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Summary: Novel approaches to treatment of malignant glioma,
the most frequently occurring primary brain tumor, have included
the use of a wide range of oncolytic viral vectors. These vectors,
either naturally tumor-selective, or engineered as such, have
shown promise in the handful of phase I and phase II clinical trials
conducted in recent years. The strategies developed for each of the

different viruses currently being studied and the history of their
development are summarized here. In addition, the results of clin-
ical trials in patients and their implication for future trials are also
discussed. Key Words: Oncolytic viral therapy, malignant gli-
oma, G207, HSV 1716, ONYX-015 adenovirus, Reolysin, vac-
cinia, Newcastle disease virus, measles virus.

INTRODUCTION

Malignant glioma is the most frequently occurring
primary brain tumor. Prognosis is abysmal, despite sur-
gical resection and chemotherapy/radiation therapy, with
time to progression averaging 6 months and median sur-
vival of one year. Investigations into the use of oncolytic
viruses (OVs) for the treatment of a variety of malignan-
cies, including malignant glioma, were initiated more
than half a century ago after anecdotal observations that
some cancer patients experienced periods of remission
after suffering from an acute illness of viral etiology, or
after being inoculated with attenuated viral vaccines.
Perhaps the most well-known case report came from de
Pace in 1912 that described a patient whose cervical
carcinoma regressed after receiving Pasteur’s attenuated
rabies vaccine strain after a dog bite.! Subsequently,
adenoviruses (earlier referred to as adenoidal-pharyn-
geal-conjunctival, or APC viruses) were inoculated in 30
patients with epidermoid cervical carcinomas.” In this
study, 65% of treated tumors had areas of necrosis after
intratumoral inoculation. Naturally-occurring viruses
evaluated for the treatment of acute leukemia include
Newecastle disease virus, Sendai, Semliki forest virus and
influenza viruses.> Cases of Burkitt’s lymphoma* and
Hodgkin’s disease’ have partially responded to treatment
with the measles virus. In the late 1970s, the mumps
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virus was administered for various human cancers, with
one study enrolling 200 patients.®’

Until the early 1990s, safety concerns limited the use
of these nonattenuated, replication-competent viruses as
primary anti-tumor therapy. Instead, replication-defec-
tive viruses, including engineered adenovirus and retro-
virus vectors, were evaluated as gene therapy vectors for
cancer therapy. However, numerous problems were as-
sociated with these vectors, including adequate virus de-
livery and distribution, insufficient levels of both gene
transfer and gene expression, and lack of prolonged ef-
ficacy. More recently, advancements in molecular biol-
ogy, combined with research in novel experimental ther-
apies for cancer treatment has renewed interest in
applying OVs for glioma therapy. A history of these
advancements with respect to CNS malignancies, and a
summary of the different OVs under evaluation, is pro-
vided.

There are numerous advantages of oncolytic viro-
therapy. First, if not already naturally discriminating,
OVs can be genetically engineered to be selective for
mitotically active, neoplastic cells. This is especially ap-
pealing for glioma therapy, as the tumor-adjacent, qui-
escent neurons remain resistant and intact after treat-
ment. Second, most of the viruses discussed herein, and
all those tested in phase I clinical trials for malignant
glioma thus far, are replication-competent in addition to
being oncolytic. This means that tumor killing is not
limited to the initial target cell. Rather, its tumor-targeted
cytolytic advantage can spread to surrounding cells that
escaped initial infection. This latter property theoreti-
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cally allows for OVs to seek out and destroy tumor cells
distal from the initial treatment site. Third, some OVs
have large genomes enabling the introduction of one or
more foreign genes, allowing them to act as gene therapy
vectors for augmentation of the antitumor effect. M002
(discussed as follows) is one example of an oncolytic
herpes simplex virus (HSV) engineered for expression of
murine interleukin (IL)-12 heterodimers specifically in
tumor cells only. Finally, any viruses that demonstrate
efficacy in the treatment of brain tumors can be used
clinically in combination with standard treatment modal-
ities.

History of oncolytic viral therapy

In 1991, Martuza et al.® reported that the engineered
HSV thymidine kinase-deleted mutant, dIsptk, was rep-
lication-attenuated in nondividing cells, such as neurons.
The tk gene deletion required the virus to rely on mitot-
ically active cells to supply both thymidine kinase and
nucleotide pools for DNA replication. The dlsptk virus
displayed a promising therapeutic profile in the treatment
of glioma in animal studies. However, the tk gene inac-
tivation also rendered this mutant resistant to antiviral
agents, such as acyclovir, which targets the viral thymi-
dine kinase. Lost susceptibility to the viral tk-targeted
drugs, combined with an undesirable toxicity level at
high titers, prevented advancement of this OV into clin-
ical trials for malignant glioma. Nevertheless, these
“proof of concept” studies led to the development of the
first generation of clinically safe HSV vectors, G207, and
HSV1716, as described in more detail as follows.

