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Abstract

Background: Currently, a surgical approach is the best curative treatment for those with hepatocellular carcinoma
(HCO). However, this requires HCC detection and removal of the lesion at an early stage. Unfortunately, most cases
of HCC are detected at an advanced stage because of the lack of accurate biomarkers that can be used in the
surveillance of those at risk. It is believed that biomarkers that could detect HCC early will play an important role in
the successful treatment of HCC.

Methods: In this study, we analyzed serum levels of alpha fetoprotein, Golgi protein, fucosylated alpha-1-anti-
trypsin, and fucosylated kininogen from 113 patients with cirrhosis and 164 serum samples from patients with
cirrhosis plus HCC. We utilized two different methods, namely, stepwise penalized logistic regression (stepPLR) and
model-based classification and regression trees (mob), along with the inclusion of clinical and demographic factors
such as age and gender, to determine if these improved algorithms could be used to increase the detection of
cancer.

Results and discussion: The performance of multiple biomarkers was found to be better than that of individual
biomarkers. Using several statistical methods, we were able to detect HCC in the background of cirrhosis with an
area under the receiver operating characteristic curve of at least 0.95. stepPLR and mob demonstrated better
predictive performance relative to logistic regression (LR), penalized LR and classification and regression trees
(CART) used in our prior study based on three-fold cross-validation and leave one out cross-validation. In addition,
mob provided unparalleled intuitive interpretation of results and potential cut-points for biomarker levels. The
inclusion of age and gender improved the overall performance of both methods among all models considered,
while the stratified male-only subset provided the best overall performance among all methods and models
considered.

Conclusions: In addition to multiple biomarkers, the incorporation of age and gender into statistical models
significantly improved their predictive performance in the detection of HCC.

Background between 500,000-700,000 people die as a result of HCC

The major etiology of hepatocellular carcinoma is infec-
tion with hepatitis B virus (HBV) and/or hepatitis C virus
(HCV) [1-5], which can lead to liver cirrhosis, the main
risk factor for HCC. Worldwide, it is estimated that
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every year [2,5,7].

Surgical treatments, such as tumor ablation, resection
and transplantation still offer the best hope for long term
survival but work best when tumors are caught at an early
stage. Thus, the screening of the cirrhotic patient popula-
tion for early detection is thought to be an important step
to increase survival.
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Currently, patients at risk for HCC are monitored
either by imaging and/or through the use by serum levels
of the glycoprotein, alpha-fetoprotein (AFP) or the core
fucosylated glycoform of AFP (AFP-L3). However, AFP
can have poor sensitivity and specificity [8-10], and is not
present in many patients with HCC. Therefore the use of
AFP as the primary screen for HCC is questioned [11]
and more specific and sensitive, serum biomarkers for
HCC are urgently needed [12-16].

We have previously observed increased levels of fuco-
sylated proteins in the serum of those with HCC and
through the use of fucose specific lectins we identified
many of the proteins that become fucosylated with liver
disease [17-19]. In the current study we have analyzed
the performance of several of these potential biomarkers
in the serum from 113 patients with cirrhosis and 164
serum samples from patients with cirrhosis plus HCC.
In an effort to maximize the detection of patients with
cancer, we applied several novel bio-statistical tools to
determine if improved algorithms would aid in the
detection of cancer. This included combining biomarker
values with clinical and demographic factors such as age
and gender to improve diagnosis. Using several of these
methods, we are able to detect HCC in the background
of cirrhosis with a predictive probability of at least 0.95,
a significant improvement relative to that of any marker
when used alone. The potential benefit of using this
combination of markers and clinical variables is dis-
cussed in this paper.

Methods

Patients

Serum samples were obtained from Saint Louis University
School of Medicine or the University of Michigan. For sam-
ples obtained from the University of Michigan, the study
protocol was approved by the University of Michigan’s
Institutional Review Board and written informed consent
was obtained from each subject. Demographic and clinical
information was obtained, and a blood sample was col-
lected from each subject. Patients with HCC, and patients
with cirrhosis that were age, gender, and race/ethnicity
matched to the HCC patients were enrolled from the Liver
Clinic during this period. The diagnosis of HCC was made
by histopathology, including all T1 lesions, and if histo-
pathology was NA by two imaging modalities (ultrasound
[US], magnetic resonance imaging [MRI], or computed
tomography) showing a vascular enhancing mass > 2 cm)
[5]. Diagnosis of cirrhosis was based on liver histology or
clinical, laboratory and imaging evidence of hepatic de-
compensation or portal hypertension [15]. Each of the
patients with cirrhosis had a normal US and, if serum AFP
was elevated, a MRI of the liver within 3 months prior to
enrollment and another one 6 months after enrollment
that showed no liver mass. The cirrhotic controls have
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been followed for a median of 12 months (range 7-18
months) after enrollment, and no one has developed HCC.
A 20-ml blood sample was drawn from each subject, spun,
aliquoted, and serum stored at -80°C until testing. Blood
samples were drawn prior to initiation of HCC treatment.
AFP was tested using commercially available immunoassays
utilizing enhanced chemiluminescence at the University of
Michigan Hospital Clinical Diagnostic Laboratory. The
upper limit of normal was 8 ng/ml.

