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To understand social interactions, we must decode dynamic social cues from seen faces. Here, we used magnetoencephalography (MEG) to study the
neural responses underlying the perception of emotional expressions and gaze direction changes as depicted in an interaction between two agents.
Subjects viewed displays of paired faces that first established a social scenario of gazing at each other (mutual attention) or gazing laterally together
(deviated group attention) and then dynamically displayed either an angry or happy facial expression. The initial gaze change elicited a significantly
larger M170 under the deviated than the mutual attention scenario. At around 400 ms after the dynamic emotion onset, responses at posterior MEG
sensors differentiated between emotions, and between 1000 and 2200 ms, left posterior sensors were additionally modulated by social scenario.
Moreover, activity on right anterior sensors showed both an early and prolonged interaction between emotion and social scenario. These results suggest
that activity in right anterior sensors reflects an early integration of emotion and social attention, while posterior activity first differentiated between
emotions only, supporting the view of a dual route for emotion processing. Altogether, our data demonstrate that both transient and sustained neuro-
physiological responses underlie social processing when observing interactions between others.
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INTRODUCTION

We live in a social world. In our daily life, we make sense of encoun-

tered social scenarios by extracting relevant visual cues which include

determining the focus of another’s attention from their gaze direction,

recognizing directed emotions and interpreting socially directed

behaviors. These processes take place when we are directly involved

in a social interaction (thus under a second-person viewpoint, SPV) as

well as when we watch interactions between others without being

directly involved in the interaction (thus under a third-person view-

point, TPV). Here, we used magnetoencephalography (MEG) to inves-

tigate the neural dynamics of the perception of social attention

scenarios and of the integration of gaze and emotional facial expression

cues when perceived from a TPV.

To date, studies on gaze and emotion perception have mostly relied

on SPV approaches. Thus, with regard to the perception of social

attention scenarios, these studies compared conditions of direct and

averted gaze in order to map brain responses to mutual vs deviated

social attention conditions. They showed modulation of early

event-related potential components such as the N170 (in electroence-

phalography, or EEG) and the M170 (in MEG) by direct vs averted

gaze (e.g. Puce et al., 2000; Watanabe et al., 2001, 2006; Conty et al.,

2007; see also Senju et al., 2005). However, it is still not known whether

such modulations reflect early neural responses to distinct gaze direc-

tions or to the associated social attention scenarios. Furthermore,

direct gaze enhances face processing (George et al., 2001; Senju and

Hasegawa, 2005; Vuilleumier, 2005) and may trigger specific cognitive

operations related to the self as a result of being the focus of another’s

attention. Investigating the perception of social attention scenarios

under TPV might be able to disentangle the effects of social attention

from gaze direction and eliminate confounding effects of any personal

involvement resulting from being looked at. In this vein, Carrick et al.

(2007) examined the perception of three-face displays where an eye

gaze interaction between adjacent faces generated distinct social atten-

tion conditions. Carrick and colleagues showed only late event-related

potential (ERP) modulations as a function of social attention scenario.

However, early neurophysiological responses (N170) previously asso-

ciated with social attention processing (Puce et al., 2000; Conty et al.,

2007) were not modulated in this paradigm. This lack of modulation

was interpreted as being consistent with a gaze aversion in the central

face relative to the viewer that was the only stimulus change during

each experimental trial (Puce et al., 2000). However, due to a complex

viewing situation in each trial, which changed from an SPV to a TPV

perspective, the lack of N170 modulation could alternatively be inter-

preted as arising from mixed effects of viewed direct and deviated gazes

on multiple faces. To avoid this problem, here, we used a paradigm

where social attention scenarios, consisting of either mutual or

deviated group attention, emerged from the interaction of two

avatar faces who never gazed at the subject and displayed similar eye

movements under every attention condition. Our first aim was to test

if the early MEG activity (M170) may be modulated by social attention

scenario in this paradigm. This would provide evidence for early neural

encoding of social attention.

In addition, relatively little is known about the neural dynamics

underlying the evaluation of social and emotional information and

how this information might be integrated to generate a gestalt of the

social situation. The existing literature in this area has been in neuroi-

maging studies that have shown that gaze direction and facial expres-

sion perception engage both distinct and overlapping brain regions,

the latter including in particular the amygdala and the superior tem-

poral sulcus (STS) regions (e.g. George et al., 2001; Puce et al., 2003;

