. Our analyses and results have important implications
for future studies seeking to identify associations with coding variants.

MATERIAL AND METHODS
Subjects and genotyping

Participants were recruited from two southern Californian military personnel cohorts: 1. the
Marine Resiliency Study (MRS), a prospective study of post-traumatic stress disorder
(PTSD) involving United States Marines bound for deployment to Iraq or Afghanistan
(Baker et al., 2012); and 2. a cross-sectional study of active duty service members and
veterans of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) (Pittman et
al., 2012). The protocols for these studies were approved by the University of California-San
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Diego Institutional Review Board (IRB Protocols #110770, #070533, and #080851), and all
subjects provided written informed consent to participate.

DNA samples from 2,585 study participants were acquired, and genotyping was carried out
by Illumina (http://www.illumina.com/) using the HOEE version 12v1.0. Initial allele
calling was performed by Illumina in Genome Studio (http://www.illumina.com) and the
overall data quality was high: sample success rate was 99.95% (9 samples failed), locus
success rate was 99.86%, and genotype call rate was 99.88%. Twenty-eight replicate pairs of
samples undergoing genotyping were assessed for consistency and ultimately reproducibility
of the assay and agreement of genotyping calls was achieved for >99.99% over all
genotypes across these 28 pairs. Additional data cleaning was performed in PLINK v1.07
(Purcell et al., 2007) and included the removal of 224 markers with heterozygous haploid
genotypes on the X, Y, or mitochondrial chromosome. The final dataset included 949,469
markers genotyped in 2,548 individuals (2538 males and 10 females) with a genotyping rate
greater than 99.8%.

Ancestry determination
We estimated each individual‘s degree of European, African, Native American, Central
Asian, East Asian and Oceanic admixture by comparing the individual’s genotypes to allele
frequencies of 10,079 SNPs in common with a large set of reference individuals (Libiger
and Schork, 2013). In short, the reference sample consisted of genotype data for 2,513
individuals of known ancestry who originated from 83 populations from around the world.
These data were assembled from publicly available sources including the Human Genome
Diversity Project (HGDP) (Cann et al., 2002), the Population Reference (POPRES) (Nelson
et al., 2008), HapMap3 (Altshuler et al., 2010), and the University of Utah dataset (Xing et
al., 2009). Admixture estimates were obtained in two steps using a supervised analysis
implemented in the ADMIXTURE software (Alexander et al., 2009). In the first step, we
computed initial admixture estimates for all individuals associated with each world
population using the entire set of reference individuals and determined the estimates’
standard errors via bootstrapping. A subset of reference individuals from populations that
exhibited evidence of contributing to an individual’s ancestry based on 95% confidence
intervals was then used to refine the initial admixture estimates in a subsequent supervised
ADMIXTURE analysis.

Final ancestry calling was based first on self-reported race and ethnicity information, and
second, within each of these main population group, genetic ancestry estimates. Subjects
were placed into 5 groups: European Americans (subjects with >95% European ancestry;
N=1,476), Asian Americans (>95% East Asian ancestry; N=43); African-American
(subjects with >5% African ancestry and <5% Native American, Central Asian, East Asian
and Oceanic ancestry; N=109), Hispanic Americans (subjects with >5% Native American
and <10% African, Central Asian, East Asian and Oceanic ancestry; N=321), and Other (all
others; N=599). Thus, our ancestry assignments provide initial assignments consistent with
the often-used admixture program except that they have been refined by removing noise and
leveraging comparisons to self-reported ancestries.

Genotype imputations
Imputations were conducted using markers available on the HOE platform. Prior to
imputation, mitochondrial and unmapped SNPs were removed from each set. Markers that
were individually rare (minor allele frequency MAF < 0.0002), showed a large number of
missing genotypes (> 5%), or failed Hardy-Weinberg equilibrium (p < 1 × 10−6) were also
removed (Supplemental Table 1). Imputations were performed using the default parameters
in IMPUTE2 v2.2.2, using 1000 Genomes Phase 1 integrated variant set haplotypes for the
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autosomes and the interim set for the X chromosome (Howie et al., 2009). IMPUTE2 is well
suited for imputations on genetically diverse and admixed populations such as that of the
present study as the algorithm is robust to ancestral genetic variation within the reference
panel and study datasets (Howie et al., 2011). Genomes were divided into approximately 5
Mb segments (minimum 2.5 Mb, maximum 7.5 Mb to avoid chromosome and centromere
boundaries), and phasing and imputed genotypes were calculated for each. Imputed markers
with low imputation quality values (Info ≤ 0.5) were dropped. GTOOL v0.7.0 was used to
convert genotype probabilities into calls. Individual genotype probabilities exceeding 90%
were assigned genotype calls and probabilities ≤ 90% were treated as missing genotypes.
Agreement between the imputation results and markers exclusive to HOEE (i.e., HE
markers) was examined by calculating the correlation coefficient, r2, between calls on a per
marker level. Missing genotypes were assigned an allelic dosage representing the mean
genotype at that particular locus for all calculations. Imputation was also performed based
on genotype data from the HOEE platform. A comparison of the agreement between the
HOE and HOEE to impute markers that were not genotyped on either platform was,
likewise, conducted.