As with any novel therapy, safety after administration
in humans is the highest priority, but in addition, OVs
must demonstrate potent anti-tumor activity either alone
or combined with existing standard therapies, such as
de-bulking surgery, radiation, and chemotherapy. During
the past 2 decades, a number of promising OVs have
been developed that have demonstrated anti-glioma ac-
tivity in preclinical studies. These include polio virus-
derived vectors, vaccinia virus, Newcastle disease virus,
and most recently, measles virus vectors. In addition,
phase I clinical trials have been completed for several
OVs, including HSV-1 (G207 and HSV1716),”'° a con-
ditionally replicative adenovirus (CRAd) termed Onyx-
015,"" and a reovirus, REOLYSIN (Oncolytics Biotech
Inc, Calgary, Ontario, Canada).12 A number of these
vectors have already demonstrated their safety after ad-
ministration in patients, including some in combination
with prior debulking surgery or in combination with
radiation.'>'* Yet, major hurdles remain, which includes
efficient delivery of OVs, both into the primary tumor
mass, as well as delivery to tumor cells distal from the
primary site; tumor-specific genotypes resistant to cer-
tain OV therapies; and persistence of viral replication
and expression of foreign genes introduced to augment

OV activity by multiple mechanisms. Strategies to over-
come these hurdles are currently under intense investi-
gation and will be discussed at the end of this review.

HERPES SIMPLEX VIRUS-1

Herpes simplex virus type 1 (HSV-1) is a well-studied,
neurotropic virus with essential and nonessential genes
that have been established.'> The genes involved in its
oncolytic properties are distinct from the genes for neu-
rovirulence, and manipulation of the viral genome allows
continued oncolysis with conditional replication in can-
cer cells. Its sensitivity to acyclovir and ganciclovir gives
HSYV a distinct advantage over other oncolytic vectors in
that it adds to its safety profile when used in human
clinical trials.

After the development of HSV-1 virus dlsptk as pre-
viously described, other HSV vectors have been con-
structed that are avirulent in the normal brain, but can
proliferate in actively cycling cells due to different mu-
tations. HSV-1 mutant hrR3 contains an inactivating
lacZ insertion into the U; 39 locus encoding the large
subunit of ribonucleotide reductase (infected cell protein
6),'® required for the synthesis of nucleotides in a post-
mitotic cellular environment, such as neurons, which
would otherwise not support HSV proliferation. The
U, 39 mutation is complemented in trans'’ via the cel-
lular version of the enzyme in malignant gliomas and
other cycling cells, such that hrR3 can still infect these
rapidly dividing cells.'® In addition, this mutation in-
creases susceptibility of the virus to anti-viral therapy
with acyclovir and ganciclovir.'®

Because of its large genome (>150 kb), up to 30 kbp
of HSV genome can be replaced with foreign DNA while
still retaining the ability of the virus to replicate. After
infection with wild-type HSV-1, double stranded RNA is
produced, and this RNA is sensed by protein kinase R
(PKR) through an intracellular stress response. PKR
phosphorylates eukaryotic initiation factor alpha (elF-
2a), which turns off protein synthesis. Expression of
infected cell protein 34.5, a gamma-1 gene, leads to
dephosphorylation of eukaryotic initiation factor alpha
(eIF-2a), restoring protein synthesis. Infected cell pro-
tein 34.5 is expressed from the y,34.5 gene, which is
present in two copies and located in the inverted repeat
regions flanking the unique long segment of the viral
genome. Restoration of protein synthesis occurs when
infected cell protein 34.5 recruits protein phosphatase-
la, leading to eukaryotic initiation factor alpha (elF-2q)
dephosphorylation.”® R3616, constructed by Chou et
al.,”" lacks both copies of the y,34.5 gene and was de-
rived from the wild-type virus, HSV-1 (F) strain. Dele-
tion or disruption of both copies of the y,34.5 gene
severely limits virus replication, unless its target is a
tumor cell that possesses a complementing mutation,
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such as ras overexpression,22 or alterations in PKR and
other cell-signaling pathways.>® Deletion of this gene
also removes part of the latency-activated transcripts,
which are encoded on the complementary antisense
DNA strands. As such, these viruses are impaired in their
ability to establish latency after infection.”* R3616 was
the parent virus for G207, which has now completed two
phase 1 clinical trials in the United States. Results of a
third trial are pending.