Sato et al., 2004b; Hardee et al., 2008). Furthermore, these regions

seem to be involved in the integrated processing of these cues. In

particular, amygdala responses are enhanced when gaze direction
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and emotional expressions jointly signal tendencies to approach or to

avoid (Sato et al., 2004b, 2010a; Hadjikhani et al., 2008; N’Diaye et al.,

2009; Ewbank et al., 2010; but see also Adams et al., 2003). Similarly,

the STS is sensitive to the combination of gaze direction and emotional

expression (Wicker et al., 2003; Hadjikhani et al., 2008; N’Diaye et al.,

2009). However, while there are well-established neuroanatomical

models of socio-emotional cue processing from faces (e.g. Haxby

et al., 2000, 2002; Ishai, 2008), the temporal dynamics of the combined

processing of these cues is largely unknown. Neuroanatomical models

postulate that a posterior core system would be involved in eye gaze

and facial expression perceptual processing whereas a more anterior,

extended system would integrate this information to extract meaning

from faces (Haxby et al., 2000). This may suggest a temporal sequence

of early, independent perceptual processing of eye gaze and emotional

expression followed by later stages of information integration. In line

with this view, some recent studies suggested that eye gaze and emo-

tional expression are computed separately during early visual process-

ing, while integrated processing of these cues was observed in later

stages (Klucharev and Sams, 2004; Pourtois et al., 2004; Rigato et al.,

2009; see Graham and Labar, 2012 for a review). However, as there are

multiple, largely parallel routes to face processing (Bruce and Young,

1986; Pessoa and Adolphs, 2010), it is also possible that there is an

early integrated processing of eye gaze and emotional expression in

some brain regions.

A second aim of this study was to investigate the neural dynamics

underlying the integration of social attentional and emotional infor-

mation when observing two interacting agents. We studied MEG ac-

tivity while subjects viewed a pair of avatar faces displaying dynamic

angry or happy expressions under two different social scenarios seen

from a TPV. The initial stimulus gaze change allowed us to evaluate

M170 and set up a social scenario of either mutual or group deviated

attention where the pair of avatar faces subsequently displayed dy-

namic emotions (angry or happy) that waxed and waned under

these social attention scenarios. Specifically, this design allowed the

temporal separation of neural activity related to: (i) face onset, (ii)

the gaze change and (iii) the evolving emotional expression, while

conforming to the type of gaze transitions followed by emotional ex-

pression which is typically seen in everyday life (see Conty et al., 2007;

Carrick et al., 2007 for a similar approach). Since both angry and

happy expressions signal approach-related behavioral tendency but

of opposite valence, we expected greater differentiation of MEG

responses to emotion under the mutual relative to the group deviated

attention scenario. An important, exploratory question concerned the

dynamics of this effect: would the interaction between emotion and

social attention arise early on or would initial MEG responses to emo-

tion be independent from social attention scenario?

MATERIALS AND METHODS

Subjects

Fourteen paid volunteers (18–27 years; 10 female and 1 left-handed)

participated in the study. The protocol was approved by the local

Ethics Committee (CPP Ile-de-France VI, nb. 07024). All subjects

had normal or corrected-to-normal vision and had no previous history

of neurological or psychiatric illness.

Stimuli

We created videos displaying 12 different pairs of avatar faces with

initial downcast eyes, followed by a gaze change, and then subsequent

dynamic facial expressions (happiness or anger) that grew and waned

(Figure 1; see Supplementary Material for stimulus creation details).

The gaze change generated two conditions: either the protagonists

looked at each other (mutual attention) or they deviated their gaze

toward the same side of the screen (deviated group attention, from

now on referred to as deviated attention). Avatar pairs were placed on

a background of black and gray concentric circles, so that the center of

these circles was placed in between the two faces, at their eye level, and

served as the fixation point. This point was perceived as slightly behind

the avatar pair (Figure 1B), so that when the two avatars looked at each

other, a mutual gaze exchange was seen. We also verified that the

happy and angry expressions depicted by the avatars were recognized

accurately and with similar perceived intensity, as described in

Supplementary Material.

Procedure and MEG data acquisition

The subject was comfortably seated in a dimly lit electromagnetically

shielded MEG room in front of a translucent screen (viewing distance

82 cm). Stimuli were back projected onto the screen through an

arranged video projector system (visual angle: 5� 3 degrees).

Neuromagnetic signals were continuously recorded on a whole-head

MEG system (CTF Systems, Canada) with 151 radial gradiometers

(band-pass: DC-200 Hz; sampling rate: 1250 Hz; see Supplementary

Material for details). Vertical and horizontal eye movements were

monitored through bipolar Ag/AgCl leads above and below the right

eye, and at the outer right eye canthi, respectively.

Each trial began with an avatar face pair with neutral expression and

downward gaze lasting between 700 and 900 ms (Figure 1A). Then, a

gaze change occurred on one frame and was maintained until the trial

end, resulting in a mutual or deviated attention scenario. This was

followed after 1017 ms by facial emotional expressions that grew and

waned as depicted in Figure 1A. The inter-trial interval varied ran-

domly between 1.5 and 2.5 s. Subjects were instructed to blink during

inter-trial intervals and to maintain central fixation throughout

the blocks, avoiding explorative eye movements during stimulus

presentation.