For samples obtained from Saint Louis University
School of Medicine, the study protocol was approved by
the Saint Louis University Institutional Review Board and
written informed consent was obtained from each subject.
Demographic and clinical information was obtained, and a
blood sample was collected from each subject in a serum
separator tube, spun within 2 hours and serum stored at
-80°C until testing. Subjects either had HCC on biopsy, a
new hepatic defect showing vascular enhancement on one
imaging modality (ultrasound [US], magnetic resonance
imaging [MRI], or computed tomography [CT]) with AFP
> 1000 ng/ml or presumed HCC. Subjects were presumed
to have HCC if they had a discrete hepatic defect on US
with AFP < 1000 ng/ml and either 2 other scans (MRI,
CT, angiography) indicating malignancy with at least 1 of
the following characteristics: Hypervascularity; arterial to
portal vein shunts, portal vein thrombosis near the defect,
tumor in the portal vein or 1 other scan (MRI or CT)
showing features characteristic of HCC and either an
increase in size over time after initial discovery (at least
doubling if less than 1 ¢cm) or an increase in AFP to > 200
ng/ml. For the cirrhosis group, patients with Hepatitis C
and biopsy proven cirrhosis were enrolled. All cirrhotic
controls were screened for HCC using US, CT or MRI
prior to enrollment.

Lectin FLISA

Monoclonal antibodies are fucosylated and are reactive
with fucose binding lectins. Hence they must be modified
prior to analysis via the Lectin-FLISA. Briefly, to remove
the fucosylation of the capture antibody (Mouse anti-
human A1AT or rabbit anti-human LMW kininogen,
Bethyl Laboratories, Montgomery, TX), antibody was
incubated with 10mM sodium periodate for 1 hour at
37°C. An equal volume of ethylene glycol was added and
the oxidized antibody brought to a concentration of 10
pg/mL with sodium carbonate buffer, pH 9.5. Antibody
(1 pg/well) was added to the plate and following incuba-
tion washed with 0.1% Tween 20/PBS 7.4 and blocked
overnight with 3% BSA/PBS. For analysis, 5 pl of serum
was diluted in 95 pL of Heterophilic Blocking tubes
(Scantibodies Laboratory, Inc. Santee, CA 92071 USA)
and incubated at room temperature for 1 hour. Subse-
quently, samples were added to the plates for 2 hours
and washed 5 times in lectin incubation buffer (10mM Tris
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pH 8.0, 0.15M NacCl, 0.1%Tween 20) before fucosylated
protein was detected with a biotin conjugated Aleuria aur-
antia (AAL) lectin (Vector Laboratories, Burlingame, CA).
Bound lectin was detected using IRDye™ 800 Conjugated
streptavidin and signal intensity measured using the Odys-
sey” Infrared Imaging System (LI-COR Biotechnology,
Lincoln, Nebraska) as described in [20,21]. In all cases sam-
ple intensity was compared to commercially purchased
human serum (Sigma Inc., St Louis, MO.).

Immunoblotting for GP73

Equal volumes of patient sera were resolved by SDS-PAGE
on 10% polyacrylamide gels and the proteins transferred to
a PVDF membrane by immunoblotting. The membranes
were blocked by incubating with a blocking buffer of 1x
TBS (50 mM Tris-HCI, pH 7.6, 150 mM sodium chloride),
5% non-fat dried milk, and 0.1% Tween 20 for 1 hour at
room temperature. The blots were incubated overnight
with polyclonal anti-GP73 antibody (1:2000) and incu-
bated with rocking at room temperature for 2 hours. Blots
were subsequently washed 3x10mins 0.1% Tween-PBS and
GP73 visualized using an IRDye™ 700 Conjugated mouse
anti-rabbit secondary antibody (1:10,000). Signal intensity
measured using the Odyssey”™ Infrared Imaging System
(LI-COR Biotechnology, Lincoln, Nebraska). In all cases
sample intensity was compared to commercially purchased
human serum (Sigma Inc., St Louis, MO).