Herpes simplex viruses: clinical trials

The first generation oncolytic herpes simplex virus
vectors (OHSV) that have already completed phase 1 or
early phase 2 clinical trials in patients have one or both
of these attenuating mutations (y,34.5 deletion and U; 39
disruption). G207, developed by Mineta et al.’s*> group,
combined both of these strategies and was constructed on
HSV-1 (F) wild-type background. HSV1716, in contrast,
only lacks copies of its y,34.5 gene- the UL39 sequences
remain intact. HSV1716 is derived from wild-type strain
17 and was constructed by MacLean et al.*

G207. G207 has deletions of both copies of its
7v,34.5 gene in addition to a lacZ insertion into the U; 39
locus.?” These two mutations improve the safety of G207
by rendering it susceptible to standard anti-HSV therapy,
and by impairing ability of the virus to establish latency
within an infected cell. Preclinical studies demonstrated
that G207 was safe in neurotoxicity studies in mice and
nonhuman primates, and efficacious against the U87 hu-
man malignant glioma xenograft model in immunocom-
promised mice.?’” New World owl monkeys (Aotus nan-
cymae) were used for the primate neurotoxicity studies
due to their exquisite sensitivity to HSV infection.?®
These monkeys showed no clinical signs of HSV-in-
duced illness after G207 inoculation (up to 1 X 10°
plaque forming units [PFU] of G207 injected).

Three phase I trials have been completed to date for
G207 treatment alone or in combination with radiation.
In the initial trial, a total of 21 subjects were enrolled, all
of whom had recurrence of tumor diagnosed on CT or
MRI after standard therapy (resection or biopsy followed
by radiation). Each patient received a stereotactic intra-
tumoral injection of G207 within the enhancing portion
of the tumor, starting at a dose of 1 X 10° PFU in the first
cohort, 1 X 107 PFU in the second cohort, and a dose
escalation in half-log increments for each subsequent
cohort (three patients per cohort). A maximally tolerated
dose could not be established; even at the highest dose
(3 X 10° PFU). CT scans 30 days after virus inoculation
showed reduced enhancement in eight patients, with
eight patients who survived 9 or more months post-
treatment, and a single glioblastoma multiforme (GBM)
patient remained alive 5.5 years after inoculation without
evidence of disease.’
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The objectives of the second phase Ib G207 trial were
three-fold: 1) to confirm the safety and tolerability of
intratumoral inoculation of G207, as well as inoculation
into the brain surrounding the tumor; 2) to demonstrate
active replication inside the tumor; and 3) to demonstrate
the safety of multiple-dose delivery of the virus. Six
patients with recurrent GBM were enrolled in the study.
A catheter was stereotactically implanted into the tumor,
and 13% of a total dose of 1.15 X 10° PFU of G207 was
injected through the catheter. Either 2 or 5 days later, the
tumor was resected en bloc with the catheter in place,
and the remainder of the G207 was injected into the
tumor bed. Radiological and pathological evidence of
anti-tumor activity was seen. Evidence of HSV replica-
tion in situ was demonstrated. HSV encephalitis did not
develop in any patient, although one patient experienced
transient fever, delirium, and hemiparesis, which entirely
resolved within 12 hours on high-dose dexamethasone;
no acyclovir was necessary. These symptoms were at-
tributed to inadvertent inoculation of the virus into the
ventricular system. Overall, G207 appeared to be safe
both for multiple-dose delivery and for direct inoculation
into the brain surrounding the tumor cavity."?

HSV1716. Concurrent with the G207 studies in the
United States, HSV1716, derived from HSV strain 17,
was being tested in clinical trials in Glasgow, United
Kingdom. Like G207, HSV1716 also lacks both copies
of the y,34.5 gene, but its UL39 gene remains intact.?® In
the initial HSV1716 phase I trial, nine patients (eight
GBM and one AA) who had all undergone prior surgery
and radiotherapy, with most who had received chemo-
therapy, had an initial dose of 1 X 10° PFU stereotacti-
cally inoculated into the enhancing portion of the tumor.
This dose was increased by 1 log in each of three cohorts,
with three patients per cohort, ending at a maximum dose
of 1 X 10° PFU. At the highest dose, no signs of en-
cephalitis or other dose-limiting toxicities were encoun-
tered, and no maximally tolerated dose was reached.'”

To validate safety and demonstrate in situ viral repli-
cation, a second phase I trial was conducted. In this trial,
12 patients (11 GBM and 1 AA) received 1 X 10° PFU
of HSV1716 via direct intratumoral inoculation prior to
surgical resection 4 to 9 days later. Again, this virus was
proven safe and replication within the tumor was sup-
ported by PCR detection of the virus in two of the
resected tumors.'*

Recently, according to their website, Crusade Labora-
tories has received regulatory approval to begin Europe-
wide phase III clinical trials of HSV1716 in glioma
patients after first recurrence postresection and radiother-
apy, with satisfactory results potentially leading to li-
cense and marketing authorization for glioma therapy.

MO002/M032. OHSV engineered to express trans-
genes (including interleukins, such as IL-4 or IL-12)
have been shown to enhance tumor killing in both syn-
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geneic murine brain tumor models and human glioma
xenograft tumor models.?*3% M002 and MO032, like
G207, are both derived from HSV-1 (F) strain with de-
letion of both y,34.5 gene copies, but in contrast, the
UL39 gene remains intact in M002 and M032. A bicis-
tronic expression cassette encoding IL-12 p40 and p35
subunits from either murine (M002) or human (M032)
origin, and separated by an internal ribosome entry se-
quence (IRES), were introduced into both 34.5 deleted
sites.>® A lot of M032 has been produced using current
good manufacturing practices through the National Cancer
Institute Rapid Access to Intervention Development pro-
gram for eventual use in phase I clinical trials in humans.