The recording session comprised eight blocks, with short pauses

given to the subject between blocks. In each block, each avatar face

pair was presented once for each experimental condition of social

attention (mutual/deviated) and emotion (happy/angry). For the

deviated condition, half of the blocks displayed gazes deviated to the

right and the other half gazes deviated to the left, producing 48 trials

per block (12 avatar pairs� 2 emotion� 2 social attention). In add-

ition, four to seven target trials were added in each block. During these

trials, the fixation point was colored blue in a randomly selected frame

during the occurrence of the emotional expression (Figure 1B).

Subjects pressed a button as rapidly as possible when they detected

this blue target circle. The task aided subjects to maintain central

fixation and attention on the visual stimulation. The order of trial

presentation was randomized within each block and across subjects,

but with no immediate repetition of any given avatar pair. Before the

proper experiment began, subjects performed a training block of seven

trials, where every avatar character and every experimental condition

were presented including one target trial.

MEG data analysis

Event-related magnetic fields

Trials with eye blinks or muscle artifacts within 200 ms before to

3600 ms after the gaze change (encompassing almost the entire unfold-

ing of the facial expression) were rejected by visual inspection. Two

types of averaged event-related magnetic fields (ERFs) were computed.

First, to identify brain responses to changed social attention, we aver-

aged neuromagnetic signals time-locked to the gaze change from the

initial downward position to the left or rightward gaze position, using

a 200 ms baseline before the gaze changes and a digital low-pass filter at

40 Hz (IIR fourth-order Butterworth filter). Averages were computed
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separately for mutual and deviated attention condition. Second, to

identify brain responses to the dynamic emotional expression, we aver-

aged neuromagnetic signals time-locked to the onset of the emotional

expression, using a 200 ms baseline before emotional expression onset.

These averages were computed separately for each emotion expression

under each social attention condition. Target trials and false positives

were excluded from analysis. Marked and prolonged oscillatory activity

was evident in the ERFs to dynamic emotional expressions with no

clear peak of activity. To analyze these data further, we smoothed these

ERFs with a digital low-pass filter at 8 Hz. A mean number of 75� 11

trials were averaged for every condition and subject.

ERF mean amplitude analyses

ERF activity elicited to the social attention (gaze) change

We measured the mean amplitude of the M170 response to gaze

change between 170 and 200 ms from seven sensors in the left

(MLO12, MLP31, MLP32, MLP33, MLT15, MLT16 and MLT26)

and right (MRO12, MRO22, MRT15, MRT16, MRT25, MRT26 and

MRT35) hemispheres for every subject.

ERF activity elicited to the dynamic emotional expression

The mean ERF amplitude was measured in consecutive 300 ms time

windows from 100 to 2500 ms after the onset of dynamic emotional

expression over two scalp regions. First, a circumscribed, bilateral pos-

terior region was considered including five left-side (MLO12, MLO21,

MLO22, MLO32 and MLO33) and five right-side (MRO22, MRO33,

MRT16, MRT26 and MRT35) sensors. Second, an extended right

anterior region was considered, with 15 right-side (MRF12, MRF23,

MRF34, MRT11, MRT12, MRT13, MRT21, MRT22, MRT23, MRT24,

MRT31, MRT32, MRT33, MRT41 and MRT42) sensors.

Statistical analyses

All statistical analyses were performed using Statistica 8 (StatSoft, Inc.).

Prior to these analyses, MEG data were multiplied by �1 in the hemi-

sphere where in-flow fields were observed. Mean ERF amplitude for

the gaze change was analyzed using a two-way repeated-measures ana-

lysis of variance (ANOVA) with social attention (mutual and deviated)

and hemisphere (right and left) as within-subject factors. For mean

ERF amplitudes to dynamic emotional expressions over posterior and

anterior regions, an initial overall ANOVA including time window of

measurement as a within-subject factor showed interactions between

time window and our experimental factors of emotion and/or social

attention on both sensor sets. Thus, to get some insight into the tem-

poral unfolding of the effects of emotion and social attention, we ran

ANOVAs in each time window on each selected scalp region, with

social attention (mutual and deviated), emotion (angry and happy)

and�for the bilateral posterior MEG sensor sets�hemisphere (right

and left) as within-subjects factors.

RESULTS

Behavior

Subjects responded accurately to the infrequent blue central circle tar-

gets, with a mean correct detection rate of 96.5� 1.1% and a mean

response time of 632� 45 ms.