Statistical methods

Univariate statistical analyses were performed using
Fisher’s exact test for categorical variables and the Mann-
Whitney test for continuous variables. Univariate logistic
regression analyses were also performed for each indivi-
dual biomarker separately. Details of univariate analysis
results are presented in [26]. A variety of methods and
models were used in multivariable analyses for associat-
ing the incidence of HCC with biomarker levels and clin-
ical/demographic variables such as age and gender.
Specifically, two different but related methods were
investigated in this approach - stepwise PLR (stepPLR)
and model-based CART (mob). These two methods are
improvisations of PLR and CART described in our
previous work [26]. A variety of models were considered
for each method. Details of these methods are provided
in the ensuing paragraphs. All tests were two-sided and
used a Type I Error of 0.05 to determine statistical
significance.

PLR is a variant of logistic regression based on a
quadratic penalty that is ideal for associating discrete
factors and continuous variables such as gender, age and
biomarker levels with a binary response such as HCC
incidence. In PLR, we maximize the log-likelihood
subject to a size constraint on the L,-norm of the
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coefficients (excluding the intercept) [22]. This penalized
likelihood can be written as

A
L(Bor B, %) = (o, B) = 5118113

where [ indicates the binomial log-likelihood and A is a
positive constant. The use of quadratic penalization pro-
vides stability to the model fit by overcoming collinearity
among variables. Even though the number of variables in
our application is limited, PLR is well suited for modeling
a large number of variables. The sample size does not
limit the number of such variables, and variable selection
can be done using a forward stepwise approach. PLR is
implemented in the open-source R package step PLR
(http://www.r-project.org) [23]. The standard PLR
approach is applied to a fixed set of biomarkers, clinical
and/or demographic variables and was used in our pre-
vious work [26]. We extended this method to incorporate
stepwise model selection in this paper. stepPLR provides
the functionality for stepwise model selection based
on PLR for a fixed value of A. It tests for interactions
between biomarkers, demographic and clinical variables
and removes all non-significant terms. Stepwise regression
is then performed for the pre-specified A, and the remain-
ing significant terms are included in the final model.
stepPLR is typically repeated for various pre-specified
values of A and the best performing model is chosen. Three
different values of the penalty parameter A (0.1,1,10) were
considered in our approach.

CART is based on decision trees and is a non-parametric
approach. A decision tree is a logical model represented as
a binary tree that shows how the value of a response vari-
able can be predicted by using the values of a set of clinical
variables. If the response variable is binary such as whether
a patient developed HCC or not, then a classification tree
is generated that predicts the probability of developing
HCC. The unified CART framework based on conditional
inference trees embeds recursive binary partitioning into
the theory of permutation tests [24]. This methodology is
applicable to all types of regression settings and overcomes
the problem of over-fitting and selection bias towards vari-
ables with many possible splits or missing values. The con-
ditional distribution of statistics used in this approach
results in unbiased selection among covariates measured at
different scales. Significance testing procedures are applied
to determine whether no significant association between
any of the covariates and the response can be stated and
the recursion needs to stop. The function ctree() in the
open-source R package PARTY (http://www.r-project.org)
[25] implements this non-parametric approach and was
used in our previous work [26]. In this paper, we extended
this approach to incorporate parametric modeling. Specifi-
cally, it borrows strength from binary recursive partitioning
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in CART and the parametric approach in LR. This model-
based approach to CART is based on generalized linear
models [24] and is implemented in the function mob() of
the package PARTY. It was used to model the effects of
biomarker levels, gender and age associated with the devel-
opment of HCC.

In order to evaluate the performance of statistical mod-
els combining multiple biomarkers and/or clinical vari-
ables, values of multiple biomarkers were inputted into the
model from the appropriate method, and in each case
the output (predicted value) was between 0 and 1, with 0
being cirrhosis and 1 being cancer. A cut-off of 0.5 was
used for the predicted probability p and patients were clas-
sified as being HCC positive when p >= 0.5, otherwise they
were classified as cirrhotic (p<0.5). To determine the opti-
mal cutoff value for each biomarker or a combination of
biomarkers and/or clinical variables, Receiver Operating
Characteristic (ROC) curves were constructed using all
possible cutoffs for each method. Sensitivity and specificity
(along with 95% confidence interval (CI)) were used to
characterize the precision of binary predictions from
stepPLR and mob. Area under the ROC curves (AUC)
(along with 95% CI), prediction accuracy (ACC) positive
predictive value (PPV) and negative predictive value
(NPV) were used to characterize the predictive value of
models from these methods. For each model considered,
the Akaike Information Criterion (AIC) was calculated.