Variant functional annotations
We mapped all variants to the closest gene from the UCSC Genome Browser known gene
database (Fujita et al., 2011). Full details of our annotation pipeline are described in a
previous publication (Torkamani et al., 2012) and the Supplemental Methods. In brief,
variants were associated with all transcripts of the nearest gene(s), with functional impact
predictions made independently for each transcript. If the variant fell within a known gene,
its position within gene elements (e.g. exons, introns, untranslated regions, etc.) was
recorded for functional impact predictions depending on the impacted gene element. All
variants falling within an exon were analyzed for their impact on the amino acid sequence
(e.g. synonymous, nonsynonymous, nonsense, frameshift, in-frame, intercodon etc.).

RESULTS
Characterization of the Cohort

Table 1 provides a description of the cohort based on self-reported race and ethnicity
information and includes the number of subjects, gender, and age of the subjects and the
number of individuals removed from the study because of failed genotyping quality control
(see Methods). Individual ancestry and admixture proportions were assessed within these
self-reported race and ethnicity groups using genotype information (see also Methods) and a
graphical representation of the ancestry/admixture among the subjects in the study is
provided in Figure 1. We ultimately identified 1,476 individuals with predominantly
European ancestry, 109 African-American individuals, 43 with predominantly East Asian
ancestry, 321 with predominantly Hispanic American ancestry (i.e., with significant Native
American admixture), and 599 with predominant ancestry from any other geoethnic
population. We used these combined self-reported and genetically-determined ancestries in
subsequent analyses.

Imputability of the HE Markers
We explored the possibility that the markers which were exclusive to the HOEE array (i.e.,
the HE content) could be imputed from markers on the HOE array. If these markers are
amenable to imputation, it would call into question the utility of the additional content on
the HOEE chip. Only a modest proportion of the markers exclusive to the HOEE array were
imputable from the HOE content and passed imputation quality control thresholds
(N=80,205; 32.9%). Among these, markers with common variants (MAF>0.05; N=27,250)
were imputed accurately across all ethnicities: 76.4% of common markers had r2>0.95 and
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90.6% had r2>0.80. However, markers with moderately common (0.01≤MAF≤0.05;
N=9,777) and rare (MAF<0.01; N=43,178) variants were imputed more poorly: 46.8% and
22.9% with r2>0.80, respectively. Overall, only 50.6% (N=40,620) of all imputable markers
were accurately imputed across ethnicities (Figure 2a). Considering the HE included
158,878 non-monomorphic markers in this sample (among 243,783 total genotyped
markers), only approximately one-quarter of variable HE content – and one-sixth of the total
HE content – could be recapitulated from imputation via the HOE content. Note that we did
not consider the small number of Y-chromosome (N=180) and mtDNA markers (N=245)
available on the HE chip.

Imputation accuracy was also assessed separately for European Americans (N=1,476, Figure
2b). We found a trend towards decreasing imputation accuracy with decreasing minor allele
frequency. The proportion of markers which could be imputed accurately (r2>0.80) was
65%. The small numbers of subjects in the other ancestry groups precluded statistical
comparisons.

Finally, the total number of markers that could be imputed based on the HOE and HOEE,
but not present on either platform, were considered. A large number of markers were
successfully imputed at an acceptable quality (i.e., information threshold greater than 0.5) on
both platforms (Supplemental Table 2). The total counts and overlap between HOE and
HOEE were very similar. Only slightly more markers were imputed accurately using HOEE
compared to HOE (22,961,598 and 22,898,511, respectively). Markers with rare variants
(MAF<0.01) accounted for roughly 54% of the approximately 23 million accurately imputed
markers, while markers with common variants (MAF>0.05) accounted for 30%. In general,
there was high concordance of imputed genotypes between the HOE and HOEE
(Supplemental Figure S1). Approximately 17 million markers had r2>0.8. Thus, the
performance of the HOE and HOEE to impute markers not present on either platform was
determined to be roughly equivalent.