Fig. 1 Time course of a trial. (A) The trial began showing the avatar pair with downcast eyes. After 700–900 ms, a gaze change occurred. Here, we show a mutual attention condition. After a further 1017 ms,
the dynamic facial expression commenced, peaking at 1200 ms and then waning over the next 1700 ms to end the trial. Total trial duration was �4700 ms. (B) Examples of single frames at emotion peak for
angry faces with deviated attention (left image) and happy faces with mutual attention (right image).
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ERFs elicited to the gaze change

The gaze change elicited a prominent M170 response that peaked

around 185 ms over bilateral occipito-temporal MEG sensors in all con-

ditions (Figure 2). The bilateral pattern of MEG activity, with a

flowing-in field over right hemisphere and a flowing-out field over left

hemisphere, represented the typical M170 pattern to faces and eyes

(Figure 3A) (Taylor et al., 2001; Watanabe et al., 2001, 2006). We per-

formed mean amplitude analysis between 170 and 200 ms on left and

right occipito-temporal sensors centered on the posterior maximum of

the M170 component where the response to the gaze change was max-

imally differentiated. This showed a main effect of social attention with

greater M170 amplitude for deviated relative to mutual attention

(F1,13¼ 10.09, P < 0.01; Figure 3B). There was not any significant lateral-

ization effect or interaction between hemisphere and social attention.

ERFs elicited to the dynamic emotional expression

Discernable MEG activity from �300 ms after the onset of the emo-

tional expression was observed and persisted for the entire emotional

expression display (Figure 2). This activity reached a maximum

strength just prior to the maximal expression of the emotion. The

activity appeared to differentiate happy vs angry expressions over a

circumscribed bilateral posterior region and an extended right anterior

region (Figure 4A). We performed mean amplitude analyses on bilat-

eral posterior and right anterior sensors that covered both regions,

including eight consecutive 300-ms time windows from 100–400 to

2200–2500 ms (Table 1; Figure 4B and C).

The analysis of bilateral posterior responses showed a sustained

main effect of emotion independent of social attention between 400

and 1300 ms (Table 1; see also Figure 4C, left panels). A significant

three-way interaction between emotion, social attention and hemi-

sphere was seen between 1000 and 1300 ms. This reflected a main

effect of emotion at right posterior sensors, whereas the emotion

effect was dependent on social attention, reaching significance under

mutual attention only, over the left posterior sensors. The differen-

tiated response to emotions under mutual attention persisted between

1300 and 2200 ms on left posterior sensors (Table 1).

Fig. 3 Effect of social attention on the M170. (A) Group-averaged topographic maps of mean ERF amplitude between 170 and 200 ms post-gaze change for MUTUAL (top left) and DEVIATED (top right) con-
ditions, and the DIFFERENCE between these conditions (bottom), with corresponding magnitude calibration scales in femtoTesla (fT). Black dots depict MEG sensor positions, white dots depict sensors whose
activity was sampled and analyzed statistically and gray dots indicate the illustrated sensors (which were also included in the statistical analysis). (B) Time course of ERFs for the representative sensors in right
(MRT26) and left (MLT26) hemispheres shown in (A). The deviated condition elicited the largest ERF amplitudes. The difference in ERF amplitude across deviated and mutual conditions showed a main effect that
was significant at the P < 0.01 level (dual asterisks). In the ERP waveforms, the solid lines represent the MUTUAL condition and the dashed lines represent the DEVIATED condition.

Fig. 2 ERFs to the gaze change and subsequent dynamic emotional expression. Time course overlays of grand-averaged ERFs from 151 MEG sensors (group averages across all experimental conditions).
On the timeline, the first zero corresponds to the gaze change. The arrow identifies the M170 to the gaze change. The light gray box depicts the pre-stimulus baseline for the M170 beginning 200 ms before
the gaze change. The second zero in the timeline corresponds to the facial expression onset. Grand-averaged ERFs for dynamic emotional expression are depicted and appear to peak before 1000 ms after
facial expression onset. The corresponding 200-ms pre-stimulus baseline for these responses is shown as a preceding light gray box. The evolution and subsequent wane of the emotional expression
are indicated as a schematic triangle below the time scale. The vertical scale depicts ERF strength in femtoTesla (fT). The horizontal scale depicts time relative to the gaze change or facial expression onset in
milliseconds (ms).
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Fig. 4 Group-averaged ERF amplitudes to dynamic emotional expressions. (A) Topographical ERF difference maps across happy and angry expressions (HAPPY–ANGRY) for the MEAN of mutual and deviated
(D and M) conditions between 400 and 1000 ms, and for MUTUAL and DEVIATED social attention conditions between 700 and 2500 ms. A color calibration scale is shown in femtoTesla (fT). (B) Overall time
course of ERFs to the evolution and waning of dynamic expressions, for the four experimental conditions. Data from two representative posterior and two representative anterior right sensors are illustrated. ERF
amplitude (in fT) appears on the ordinate, and time (in seconds; relative to dynamic expression onset) is plotted on the abscissa. (C) Mean ERF amplitude (in fT) at the posterior and anterior sensors arrays as a
function of emotion and social scenario. The grand mean amplitude (�SEM) of ERFs was computed over eight consecutive 300 ms time windows, between 100–400 and 2200–2500 ms after the start of the
dynamic emotional expression. For parts (B) and (C), the four different line types correspond to the four different experimental conditions.