In addition, the performance of each model was evalu-
ated using leave-one-out cross validation (LOOCV) and
three-fold cross validation (3CV). For details on LOOCV
and 3CV, the interested reader is referred to our previous
work [26]. Using results from LOOCYV, an ROC curve and
its AUC (with 95% CI) was computed based on the pre-
dicted probabilities. This is the cross-validated AUC. Like-
wise, sensitivities at set specificities from this ROC curve
can be estimated. In order to evaluate the performance of
each model on independent data in the absence of a vali-
dation set, 3CV was used. Using 200 random partitions of
the dataset based on 3CV, the mean AUC, its standard
deviation and 95% CI were computed.

Results and discussion

Univariate analysis

A significant association between gender and the incidence
of HCC was found, with a significantly increased odds of
HCC in males (odds ratio = 1.75) compared to females. A
statistically significant association between age and inci-
dence of HCC was also observed. Results of univariate ana-
lyses are reported in detail in our previous study [26].

Multivariable analysis

Data obtained across two sites were used in the analyses.
In order to adjust for any potential differences in biomar-
ker levels obtained at different sites, a dichotomous,
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nominal variable site (indicating the site where the data
was obtained for each observation) was incorporated into
the modeling as a covariate. For each statistical method
used, four different models were considered based on the
inclusion of age and gender in multivariable analysis.
These are listed in Table 1. The stratified dataset consist-
ing of males only (with or without age) was of particular
importance due to the known higher incidence of HCC
in male patients [2]. Results from multivariable analyses
(presented in Tables 1, 2, 3 Figures 1, 2, 3, 4, 5, 6, 7) were
compared with those from univariate LR (presented in
Tables 1A, B and C, Figure 1 of [26]) and multivariable
LR, PLR and CART analyses (presented in Tables 2, 3, 4,
Figures 2, 3, 4, 5 of [26]) reported in our previous
study [26].

It is evident from the results reported in our previous
study [26] that univariate LR models performed uniformly
worse than multivariable models that utilized multiple bio-
markers using any of the three methods considered in that
study, namely, multivariable LR, PLR and CART. It turned
out that the best performing univariate model (GP73) pro-
duced a model-based AUC of 0.87 (95% CI (0.84, 0.91))
and ACC of 0.78, a result that fell far short of those of
multivariable models, and thus emphasized the need for
including multiple biomarkers and additional confounding
clinical variables into the model. In addition, among the
three multivariable methods considered, PLR and CART
outperformed LR. PLR provided the best overall perfor-
mance while CART served as a useful alternative by pro-
viding useful cut-points for biomarker levels. In this study,
we improve upon the performance of these two methods
by implementing a stepwise PLR (stepPLR) and a model-
based CART (mob) approach, respectively.

In the following paragraphs, the performance of various
models is compared for each method and the results sum-
marized and interpreted. Performance measures such as
AUC, ACC, PPV, NPV, sensitivity and specificity are com-
pared between age-adjusted and age-unadjusted models
when gender effect is considered and also for the stratified
male-only subset. With the exception of AUC, which is
expressed on the [0,1] scale, each quantity is measured on
a [0,100] scale. We re-scale each measure to [0,1] in our
comparisons for the sake of uniformity and convenience.
Difference between models for each quantity is expressed
as actual difference (indicating better or worse perfor-
mance) and not as relative difference, i.e., a difference of
5 units on the [0,100] scale is equivalent to 5% (or 0.05)
on the [0,1] scale.