Next generation HSV. A number of different strat-
egies are currently being used to enhance anti-tumor
potential of OHSV vectors. These include introduction of
foreign genes for pro-drug conversion,*'* tumor-spe-
cific gene expression,***> and expression of other viral
proteins that restore efficient viral replication,>*>” to
name a few. Genetic manipulation of HSV proteins that
mediate virus entry, combined with new discoveries re-
lated to the mechanism of tumor cell resistance to OHSV
therapies have led to the engineering of novel tumor-
targeted HSV vectors. For example, an OHSV was con-
structed to specifically target the IL-13Ra2 receptor,®®
found abundantly on high-grade astrocytomas, but not on
normal human tissues.’® Derivatives of this IL13Ra2-
targeted virus have been constructed, which are no
longer capable of binding to the normal HSV entry re-
ceptor, nectin 1.**! Other tumor-targeting strategies un-
der investigation for OHSV vectors include the use of
tumor-specific promoters®>**** or radiation-inducible
promoters** for the expression of genes that optimize the
tumor cell microenvironment for efficient viral repli-
cation.

Malignant gliomas will likely require a broad ap-
proach that incorporates current treatment strategies with
novel therapeutics, including OHSV. Dual treatment reg-
imens combining OHSV therapy with ionizing radiation
or chemotherapies are all strategies currently under in-
tensive investigation.*>~*

In summary, the G207 and HSV1716 clinical trials
reinforce the safety and potential benefit that OHSV
vectors may offer to patients with malignant glioma.

CONDITIONALLY REPLICATING
ADENOVIRUSES (CRAds)

Human adenovirus serotype 5 (AdS) has served as the
platform for a multitude of oncolytic viral agents. This
nonenveloped DNA virus is not associated with any se-
rious disease and has a well-characterized genome of
approximately 36 kb that allows for relatively easy ma-
nipulation.’® Recent years have witnessed a rapid expan-
sion in the number of strategies with CRAds intended to

treat glioma, illustrating the variety of strategies by
which this might be accomplished. An overview of the
CRAds that have been developed, as well as those that
have advanced or those that will soon be advanced to
clinical trials, is summarized as follows.

ONYX-015

ONYX-015 is an adenovirus made conditionally rep-
licative by deletion of the EIB-55k gene, which is re-
sponsible for binding cellular p53. This interaction nor-
mally prevents apoptosis of the infected cell, permitting
continued viral replication. Although this CRAd was
intended to replicate selectively within p53-deficient
cells, it has since been shown that other functions of
E1B-55k are responsible for its cancer-selective replica-
tion.”! ONYX-015 was among the first CRAds to be
described and has been utilized in clinical trials for head
and neck cancer. More recently, human glioma xeno-
grafts were shown to be susceptible to ONYX-015 rep-
lication in vivo,>? an effect that was enhanced by radia-
tion therapy>® These findings led to a phase I clinical trial
for recurrent glioma, in which ONYX-015 was admin-
istered to the tumor bed after surgical resection. The
virus was well-tolerated in this trial, with no evidence of
toxicity. However, efficacy was not determined.'’

Ad-A24 and derivatives

Other partial deletions of the Ad5 genome have also
been used to generate CRAds. Fueyo et al.>* described a
CRAd in which the E1A gene was partially deleted. This
CRAd (designated as Ad-A24) has a 24-base pair dele-
tion within E1A that renders the protein unable to bind
cellular Rb, thus limiting its replication to cells with
disregulated cell cycles. Ad-A24 was more oncolytic
than an E1B-deleted CRAd in a panel of glioma cell lines
tested, and was more effective in suppressing tumor
growth in both intracranial and subcutaneous models of
glioma.>® In addition, because Ad-A24 increases expres-
sion and activity of topoisomerase I in glioma cells, its
antitumor effect was shown to be synergistically im-
proved in an experimental murine glioma model when
administered along with the topoisomerase I inhibitor
irinotecan.®

The Ad-A24 system has itself served as the platform
for a number of modifications, including the addition of
transgenes whose expression should augment its onco-
lytic potency. Some examples include p53,%”® a human-
ized form of the pro-drug converting enzyme yeast cy-
tosine deaminase,”® and the tissue inhibitor of matrix
metalloproteinase-3.%

Other modifications of Ad-A24 vectors have focused
on the fiber knob to target glioma-specific receptors.
Adenovirus infection depends on initial binding of the
knob portion of the fiber capsid protein with the cox-
sackievirus and adenovirus receptor on the cell surface,
followed by a secondary binding of Arg-Gly-Asp (RGD)
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motifs in the viral capsid to cell surface integrins. Many
tumor cell types, including gliomas, express low levels
of coxsackievirus and adenovirus receptor, but high lev-
els of integrins. Inclusion of an RGD peptide in the fiber
knob retargets initial binding of the virus to cell surface
integrins.®' In addition, Ad-A24-RGD can infect glioma
stem cells isolated from human tumor specimens and can
induce autophagy in these cells.®*