Table 1 Statistical analysis of ERF activity to the emotional expression as a function of condition and post-expression onset time interval

100–400 400–700 700–1000 1000–1300 1300–1600 1600–1900 1900–2200 2200–2500

Bilateral posterior
Emotion (Emo) n.s. F¼ 6.62

P < 0.05
F¼ 8.72
P < 0.05

F¼ 5.69
P < 0.05

n.s. n.s. n.s. n.s.

Social attention (Soc) n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
Soc� Emo n.s. n.s. n.s. n.s. n.s. n.s n.s. n.s.
Soc� Emo� Hem F¼ 4.93

P < 0.05
n.s. n.s. F¼ 5.17

P < 0.05
F¼ 5.35
P < 0.05

F¼ 5.79
P < 0.05

F¼ 5.11
P < 0.05

n.s.

Left posterior
Emo n.s. F¼ 6.24

P < 0.05
F¼ 4.9
P < 0.05

n.s. n.s. n.s. n.s. –

Soc� Emo n.s. n.s. n.s. F¼ 8.32
P < 0.05

F¼ 8.24
P < 0.05

F¼ 8.97
P < 0.05

F¼ 6.23
P < 0.05

–

Emo (mutual) n.s. – – F¼ 6.41
P < 0.05

F¼ 5.74
P < 0.05

F¼ 8.62
P < 0.05

F¼ 4.69
P < 0.05

–

Emo (deviated) n.s. – – n.s. n.s. n.s. n.s. –

Right posterior
Emo n.s. F¼ 4.35

P¼ 0.057
F¼ 10.72
P < 0.01

F¼ 6.24
P < 0.05

n.s. n.s. n.s. –

Soc� Emo n.s. n.s. n.s. n.s. n.s. n.s. n.s. –

Right anterior
Emotion (Emo) n.s. F¼ 4.4

P¼ 0.056
n.s. n.s. n.s. n.s. n.s. n.s.

Social Attention (Soc) F¼ 9.08
P < 0.01

F¼ 13.9
P < 0.01

F¼ 11.86
P < 0.01

F¼ 21.61
P < 0.001

F¼ 10.76
P < 0.01

n.s. F¼ 6.09
P < 0.05

F¼ 7.09
P < 0.05

Soc� Emo n.s n.s. F¼ 5.11
P < 0.05

F¼ 15.68
P < 0.01

F¼ 13.65
P < 0.01

F¼ 12.66
P < 0.01

F¼ 21.58
P < 0.001

F¼ 38.03
P < 0.001

Emo (mutual) n.s. F¼ 5.24
P < 0.05

F¼ 12.51
P < 0.01

F¼ 14.50
P < 0.01

F¼ 19.99
P < 0.001

F¼ 16.40
P < 0.01

F¼ 14.85
P < 0.01

F¼ 24.43
P < 0.001

Emo (deviated) n.s. n.s. n.s. n.s. n.s. n.s. n.s. F¼ 5.38
P < 0.05

Soc (angry) n.s. F¼ 21.2
P < 0.001

F¼ 29.79
P < 0.001

F¼ 28.70
P < 0.001

F¼ 19.5
P < 0.001

F¼ 13.6
P < 0.01

F¼ 20.08
P < 0.001

F¼ 39.49
P < 0.001

Soc (happy) n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Notes: Repeated measures ANOVAs were performed over bilateral posterior and right anterior sensors in each of the eight 300-ms time windows. The bilateral posterior analysis had three within-subjects factors:
social attention (Soc), emotion (Emo) and hemisphere (Hem). The right anterior analysis had two within-subjects factors: social attention (Soc) and emotion (Emo). F- and P-values are reported when significant.
Planned comparisons were performed when significant main effects or interactions were observed. Emo (mutual) and Emo (deviated) correspond to the effects of emotion under mutual and deviated attention
conditions, respectively. Soc (angry) and Soc (happy) correspond to the effects of social attention for the angry and happy emotions, respectively. n.s.¼ not significant.
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In contrast, analysis of the right anterior response demonstrated a

sustained main effect of social attention over most time epochs from

100–400 to 1900–2500 ms post-expression onset (Table 1; see also

Figure 4B and C, right panels). A trend for a main effect of emotion

was observed only in the 400–700 ms time window. Importantly, there

was a prolonged and significant interaction between emotion and

social attention from 700–1000 to 2200–2500 ms; this interaction was

driven by a differential response to angry vs happy expressions only

under mutual attention, as well as by a marked effect of the social

attention condition only for anger (Figure 4 and Table 1). We note

that these effects surfaced between 400 and 700 ms but without a

significant interaction between emotion and social attention.