In particular, stepPLR and mob showed significant
improvements in predictive performance when age was
included in the model after adjusting for gender differ-
ences compared to the model excluding age (Table 1
Figures 2, 4). stepPLR showed a median increase in AUC
(ACC) of 2% (3.02%) (across all choices of A) while mob
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Table 1 Model-based performance measures (Multivariable models)

Method (Model)' AUC (95% CI) 2 Acc® PPV* NPV® AIC®
stepPLR (A =0.1) (male only, with age) 0.96(0.94-0.98) 87.71 90.68 8261 93.92
stepPLR (A =1) (male only, with age) 0.96(0.94-0.98) 89.30 9231 84.29 94.84
stepPLR (A =10) (male only, with age) 0.96(0.94-0.98) 89.83 93.10 84.51 95.39
stepPLR (A =0.1) (male only, without age) 0.92(0.88-0.95) 8342 88.59 7534 135.39
stepPLR (A =1) (male only, without age) 0.92(0.88-0.95) 84.49 90.17 76.00 136.39
stepPLR (A =10) (male only, without age) 0.92(0.89-0.96) 84.49 90.90 7532 134.57
stepPLR (A =0.1) (gender, with age) 0.95(0.93-0.98) 88.25 91.02 84.25 142.14
stepPLR (A =1) (gender, with age) 0.95(0.93-0.98) 88.63 9161 8440 14248
stepPLR (A = 10) (gender, with age) 0.95(0.93-0.97) 89.01 92.20 84.54 14832
stepPLR (A =0.1) (gender, without age) 0.94(0.91-0.96) 85.61 89.54 80.18 173.22
stepPLR (A = 1) (gender, without age) 0.94(0.91-0.97) 8561 90.06 79.65 174.15
stepPLR (A = 10) (gender, without age) 0.93(0.91-0.96) 85.23 90.54 7844 180.61
mob(AAT|~) with age, male only) 0.94(0.91-0.97) 87.29 89.65 83.07 131.68
mob(GP73|~) with age, male only) 0.95(0.93-0.98) 87.87 91.89 8142 108.96
mob(AFP|~) with age, male only) 0.96(0.94-0.98) 89.50 90.67 87.30 103.38
mob(Kin|~.) with age, male only) 0.95(0.92-0.98) 86.74 88.24 83.87 117.63
mob(AAT|~) without age, male only) 0.88(0.83-0.94) 8449 87.50 79.10 157.50
mob(GP73|~.) without age, male only) 0.89(0.85-0.94) 80.21 8361 73.84 153.01
mob(AFP|~) without age, male only) 086( 1-091) 79.14 81.74 73.77 169.15
mob(Kin|~.) without age, male only) 91(0.87-0.95) 88.23 8943 85.93 140.17
mob(AAT|~) with age, gender) 095(0 93-0.97) 87.50 90.38 8333 171.96
mob(GP73|~) with age, gender) 0.97(0.96-0.99) 90.90 9141 90.09 124.26
mob(AFP|~) with age, gender) 0.96(0.94-0.98) 87.87 89.93 84.76 159.88
mob(Kin|~.) with age, gender) 095(0 93-0.97) 89.01 88.23 9042 155.18
mob(AAT|~) without age, gender) 91(0.88-0.95) 85.98 88.13 82.69 197.87
mob(GP73|~) without age, gender) 094( 1-0.96) 85.33 92.36 78.06 177.11
mob(AFP|~) without age, gender) 0.92(0.89-0.95) 85.22 87.50 8173 19061
mob(Kin|~.) without age, gender) 0.92(0.88-0.95) 87.87 8848 86.86 192.78

1. Method utilized for analysis, stepPLR stepwise penalized logistic regression with or without age and/or gender, mob model-based CART, classification and
regression trees developed with or without age and/or gender; 2) AUC, area under the curve; 3) ACC, prediction accuracy. 4) PPV, Positive predicative value; 5)
NPV, negative predictive value; 6) AIC, Akaike Information Criterion

Table 2 Performance measures based on cross-validation (Multivariable Models)