Finally, the Ad-A24 system has also been modified by
those seeking to enhance the selectivity of its replication.
This has been achieved either by deletion of additional
portions of the genome,>>**** or by the addition of ex-
ogenous promoters, such as the E2F1°° and tyrosinase
promoter.66

CRAd-survivin

The CRAd-survivin system includes several oncolytic
adenoviruses, in which replication is controlled by the
survivin promoter.®’~’? Survivin is an inhibitor of apo-
ptosis protein, which is normally active only during em-
bryogenesis. These survivin-controlled CRAds have in-
corporated a number of different fiber genes to enhance
their infection of glioma cells. Examples include RGD-
modified fiber,’? a chimeric fiber with Ad3 knob®® and
the inclusion of a poly-lysine motif.”” In addition, the
activity of the survivin promoter is induced by radiation,
thereby increasing viral replication and resulting in a
synergistic antitumor effect when virus administration is
combined with radiation therapy.®’

Oncolytic adenoviruses-additional therapeutic
strategies

In addition to the three systems previously detailed, a
variety of other strategies for the generation of glioma-
targeted CRAds have also been described. Bieler et al.”*
used an adenovirus with a partial deletion of E1A in
combination with irinotecan and trichostatin A (a histone
deacetylase inhibitor that upregulates coxsackievirus and
adenovirus receptor expression) in a three-pronged strat-
egy to improve replication and destroy drug-resistant
glioma cells. This virus also acts synergistically to inhibit
tumor growth in vivo when used in conjunction with
radiation.”* Other groups have developed CRAds for
which replication was dependent upon a hypoxia re-
sponse element,”” the glial fibrillary acidic protein pro-
moter’® or the hTERT promoter.””-”® Hoffmann et al.”*-*°
constructed a CRAd with the E1A and E4 genes under
control of the glial fibrillary acidic protein and Ki67
promoters, respectively.

In some cases, CRAds have been infectivity-enhanced
through the inclusion of an RGD-modified fiber’® or a
chimeric fiber consisting of the AdS fiber tail and the
Ad35 shaft and knob (referred to as 5/35), which retar-
gets the virus to CD46.”°®! Several of these CRAds
have demonstrated enhanced antitumor activity when
administered with chemotherapeutic agents, such as
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temozolomide,”®%° RADO001,”® and carmustine.”” Fi-
nally, inclusion of cytotoxic transgenes, such as thymi-
dine kinase® or TRAIL®' in CRAds has also been in-
vestigated.

Ongoing studies with CRAd vector systems continue
to investigate the optimal combination of viral mutations
with standard therapies for glioma therapy. Table 1 sum-
marizes all of the CRAd vectors described herein.