DISCUSSION

In this study, we aimed at investigating the temporal dynamics of ERFs

associated with the perception of dynamic dyadic social interactions

under a TPV. The main findings were (i) larger M170s to the gaze

change in deviated when compared with mutual attention scenarios

and (ii) sustained ERF activity to the subsequent dynamic expression.

This latter activity was modulated by both displayed emotion and social

attention scenario in right anterior sensors, with angry vs happy faces

under mutual attention being distinguished 400 ms after emotion

onset. In contrast, activity in posterior sensors was initially modulated

by emotional expression only; then, from 1000 ms onwards, activity on

left posterior sensors was further modulated by social attention, with

greater differentiation to angry vs happy faces under mutual attention.

Our data demonstrate complex spatiotemporal effects to fairly simple

displays of dynamic facial expressions (relative to a real-life social

interaction). We discuss the separable neural effects due to the

change in gaze and in the facial expression separately below.

Social attention modulates M170 amplitude

In our paradigm, mutual vs deviated attention conditions were gener-

ated from a gaze change of two avatar faces that never gazed at the

viewer. This TPV approach was intended to create distinct social scen-

arios that were not based on a direct interaction of the stimuli with the

subject, that is, no direct gaze was involved. Direct gaze sends important

mutual attention signals to the viewer, but also elicits a feeling of per-

sonal involvement (Conty et al., 2010), thus potentially evoking brain

activity related to both social attention and self-involvement processing,

which are indistinguishable in this type of situation. It is however likely

that these processes involve dissociable brain responses as shown by

some recent fMRI and brain-lesion studies (Schilbach et al., 2006,

2007). Furthermore, under SPV, social attention scenarios of mutual

vs deviated attention are directly mapped onto direct vs averted gaze

directions. Hence, while several studies have shown N170 (in EEG) and

M170 (in MEG) modulation for direct vs averted gaze directions (e.g.

Puce et al., 2000; Watanabe et al., 2001, 2006; Conty et al., 2007), it is

unclear whether this modulation reflects an early neural encoding of

social attention, rather than processes related to self-involvement or to

the coding of different gaze directions. Here, we show that under a

situation where no self-involvement process was implicated and only

averted gaze was seen, social content information�in the form of

mutual vs deviated attention seen under TPV�was extracted early by

the brain, as indicated by the modulation of the M170.

Our neurophysiological finding converges with a previous fMRI study

that showed an influence of social context on the neural responses to

gaze changes (Pelphrey et al., 2003). This latter effect was observed in the

STS as well as in the intraparietal sulcus and fusiform gyrus. Source

localization was beyond the scope of this study as we were concerned

by the neurophysiological dynamics underlying the perception of chan-

ging social attention. Previously, it has been proposed that M170 neural

sources sensitive to eyes and gaze direction are located in the posterior

STS region (Itier and Taylor, 2004; Conty et al., 2007; Henson et al.,

2009). Our M170 distribution is consistent with the involvement of these

regions, and adjacent inferior parietal regions that belong to the atten-

tional brain system (Hoffman and Haxby, 2000; Lamm et al., 2007). This

would be consistent with the observation of a larger M170 for deviated

relative to mutual attention, which suggests that this effect may also be

related to the changes in visuospatial attention induced by seeing the

gaze of others turning toward the periphery.

Our data contrast with a previous study of social attention percep-

tion where only late effects of social scenarios were found (from 300 ms

post-gaze change; Carrick et al., 2007). However, these authors created

social scenarios with gaze aversions in a central face flanked by two

faces with (unchanging) deviated gaze: the central face’s gaze changed

from direct gaze with the viewer (mutual attention under SPV) to one

of three social attention scenarios under TPV (mutual attention with

one flanker, group deviated attention with all faces looking to one side,

and a control with upward gaze and no interaction with either flanker

face). Thus, gaze aversion in the central face always produced a social

attention change relative to the viewer. This social attention ‘away’

change may have masked any early differentiation between the ensuing

social scenarios. Taken together with the results of Carrick et al.

(2007), our finding suggests that the social modulation of the

N/M170 represents the first of a set of neural processes that evaluate

the social significance of an incoming stimulus.