Method (Model)' LOOCV AUC (95% Cl)* LOOCV AcC? 3CV AUC (95% CI)* 3CV ACC (SD)®
stepPLR (A = 0.1) (male only, with age) 0.95(0.93-0.98) 86.63 0.94(0.94-0.95) 86.03(4.78)
stepPLR (A = 1) (male only, with age) 0.95(0.93-0.98) 87.16 0.95(0.95-0.96) 87.12(4.31)
stepPLR (A = 10) (male only, with age) 0.94(0.92-0.97) 86.63 0.95(0.94-0.95) 87.49(4.31)
stepPLR (& = 0.1) (male only, without age) 0.90(0.86-0.94) 8035 0.90(0.89-0.90) 80.97(5.16)
stepPLR (A = 1) (male only, without age) 089(0 84-0.93) 81.28 0.89(0.89-0.90) 80.71(5.09)
stepPLR (A = 10) (male only, without age) 91(0.87-0.95) 83.96 0.91(0.90-0.91) 82.17(537)
stepPLR (A = 0.1) (gender, with age) 095(0 92-0.97) 88.25 0.95(0.94-0.95) 87.96(3.20)
stepPLR (A = 1) (gender, with age) 0.95(0.92-0.97) 88.25 0.95(0.94-0.95) 88.34(3.51)
stepPLR (A = 10) (gender, with age) 0.94(0.92-0.97) 88.25 0.95(0.94-0.95) 88.31(3.39)
stepPLR (A = 0.1) (gender, without age) 0.92(0.88-0.95) 84.84 0.92(0.91-0.92) 84.35(4.23)
stepPLR (A = 1) (gender, without age) 0.92(0.89-0.95) 84.84 0.92(0.92-0.92) 84.59(4.09)
stepPLR (& = 10) (gender, without age) 0.92(0.89-0.95) 8371 0.92(0.91-0.92) 83.72(4.29)
mob(AAT|~) with age, male only) 0.85(0.79-0.91) 8343 0.81(0.80-0.82) 76.23(5.71)
mob(GP73|~.) with age, male only) 0.88(0.82-0.93) 83.98 0.87(0.87-0.88) 80.77(4.99)
mob(AFP|~) with age, male only) 0.86(0.80-0.92) 81.22 0.87(0.87-0.88) 83.66(5.52)
mob(Kin|~.) with age, male only) 0.92(0.88-0.96) 86.19 0.86(0.85-0.86) 79.36(5.08)
mob(AAT|~.) without age, male only) 0.78(0.71-0.85) 7593 0.82(0.81-0.83) 75.33(5.15)
mob(GP73|~.) without age, male only) 0.83(0.76-0.89) 7647 0.86(0.85-0.86) 77.81(4.16)
mMob(AFP|~) without age, male only) 0.80(0.74-0.86) 7272 0.83(0.82-0.84) 76.54(5.42)
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Table 2 Performance measures based on cross-validation (Multivariable Models) (Continued)

mob(Kin|~.) without age, male only) 0.88(0.83-0.93) 85.03 0.86(0.85-0.87) 78.88(4.92)
mob(AAT|~) with age, gender) 0.87(0.83-0.92) 8257 086(0 78-0.94) 81.19(4.59)
mob(GP73|~.) with age, gender) 0.93(0.89-0.96) 87.50 91(0.90-0.91) 84.61(4.03)
mob(AFP|~) with age, gender) 0.90(0.86-0.94) 8333 089(0 88-0.89) 82.95(4.42)
mob(Kin|~) with age, gender) 0.89(0.85-0.93) 8333 0.89(0.88-0.89) 82.81(4.14)
mob(AAT|~) without age, gender) 0.84(0.79-0.89) 84.46 0.87(0.86-0.87) 80.93(3.71)
mob(GP73|~.) without age, gender) 0.91(0.87-0.94) 8333 0.89(0.88-0.89) 81.22(4.35)
mob(AFP|~) without age, gender) 0.87(0.82-0.91) 82.95 0.87(0.87-0.87) 80.60(3.73)
mob(Kin|~.) without age, gender) 0.88(0.84-0.92) 84.85 0.89(0.89-0.90) 83.05(3.97)

1. Method utilized for analysis, stepPLR stepwise penalized logistic regression with or without age and/or gender, mob model-based CART, classification and
regression trees developed with or without age and/or gender; 2) LOOCV AUC, leave one out cross validation area under the curve; 3) LOOCV ACC, leave one out
cross validation prediction accuracy; 4) 3CV AUC, three fold cross validation area under the curve; 5) 3CV ACC, three fold cross validation prediction accuracy.

showed a median increase of 4% (2.1%) across the four
models considered. When the stratified subset consisting
of only males was used in the analysis, this difference
increased to 5% (4.81%) and 5.5% (5.22%), respectively, for
stepPLR and mob (Table 1 Figures 1, 3). For this subset,
the mob model based on the biomarker AFP conditional

Table 3 Sensitivities and Specificities (Multivariable Models)

on the tree analysis using GP73, AAT, Kininogen and age,
after controlling for site, resulted in the maximum increase
of 10% in AUC and 10.36% in ACC due to the inclusion of
age (Table 1).