REOVIRUS

Reoviruses are nonenveloped RNA viruses that usu-
ally do not cause serious disease, but they may be asso-
ciated with very mild gastrointestinal or respiratory
symptoms that can resolve without further incidence.®?
As discussed earlier in this review, under normal cellular
conditions after viral infection, the PKR pathway is ac-
tivated as a result of the intracellular double-stranded
RNA that is produced. PKR activation results in host
protein synthesis shutoff, and consequently in viral rep-
lication. In many tumor cells, activation of this pathway
is blocked in cells in which the Ras signaling pathway
has been upregulated via EGFR®** and PDGFR®® muta-
tions commonly found in malignant gliomas, which per-
mits productive infection of reoviruses. The naturally
discriminatory phenotype of reovirus for cells with un-
restrained Ras pathway activity, combined with its mild
disease profile in humans led to its evaluation as an OV
for therapy of multiple tumor types, including glioma.
Early studies showed that of the multiple brain tumors
specimens tested ex vivo for vulnerability to reovirus, all
glioma specimens were killed, as well as 20 of 24 glioma
cell culture lines, but none of the meningiomas tested
were susceptible.®® Experimental models of glioma using
U87 and U251N cell lines in vitro and in vivo demon-
strated the efficacy of reovirus and confirmed its natural
limitation to neoplastic cells.®” However, serious toxicity
involving severe hind limb necrosis at the injection site,
myocarditis, and eventual virus-mediated death, if ad-
ministered intracranially, occurred in immunocompro-
mised severe combined immunodeficiency (SCID) mice
treated with reovirus. Such toxicity has not been seen in
other, non-SCID models.®”-*® Although immunocompro-
mised by their tumor and glucocorticoid use, toxicity in
otherwise immune competent cancer patients was pre-
dicted to be minimal due to the known mild disease
profile of reovirus in humans. After direct inoculation in
primates, no significant toxicities were observed,®* pav-
ing the way for phase 1 trials in patients. Two phase I
dose escalation trials, in which reovirus (Reolysin) was
injected intratumorally in patients suffering from recur-
rent malignant glioma, have been conducted in Canada
(University of Calgary) and in the United States (Uni-
versity of Alabama at Birmingham, Ohio State Univer-
sity, and Cedars-Sinai Medical Center).'?> The second
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Table 1. Oncolytic Adenoviruses for Glioma Therapy
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Infection Transgene:
Agent Replication Control Control Receptor Target Promoter Location
ONYX-015>2 AE1B-55k None (wt fiber) CAR
Ad-A24>* A24 None (wt fiber) CAR
Ad-A24-p53%7 A24 None (wt fiber) CAR p53: SVE E3
Ad-A24-hyCD*° A24 None (wt fiber) CAR hyCD: CMVi.e. E3
Ad-A24-TIMP®® A24 None (wt fiber) CAR TIMP3:CMVi.e. E3
Ad-A24-RGD®' A24 RGD fiber avp3, avBs
integrins, CAR
CB1% A24, AEIB-55k None (wt fiber) CAR
Ad-A24/39% A24, A39 None (wt fiber) CAR
Ad-2/24CMV** CMV, A2, A24 None (wt fiber) CAR
ICOVIR-5% E2F1, A24 RGD fiber avB3, avBs
integrins, CAR
Ad-24TYR®® Tyrosinase, A24 None (wt fiber) CAR
Ad-24CMV** CMV, A24 None (wt fiber) CAR
CRAd-survivin-RGD"? Survivin RGD fiber avp3, avBs
integrins, CAR
CRAd-survivin-5/3%° Survivin 5/3 Chimeric CD46, CD80,
fiber CD86
CRAd-survivin-pk™® Survivin pk7 fiber HSPG
d15207° Del. of E1A 13S None (wt fiber) CAR
HYPR-Ad"” Hypoxia response element None (wt fiber) CAR
Ad5-gfa2(B)3-E176 GFAP with B enhancer ~ None (wt fiber) CAR
hTERT-Ad"”’ hTERT None (wt fiber) CAR EGFP:nativeE1B El
hTERT-Ad-RGD"® hTERT RGD fiber avp3, avBs EGFP:nativeE1B El
integrins, CAR
Ad5/35.GA - ki”® GFAP (E1A), Ki67 (E4)  5/35 Chimeric CD46
fiber
Ad5/Ad35.IR-E1A/TRAIL®' Inverted repeats, RSV 5/35 Chimeric ~ CD46 TRAIL:IRS, El
fiber RSV
IG.Ad5.E1+.E3TK®? NA (wild-type) None (wt fiber) CAR hsvTK:nativeE3 E3

wt = wild type.

study is still underway at the time of this writing. In the
Calgary study, up to 1 X 10° PFU of virus was admin-
istered in the highest dose group, which was well toler-
ated. No maximally tolerated dose was defined in this
study. These results warrant continued investigation of
reovirus in efficacy studies alone or in combination with
currently defined standard of care therapies, including
radiation and chemotherapy.

PARAMYXOVIRUS

Newcastle disease virus

The avian paramyxovirus, Newcastle disease virus
(NDV), is a highly contagious disease of chickens, tur-
keys, and many wild birds. On occasions of human in-
fection, NDV can cause cause mild flu-like symptoms,
laryngitis, and conjunctivitis.’® Although both the lytic
and nonlytic strains can be cytotoxic,”' it is the lytic
strains that have been more extensively investigated as
anti-neoplastic agents after the virus was found to show
enhanced replication efficiency in cancer cells as com-
pared with replication in normal cells.”*** The NDV
vector 73-T was one of the early vectors to show efficacy

in a number of animal tumor models after direct admin-
istration into human neuroblastoma® and fibrosarcoma®
xenografts in mice. Efficacy was also demonstrated after
intraperitoneal administration for treatment of a variety
of carcinomas.”® Another NDV attenuated vector, PV
701, has been tested in several solid tumors, but not
tumors of CNS origin, for safety after intravenous ad-
ministration using different dosing regimens.””~%°

Two NDV strains have been evaluated in early phase
I/II clinical trials of patients with recurrent GBM: MTH-
68/H and NDV-HUJ. The MTH-68/H NDV strain has
been utilized by a Hungarian group for the treatment of
a number of cancers.'®°71°2 In 1999, a case was reported
of a 14 year-old boy diagnosed with a recurrent GBM
who was treated intravenously with MTH-68/H daily,
beginning in April 1996.'°! The tumor reportedly shrunk
between November 1996 and September 1998, after
which chemotherapy was discontinued, and at last report
the boy had been receiving only MTH-68/H injections.
In 2004, four additional case studies using MTH-68/H in
one adult and three pediatric GBM patients were re-
ported with substantial increase survival rates ranging
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between 5 and 9 years.'”® Finally, MTH-68/H therapy
combined with valproic acid (an antiepileptic drug, also
shown to have anti-tumor activity) was evaluated in a
pediatric patient with anaplastic astrocytoma unrespon-
sive to irradiation and chemotherapy.'®*