We note that the N/M170s elicited to dynamic gaze changes here

and in other studies (Puce et al., 2000; Conty et al., 2007) appear to be

later in latency than those elicited to static face onset. Yet, the scalp

distributions are identical to static and dynamic stimuli when com-

pared directly in the same experiment (Puce et al., 2007). The latency

difference is likely to be caused by the magnitude of the stimulus

change: static face onset alters a large part of the visual field, whereas

for a dynamic stimulus (e.g. a gaze change), a very small visual change

is apparent. This may drive the latency difference (see Puce et al., 2007;

Puce and Schroeder, 2010).

There is an additional consideration in our design with respect to

the basic movement direction in our visual stimuli. In deviated atten-

tion trials, gaze directions were either both rightward or both leftward,

whereas in mutual attention trials, one face gazed rightward and the

other leftward. It could be argued that the M170 effect could reflect

coding of homogeneous vs heterogeneous gaze direction, related to the

activation of different neuronal populations under each condition

(Perrett et al., 1985). At an even lower level, there could be neural

differences to a congruous or incongruous local movement direction

or alternatively visual contrast changes across both conditions. In all of

the above cases, the heterogeneous condition could theoretically yield a

net cancellation of overall summed electromagnetic activity. However,

we believe that this is unlikely given that in Carrick et al. (2007), no

differences in N170 amplitude occurred across heterogeneous and

homogeneous gaze conditions. Additionally, comparisons between

leftward vs rightward gaze movements have not shown directional

differences in posterior distributed N170 or M170 amplitudes (Puce

et al., 2000; Watanabe et al., 2001).

Social attention and facial expression interactions in sustained
brain responses to dynamic emotional expressions

With regard to the emotional expressions themselves, we were inter-

ested in examining the temporal deployment of the neural responses to

the emotional expressions under the different social attention scen-

arios. Given that the neural response profile of a social attention

change has been previously described (Puce et al., 2000), we separated

the social attention stimulus from the emotional expression to allow
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the neural activity associated with the social attention change to be

elicited and die away prior to delivering the second stimulus consisting

of the emotional expression. As we used naturalistic visual displays

of prolonged dynamic emotional expressions, we believed it unlikely

that discrete, well-formed ERP components would be detectable.

Accordingly, discernible neural activity differentiating between the

emotional expressions occurred over a prolonged period of time, as

the facial expressions were seen to evolve. Brain responses appeared to

peak just prior to the apex of the facial expression and persisted as the

facial emotion waned, in agreement with the idea that motion is an

important part of a social stimulus (Kilts et al., 2003; Sato et al., 2004a;

Lee et al., 2010; see also Sato et al., 2010b and Puce et al., 2007).

Our main question concerned integration of social attention and

emotion signals from seen faces. Classical neuroanatomical models

of face processing suggest an early independent processing of gaze

and facial expression cues followed by later stages of information in-

tegration to extract meaning from faces (e.g. Haxby et al., 2000). This

view is supported by electrophysiological studies that have shown early

independent effects of gaze direction and facial expression during the

perception of static faces (Klucharev and Sams, 2004; Pourtois et al.,

2004; Rigato et al., 2009). However, behavioral studies indicate that eye

gaze and emotion are inevitably computed together as shown by the

mutual influence of eye gaze and emotion in various tasks (e.g. Adams

and Kleck, 2003, 2005; Sander et al., 2007; see Graham and Labar, 2012

for a review). Furthermore, recent brain imaging studies supported the

view of an intrinsically integrated processing of eye gaze and emotion

(N’Diaye et al., 2009; Cristinzio et al., 2010). Here, using MEG, our

main result was that there were different effects of emotion and social

attention over different scalp regions and different points in time.

An initial main effect of emotion was not modulated by social atten-

tion over posterior sensors; this effect started around 400 ms post-

expression onset and was then followed by an interaction between

emotion and social attention from 1000 to 2200 ms, over left posterior

sensors. In contrast, there was an early sustained interaction between

emotion and social attention on right anterior sensors, emerging from

400 to 700 ms. Thus, in line with recent models of face processing

(Haxby et al., 2000; Pessoa and Adolphs, 2010), these findings support

the view of multiple routes for face processing: emotion is initially

coded separately from gaze signals over bilateral posterior sensors,

with (parallel) early integrated processing of emotion and social atten-

tion in right anterior sensors, and subsequent integrated processing of

both attributes over left posterior sensors.