A considerable increase of 6% in AUC and 7.63%
in ACC were also noted due to the inclusion of age in the

Method (Model)’ Sensitivity (95% Cl) Sensitivity (Loocv)® Specificity (95% cn? Specificity (LOOCV)
stepPLR (A =0.1) (male only, with age) 89.92(85.69-95.80) 89.08 83.82(73.53-91.18) 8235
stepPLR (A =1) (male only, with age) 90.76(86.55-95.81) 89.92 86.76(77.94-94.12) 8235
stepPLR (A =10) (male only, with age) 90.75(86.56-95.81) 88.24 88.24(75.00-92.65) 83.82
stepPLR (A =0.1) (male only, without age) 84.87(79.83-90.76) 84.03 80.88(70.59-89.71) 7941
stepPLR (A =1) (male only, without age) 84.82(78.15-90.76) 83.19 83.82(75.00-92.65) 7794
stepPLR (L =10) (male only, without age) 84.03(78.15-91.60) 84.03 85.29(76.47-92.65) 83.82
stepPLR (A =0.1) (gender, with age) 89.94(84.91-94.39) 89.94 86.67(80.00-92.38) 83.81
stepPLR (A =1) (gender, with age) 90.57(86.16-94.94) 89.31 86.67(80.00-93.33) 86.66
stepPLR (A = 10) (gender, with age) 89.31(84.28-93.71) 88.68 88.57(81.90-94.29) 88.58
stepPLR (A =0.1) (gender, without age) 16(86.50-91.19) 84.91 84.76(77.14-91.43) 84.76
stepPLR (A = 1) (gender, without age) 85. 53(79 87-90.57) 84.90 85.71(80.00-93.33) 84.76
stepPLR (A = 10) (gender, without age) 84.27(79.87-90.57) 81.76 86.66(80.00-92.38) 86.66
mob(AAT|~) with age, male only) 90.43(79.36-95.63) 86.96 81.82(73.45-88.33) 7727
mob(GP73|~.) with age, male only) 88.69(77.51-94.61) 86.08 86.36(78.39-91.83) 80.30
MOb(AFP|~) with age, male only) 93.04(83.20-98.32) 84.34 83.33(75.41-89.75) 75.76
mob(Kin|~) with age, male only) 91.30(81.26-96.59) 86.96 78.79(67.71-83.92) 84.85
mob(AAT|~) without age, male only) 88.23(82.35-93.28) 7815 77.94(67.65-86.76) 72.06
mob(GP73|~.) without age, male only) 85.71(79.83-92.44) 81.51 70.59(60.29-80.88) 67.64
mob(AFP|~) without age, male only) 86.55(80.67-92.44) 79.83 66.17(54.41-76.47) 60.29
mob(Kin|~.) without age, male only) 92.43(87.39-96.64) 90.75 80.88(70.59-89.71) 75.00
mob(AAT|~) with age, gender) 89.33(84.28-93.71) 86.16 85.71(79.05-92.38) 77.14
mob(GP73|~.) with age, gender) 94. 97(91 82-98.11) 9245 86.68(80.00-92.38) 80.00
mob(AFP|~) with age, gender) 19(86.75-94.97) 88.05 83.81(76.19-90.48) 76.19
mob(Kin|~.) with age, gender) 94. 39(90 54-97.48) 89.30 80.95(73.33-80.95) 74.28
mob(AAT|~) without age, gender) 88.67(84.28-93.71) 8742 81.90(74.29-88.57) 80.00
mob(GP73|~.) without age, gender) 83.64(77.36-89.31) 8239 89.52(83.81-95.24) 84.76
mob(AFP|~) without age, gender) 88.05(83.65-93.08) 87.42 80.95(73.33-88.65) 76.19
mob(Kin|~.) without age, gender) 91.82(88.05-96.45) 89.93 81.90(75.24-88.60) 7714

1. Method utilized for analysis, stepPLR stepwise penalized logistic regression with or without age and/or gender, mob model-based CART, classification and
regression trees developed with or without age and/or gender; 2) optimal sensitivity and 95% Confidence interval; 3) Optimal sensitivity following leave one out
cross validation; 4) Optimal specificity; 5) Optimal specificity following leave one out cross validation.
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Figure 1 ROC curves based on multivariable stepwise penalized logistic regression models (stepPLR) using the stratified male-only
subset. The age-adjusted final model for A = 0.1 showed the best performance in terms of AUC. A clear distinction is seen in the ROC curves
for age-adjusted models compared to age-unadjusted models. Age-adjusted models demonstrated superior performance overall across all
choices of A. See Table 1 for detailed results and the text for discussion of these results.