The most recent NDV vector to be assessed in a phase
I/II clinical trial of recurrent GBM is the lentogenic NDV
strain HUJ.'® Lentogenic NDV strains cause mild or
asymptomatic illness in poultry that is limited to the
respiratory tract. The NDV vectors previously described
(73-T, PV701 and MTH-68H) are all mesogenic strains
(moderately pathogenic), and use of these strains poses
increased the risk of undesirable side effects. The safety
and anti-tumor activity of the lentogenic NDV-HUJ vec-
tor was assessed after intravenous administration of mul-
tiple doses. A total of 14 patients, including one pediatric
patient, were enrolled. All patients had MRI confirmed
recurrent GBM. No major side effects were observed,
and one patient had a complete tumor response. Al-
though replication of the HUJ strain is limited in humans,
infectious particles were recovered for up to 9 days after
dosing in the patients, and suggests that limited replica-
tion is occurring, possibly in the tumor tissue. Further
studies are warranted using this attenuated strain.

Another NDV vector being developed deserves discus-
sion here. Zulkifli et al.'*® evaluated the VAUPM strain,
a modified V4 strain, which developed as a thermostable
feed pellet vaccine for poultry for oncolytic activity
against two glioma cell lines (DBTRG.05SMG and
U-87MGQG), both in vitro and in vivo in subcutaneous
flank tumors. The U-87MG was very susceptible to
V4UPM, both in vitro and in vivo after a single virus dose.
The DBTRG.05SMG cell line was more resistant to the
NDV vector, but oncolysis still occurred. When a single
intratumoral administration to the latter tumors did not re-
sult in regression, a second higher dose of virus was ad-
ministered. Despite this, the tumor grew persistently, al-
though the overall tumor volume was significantly reduced
as compared to the control treatment group alone.

Measles virus

Another member of the Paramyxoviridae family, mea-
sles virus (MV) represents a fairly recent addition to the
growing panel of oncolytic viral vectors being evaluated
for glioma therapy. The MV receptor, CD46, is upregu-
lated in many glioma cell lines, allowing for preferential
tumor targeting.'”'%® The measles virus vector MV-
carcinoembryonic antigen (CEA), engineered to overex-
press the human carcinoembryonic antigen, has demon-
strated infection of a number of human glioma cell lines
and xenografts.'®® Toxicology studies using MV-CEA in
rhesus monkeys, including MRI imaging 4 to 5 months
after direct intracranial administration, demonstrated no
evidence of neurological dysfunction.'® The authors in-
dicated that a phase I study to test the safety of MV-
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CEA, after administration both intratumorally and into
the resection bed, is underway.

POXVIRUSES

Vaccinia virus

Vaccinia virus, a member of the Poxviridae family, has
been recently considered for use as an oncolytic vector
for glioma therapy, in part due to results from a phase III
trial in patients with stage III melanoma.''® Adminis-
tered as a tumor vaccine, a polyvalent vaccinia mela-
noma oncolysate revealed an increase in the disease-free
interval and overall survival in treated patients. Similar
to the initial thymidine kinase deletion mutants in
HSV-1, tk inactivation in vaccinia virus limits replication
to transformed cells.''"''? A recombinant vaccinia virus
engineered to express p53 (rVV-p53) was demonstrated
to inhibit growth of a number of human and murine
glioma cell lines alone''® or in combination with radia-
tion therapy in the rat C6 glioma model.''* Recombinant
VV that express IL-2 or IL-12 have enhanced viral-
mediated oncolysis as compared with viruses that do not
express one of these cytokines.''>!!¢

Myxoma virus

Another poxviridae family member being considered
for oncolytic viral therapy is the myxoma virus, with
tropism that is restricted to European rabbits. The myx-
oma virus is nonpathogenic in humans."'” The myxoma
viruses has been shown to have oncolytic activity aga-
inst a number of human glioma and medulloblastoma
cell lines in vitro and increased tumor reduction in
vivo.""®1? Combination of intratumoral injection of
myxoma virus with rapamycin treatment increased intra-
tumoral viral replication and prolonged survival of tu-
mor-bearing mice.''” The oncolytic activity of the myx-
oma virus in syngeneic tumors in immunocompetent
animals remains to be determined.

POLIOVIRUS

Recombinant PV: PV-RIPO

The neuropathogenicity of poliovirus (PV) can be at-
tenuated by mutations within the IRES sequence located
in the 5" untranslated region of its genome.'?’ Substitu-
tion of the PV-1 Mahoney IRES sequence with the IRES
sequence from human rhinovirus type 2 was described to
severely attenuate it while maintaining its ability to rep-
licate in non-neuronal cells.'?® This mutant, referred to
as PV-1-RIPO, was demonstrated to be safe for intracra-
nial administration.'*""'** PV recombinants such as PV-
1-RIPO are naturally tropic for GBM due to expression
of the poliovirus receptor CD155 on these tumors.'?*'#
Subsequently, PVS-RIPO (derived from the Sabin vac-
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cine strain, not the wild type PV-1 Mahoney strain) was
shown to be genetically stable after in vivo passage in
GBM xenografts, alleviating concerns regarding its phe-
notypic stability in the context of its replication in ma-
lignant glioma. This finding, supported by lack of se-
quence changes after serial passage,'>* supports
consideration of PVS-RIPO for advancement into clini-
cal trials in patients with recurrent GBM.