Functional Content for Markers Interrogated by the HE array
Of the 949,469 markers that passed genotyping QC (see Methods), the known or likely
functional significance of 931,570 markers could be assessed using a suite of bioinformatics
and computational procedures as described in (Torkamani et al., 2012) (see Methods). Of
the 237,627 markers interrogated on the HE chip, there were 237,489 single-nucleotide
variants (SNVs), 43 insertions, and 95 deletions. The classification of these markers into 9
functional groups is shown in Table 2 (left columns). Overall, 117,678 variants (49.5%) on
the HE were predicted to be functional. When compared to the content on the more
comprehensive HOEE array, we found that of the 122,668 HOEE functional variants,
117,678 (95.9%) were contributed by the HE. We also compared the contribution of
functional content of the HE to the HOEE array after imputation (HOEEi; N = 22,961,598
markers amenable to imputation). We found that only approximately 0.7% of all variants
capable of interrogation were likely to be functional (right columns of Table 2), suggesting
that the HE chip is indeed substantially adding to the functional content available when
using the HOE array, even after imputation. We note that some variants (N=1,143 or 0.12%)
that were either interrogated on the HOEE chip or amenable to imputation were not
amenable to functional prediction based on our computational procedures due to, for
example, location inconsistencies in relevant databases.

Overall and Functional Variant Frequencies
The majority of markers interrogated on the HE platform have very low minor allele
frequencies. For example, 85% of markers exhibited minor allele frequency of 0.01 or less
in our multi-ethnic cohort and similar trends were observed within each population. This
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observation has obvious implications on the utility of the HE in GWAS initiatives which
focus on single marker tests. Assuming a small or moderate effect of variants on disease,
most of the markers on the HE array will only provide sufficient power to detect
associations between an allele and a disease using single marker tests if information on a
very large number of case and control individuals is collected.

The mean (±s.d.) number of polymorphic markers per individual interrogated on the HE
array was 15,746 (±215), and included 2,454 (±59) functional markers, 14.3 (±6.4) private
markers, and 7.9 (±3.8) functional and private markers. Similar numbers were seen in the
European American subgroup (total: 15,528±112; functional: 2,420±38; private: 10.1±3.8,
functional & private: 5.7±2.6).

DISCUSSION
As the genetics community learns about the limitations of contemporary approaches to
discovering variants that influence phenotypic expression, newer approaches will
undoubtedly emerge. It is quite clear that despite the spectacular and numerous successes in
identifying associated variants via GWAS initiatives focusing on common variants and
linkage disequilibrium phenomena, there is a large fraction of the genetic basis of most
diseases and traits that has yet to be characterized. This could be due to one or more of the
following factors: (1) rarity or relatively small effect sizes of the remaining variants
contributing to those conditions; (2) forms of variation not hitherto explored in as
comprehensive a manner as SNPs and small indels in GWAS initiatives (e.g., copy number
of variants and large structural variations); (3) complicated gene×environment interactions;
(4) epigenetic factors; and, (5) other phenomena (Frazer et al., 2009; Manolio et al., 2009;
Schork et al., 2009).

The contribution of rare variants to phenotypic expression is getting more and more
attention given the availability of cost-efficient sequencing technologies (Bodmer and
Bonilla, 2008; Frazer et al., 2009; Schork et al., 2009; Bansal et al., 2010; Gibson, 2011;
Malhotra and Sebat, 2012; Pasaniuc et al., 2012). However, sequencing technologies may
still be cost-prohibitive for large-scale association studies. Therefore, the genetics research
community has considered the use of genotyping platforms that can interrogate previously
identified variants that are not easily captured via linkage disequilibrium on standard
genotyping platforms used in GWAS initiatives. Choosing the markers to be used on such
arrays is crucial, but a focus on coding variants (i.e., the exome) is a logical starting point
(despite the fact that coding variants tend to be rare) since it has been shown that they are
likely to be functional and have been implicated in a number of diseases and phenotypes
(Botstein and Risch, 2003; Jordan et al., 2010; Gorlov et al., 2011; Sunyaev, 2012).
However, designing a genotyping array that would complement existing genotyping
platforms is not necessarily trivial. For example, imputation strategies are gaining
sophistication making it possible to avoid the use of newer assays by computationally
assigning variants to individuals based on linkage disequilibrium patterns in the genome and
available data sets (Marchini and Howie, 2010; Flannick et al., 2012). Thus markers
interrogated on newer platforms should optimally contain those not amenable to imputation.
In addition, if markers are to be chosen for direct genotyping, then it makes sense to bias
them towards those likely to include functional variants. Finally, many rare variants are
likely to be population-specific, including those likely to be functional (Kidd et al., 2012;
Torkamani et al., 2012), making the choice of which variants to include on a genotyping
array complicated. For example, a researcher may not wish to invest in a genotyping
platform if many of the markers being interrogated are not likely to be found in the
populations of interest.
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We explored these issues with a newly available genotyping array (the Illumina HE)
designed to capture coding variants that are complementary to markers currently
interrogated by other genotyping arrays. We find that as much as 49.5% of the markers
interrogated by the array are likely to impact the function of genes. In addition, as only a
small proportion of the HE content was amenable to imputation, we feel the addition of
these markers provides an improvement over the previous GWAS array design – although it
is possible that larger imputation reference panels may close this gap.