These findings complement those of previous studies using static

faces (Klucharev and Sams, 2004; Rigato et al., 2009). The early inter-

action between emotion and social attention on anterior sensors ob-

tained here shows that the neural operations reflected over these

sensors are attuned to respond to combined socio-emotional informa-

tion. Although we do not know the neural sources of this effect, it is

tempting to relate this result to the involvement of the amygdala in the

combination of information from gaze and emotional expression

(Adams et al., 2003; Sato et al., 2004b; Hadjikhani et al., 2008;

N’Diaye et al., 2009), as well as in the processing of dynamic stimuli

(Sato et al., 2010a). Furthermore, the lateralization of this effect is

consistent with the known importance of the right hemisphere in

emotional communication, as shown by the aberrant rating of emo-

tional expression intensity in patients with right (but not left) temporal

lobectomy (Cristinzio et al., 2010). However, any interpretation of the

lateralization of the effects obtained here should be made with caution,

especially as we also found a left lateralized effect with regard to the

interaction between emotion and social attention over posterior sen-

sors. These topographical distributions are likely to reflect the contri-

bution of the sources of the different effects that we obtained, which

were activated concomitantly and overlapped at the scalp surface.

Mutual attention in angry faces increases sustained brain
responses to dynamic emotional expressions

Happy and angry expressions both signal an approach-related behav-

ioral tendency, but with opposite valence. As expected, we found more

differentiated responses to these expressions under the congruent,

approach-related condition of mutual attention than under the

group deviated attention condition. This is in agreement with data

that have shown enhanced emotion processing when gaze and emo-

tional expressions signal congruent behavioral tendencies (Adams and

Franklin, 2009; Rigato et al., 2009, see also Harmon-Jones, 2004 and

Hietanen et al., 2008). In our paradigm, the compatible approach-

related tendencies signaled by the avatars’ expressions (anger and hap-

piness) and mutual attention might have enhanced the emotional ex-

pression salience, resulting in more differentiated brain responses to

these opposite emotions under the mutual relative to the deviated

attention condition. Interestingly, this effect contrasts with the larger

MEG response seen under the deviated relative to mutual attention

when the emotion was not yet displayed. This underlines the inter-

dependence of social attention and emotion processing�that the social

attention change gives the emotion a context. Moreover, the differen-

tial effect obtained seemed to take the form of a dissociated response to

angry avatars with mutual gaze when compared with the other condi-

tions, over the right anterior sensors. Note that flowing-in (seen as

negative) and flowing-out (seen as positive) magnetic fields cannot be

easily interpreted in terms of underlying sources activation strength, as

they reflect the spatial arrangement of these sources as well as their

strength. This is why we prefer to refer to differential responses be-

tween conditions, or to dissociated response in one condition, rather

than to heightened or lowered response in one condition relative to the

others. Thus, our results suggest the involvement of selective neural

resources when observing an angry interaction between two individ-

uals. This is reminiscent of Klucharev and Sams (2004) results showing

larger ERPs for angry than happy static expressions with direct gaze,

while the opposite pattern was obtained under the averted gaze con-

dition. It may reflect the importance of the detection of angry expres-

sions�evoking hostile intentions and threat�not only for oneself but

also when observing two individuals in close proximity who are

engaged in a mutual interaction.

Limitations

Finally, it is important to note that our study did not include any

explicit task related to the perceived emotion and social attention situ-

ations. Thus, it is difficult to explicitly relate the effects obtained to

either perceptual stage of information processing or some higher level

processing stage of meaning extraction from faces. This question may

be an interesting topic for future studies, given that from this study, it

is clear that neurophysiological activity can be reliably recorded to

prolonged dynamic facial expressions. The bigger question here is

how sustained neural activity from one neural population is relayed

to other brain regions in the social network. Source localization, using

a realistic head model generated from high-resolution structural MRIs

of the subjects, may also contribute in disentangling these complex

interactions in the social network of the brain. This may be challenging

to implement, given the temporally overlapping effects seen in this

study with respect to isolated effects of emotion, and integration of

social attention and emotion information.

The separation of the social attention stimulus and the dynamic

emotional expression could be potentially seen as a design limitation

in this study. However, the design allows the neural activity to each of

these important social stimuli to play out separately in their own time

and be detected reliably. By using a design where both social attention

and emotion expression change simultaneously, there is the potential
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risk that the complex neural activity profile ensuing to these two po-

tentially separate brain processes might superimpose or potentially

cancel at MEG sensors.

CONCLUSION

The neural dynamics underlying the perception of an emotional

expression generated in a social interaction is complex. Here, we dis-

entangled neural effects of social attention from emotion by temporally

separating these elements: social attention changes were indexed by

M170, whereas the prolonged emotional expressions presented subse-

quently elicited clear evoked neural activity that was sustained effect-

ively for the duration of the emotion. The modulation of this sustained

activity by social attention context underscores the integrated process-

ing of attention and expression cues by the human brain. These data

further suggest that as we view social interactions in real-life, our

brains continually process, and perhaps anticipate, the unfolding

social scene before our eyes. How these prolonged neural signals in-

fluence brain regions remote from the local neural generators remains

an unanswered question that goes to the core of understanding infor-

mation processing in the social brain.

SUPPLEMENTARY DATA

Supplementary data are available at SCAN online.
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