Poliovirus-derived replicons

Replicons are oncolytic poliovirus derivatives, engi-
neered with a deletion in the capsid (P1) protein, which
prevents release of new infectious particles after a single
replication cycle.'?>"'?° Safety was established using
transgenic mice expressing the human poliovirus recep-
tor that were given both wild-type polio virus to com-
pare to replicon administration both intracranially and
intraspinally.'?” Replicons have demonstrated oncolytic
activity in a number of CNS-derived tumors in vitro,'*®
as well as increased survival of SCID mice bearing in-
tracranial tumors of the human malignant glioma cell
line, known as D54-MG.

RHABDOVIRUS

Vesicular stomatitis virus

Vesicular stomatitis virus (VSV) is part of the Rhab-
doviridae family, which are negative-sense, nonseg-
mented RNA viruses with a genetic organization that is
similar to the Paramyxoviridae family, both of which are
part of the Mononegavirales order. VSV infection in
humans is rare, and usually asymptomatic in those ca-
ses.'>” When compared as one of nine potential new OVs
for glioma therapy, the VSV variant, termed VSV-rp30,
was superior to the other candidates regarding replica-
tion, spread, and ability to lyse tumor cells."*° This virus
was selected for adaptation to optimal replication in ma-
lignant glioma cells after numerous serial passages. A
recent report showed that intravenous administration of
VSV-rp30 in experimental murine models of both human
and mouse intracranial tumors specifically targeted those
tumors, as compared to control viruses which did not.
Tumors outside the brain were also targeted by VSV-
rp30, suggesting that this virus may be an effective target
against migrating tumor cells as well."*!

Table 2. Summary of Oncolytic Viruses in Glioma Clinical Therapy Pipeline

Virus Name Tumor-targeting Mutation(s) Clinical Trial Status References
HSV-1 G207 v:34.5 genes deleted, lacZ Two Phase I studies complete; 9,13
insertion in UL39 phase II trial with IR
underway
HSV-1716 v:34.5 genes deleted Phase I/II studies complete; 10, 14
phase III in planning stages
MO032 v,34.5 genes deleted, Phase I planning stage 30
human(M032) IL-12
transgene inserted
Adenovirus ONYX-015 E1B-55kD deleted Phase 1 11
Ad-A24-RGD 24 bp deletion in EIA/RGD  Phase I in progress 61
fiber
Reovirus Reolysin Naturally tumor-selective Phase I in progress 12
Newcastle disease virus MTH-68/H Attenuated NDV strain Pilot phase 1 101-104
(mesogenic)
NDV-HUJ Attenuated NDV strain Phase I 105
(Ientogenic)
V4UPM Attenuated NDV strain Preclinical 106
Measles virus MV-CEA Overexpresses human Phase I trial underway 109
carcino-embryonic antigen
Vaccinia virus rVV-p53 pS53 gene insertion Preclinical 113,114
Myxoma virus Naturally tumor-selective Preclinical 119
Polio virus PV-RIPO Native IRES substituted with ~ Preclinical 121, 122
IRES from human
rhinovirus type 2
Vesicular stomatitis virus ~ VSV-rp30 Passaged, naturally tumor- Preclinical 131

selective

HSV = herpes simplex virus; IL = interleukin; IRES internal ribosome entry sequence; MV = measle virus; NDV = Newcastle disease
virus; PV = poliovirus; RIPO = oncolytic poliovirus; VSV = vesicular stomatitis virus; VV = vaccinia virus.
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CONCLUSIONS AND FUTURE OF OV
THERAPY

The study of viruses for glioma therapy has become
increasingly popular within the past 2 decades, as more
sophisticated genetic manipulations have led to the de-
velopment of safer and more tumor-specific viruses. The
safety of several of these tumor-targeted viruses have
been confirmed by several phase I clinical trials for the
HSVs G207”"* and HSV1716,'*'*'** adenovirus ONYX-
015,'"" as well as for the Reolysin reovirus trial,'> New-
castle disease virus vectors MTH-68/H,'%*1% and NDV-
HUJ.'® Table 2 summarizes the different types of
oncolytic viral vectors currently in preclinical studies
and in phase I and phase II clinical trials for glioma
therapy.

Several recent studies indicate that supplementing gli-
oma treatment regimens incorporating chemotherapy or
radiotherapy with viral therapy may lead to synergistic
antitumor effects. Collectively, the -clinically-proven
safety of several of these viruses, along with their effi-
cacy in preclinical studies and their evidence of im-
proved tumor oncolysis when administered with standard
treatments, support further investigation of these agents
in the hope that they may develop into efficacious ther-
apies for these recalcitrant tumors.
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