A limitation of our dataset is the unequal representation of different racial/ethnic groups
with a relatively small number of Hispanics, African Americans, and subjects of other race,
which precluded a detailed comparison of population-specific variants. In addition, our
cohort was almost exclusively male, which effectively reduced the number of X
chromosomes by half and did not allow for a comparison between gender. However, since
analyses were based on the combined genomic content of the array, this should not impact
our conclusions. Obviously, the choice of a genotyping platform will have to be based on the
goals of a study. For example, if a study requires the accommodation of de novo, very rare,
or likely population-specific variants, then the use of an array designed to interrogate
variants that have been previously identified is inappropriate. However, if the goal of a study
is to efficiently expand the search for likely causative variants that are ‘beneath the radar’ of
standard GWAS genotyping platforms, then genotyping arrays focusing on rare variants that
are likely to be functional, such as coding variants, makes sense. The design of those arrays
in terms of the variants they interrogate, however, is crucial for their success.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

HE HumanExome array

HOEE HumanOmniExpressExome array

HOE HumanOmniExpressGWAS array

GWAS genome-wide association studies

SNPs single nucleotide polymorphisms

MRS the Marine Resiliency Study

PTSD post-traumatic stress disorder
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OEF/OIF Operation Enduring Freedom/Operation Iraqi Freedom

IRB Institutional Review Board

HGDP Human Genome Diversity Project

MAF minor allele frequency

SNVs single-nucleotide variants
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Research Highlight

• Direct genotyping chips for coding variants provide an alternative to
sequencing.

• Assessed utility of Illumina HumanExome array.

• Evaluation of functionality and amenability to imputation.

• Exome array is cost-effective way to expand GWAS, but has some drawbacks.
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Figure 1.
Admixture proportion of individuals included in the study. Each individual is represented by
a vertical bar divided into colored segments. The size of each colored segment reflects the
proportion of admixture from one of six major continental populations (red – European;
Yellow – African; green – Native American; turquoise – East Asian; blue – Oceanic;
magenta – Central Asian). Individuals in each ancestral category are sorted by the degree of
European admixture (i.e., size of red segments).
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Figure 2.
The proportion of imputable markers (N=80,205) exclusive to the HOEE (i.e. HE content)
covered by imputation, based on the HOE and 1000 Genomes reference haplotypes across:
a) all subjects (N=2,548); b) European Americans (N=1,476). Marker frequencies: blue –
common (MAF>0.05); green – moderately common (0.01≤MAF≤0.05); red – rare
(MAF<0.01); and black dashed – all.
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Table 1

Descriptive Statistics for the Cohorts Studied Based on Self-Reported Race and Ethnicity.

Measure Number of
Subjects

Males/Females Average
Age

# Poor
Genotype QC

Self-Reported Race:

Black/African American 128 128/0 25.38 1

American Indian/Alaska 35 35/0 22.66 0

Asian 80 79/1 24.94 1

Pacific Island/Hawaiian 39 38/1 22.96 0

White 2104 2096/8 23.25 7

Multiple Races 125 125/0 22.50 0

Unknown 46 46/0 23.19 0

Self-Reported Ethnicity:

Non-Hispanic 1951 1946/5 23.42 8

Hispanic 601 596/5 23.18 1

Unknown 5 5/0 22.00 0

Total: 2557 2547/10 23.36 9
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Table 2

Functional content of the variants on the Human Exome array (HE) and the Human Omni ExpressExome plus
imputable marker array (HOEEi) indicating the number of variants and rate in each of nine functional classes
(see Methods).

Functional group HE variants Rate HOEEi Rate

Splicing Change Variants 372 0.030 625 0.015

Probably Damaging nscSNPs 54,970 0.267 67,328 0.272

Possibly Damaging nscSNPs 39,144 0.190 46,290 0.187

Protein motif damaging Variants 23,304 0.292 27,283 0.293

TFBS Disrupting Variants 0 0.000 10 0.004

pre-miRNA Disrupting Variants 6 0.000 201 0.000

miRNA-BS Disrupting Variants 236 0.062 1,931 0.055

ESE-BS Disrupting Variants 17,500 0.117 27,058 0.117

ESS-BS Disrupting Variants 6,439 0.114 9,869 0.116

Total Likely Functional Variants 117,678 0.495 150,035 0.007
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