mob model for GP73 conditional on the tree analysis using
AFP, AAT, Kininogen and age, after controlling for site. In
addition, this model resulted in the maximum increase of
4% in AUC and 5.57% in ACC when controlled for gender
effect, among all methods and models considered. These
are significant improvements over our previous findings in
which all three multivariable methods used (LR, PLR and
CART) showed improvements in AUC and ACC in excess
of 4% for this data, with PLR (A = 1) showing the best
overall increase in ACC of only about 5% [26]. Consistent
with our recent findings [26], a marked improvement was
observed in the predictive performance of each method
based on this stratified dataset independent of whether age
is included in the model. The inclusion of age, however,
resulted in the best predictive model across all combina-
tions of methods and models considered (Table 1). In
addition, the inclusion of age resulted in a substantial
decrease in Akaike Information Criterion (AIC) for
stepPLR (across all choices of A) and mob (across all

models considered) both for the stratified male only data-
set and when gender differences are accounted for in the
model (Table 1). This finding underscores the significant
role played by the variable age in model selection and in
the predictive performance of the final model.
Furthermore, PPV and NPV capture other critical
aspects of the performance of a model. For our application,
PPV represents the proportion of patients correctly pre-
dicted to have HCC while NPV represents the proportion
of patients correctly predicted to have cirrhosis. A high
PPV means that the model only rarely classifies a HCC
patient as having cirrhosis, and is therefore a desirable
characteristic in a model. Table 1 lists the best performing
models and methods in terms of PPV and NPV. Models
that adjusted for age effect generally showed a higher med-
ian PPV or NPV compared to those that did not (across all
choices of L and models considered), a result consistent
with our previous findings [26]. A significantly higher
increase in NPV was observed in models adjusting for age,
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Figure 2 ROC curves based on multivariable stepwise penalized logistic regression models (stepPLR) adjusting for gender effect. Models
that are also adjusted for age effect outperformed those that did not control for age, across all choices of the parameter L. The age-adjusted final
model for L = 0.1 showed the best performance in terms of AUC. See Table 1 for detailed results and the text for discussion of these results.

compared to PPV, using both methods (median increase
of 4.75% and 8.29% for stepPLR, and 3.3% and 5.78% for
mob, respectively, when adjusted for gender effect and in
the stratified male-only subset). For the stratified male
only subset, mob improved PPV by 5.22% with the inclu-
sion of age. The mob model based on AFP conditional on
the tree analysis using GP73, AAT, Kininogen and age,
after controlling for site, resulted in the maximum
improvement in PPV of 8.93% and in NPV of 13.53% due
to the inclusion of age for this subset. These compare with
maximum increases of 3.57% for PPV (LR and PLR, A =
0.1) and 9% for NPV (PLR, A = 10) from our previous
study [26]. When gender effect was adjusted for, the above
mob model also showed the maximum increase in PPV
(2.43%) due to the inclusion of age. On the other hand,
stepPLR (A = 10) resulted in the maximum increase in
NPV of 6.1% compared to the 4.7% maximum increase
achieved by PLR (A = 10) in our previous study [26]. The
highest PPV (93.1%) was achieved for the stratified
male only data by stepPLR (A = 10) across both methods

and all models considered, also an improvement over the
maximum 91.96% achieved in our previous study [26].

In terms of model-based sensitivity and specificity, both
stepPLR and mob produced an improvement due to the
inclusion of age in stratified male only data. stepPLR
showed the highest overall increase in sensitivity (median
increase of 5.94% across choices of A) while mob showed
the highest overall increase in specificity (median increase
of 9.83% across all models considered). Once again, the
mob model based on the biomarker AFP resulted in the
maximum improvement in both sensitivity (6.49%) and
specificity (17.16%) due to the inclusion of age for this
subset. In comparison, LR and PLR (A = 10) produced the
greatest improvement (of over 6% each) in our previous
study [26]. Model-based and cross-validation based sensi-
tivities and specificities are displayed in Table 3. When
gender effect was adjusted for in the model, a more sensi-
tive model (increase of 5.04%) was afforded by stepPLR
(A = 1,10) while mob provided a more specific (increase of
3.81%) model due to the inclusion of age (Table 1).



Wang et al. BMC Medical Genomics 2013, 6(Suppl 3):S9
http://www.biomedcentral.com/1755-8794/6/53/S9

Page 9 of 14

N
Males only, with and without age
e
«©
=)
© |
=)
g —— with age,AAT
:g ---- without age,AAT 1
S — with age,GP73 X
nooo ---- without age,GP73 g
o —— with age,AFP (Y
---- without age,AFP e
with age,Kiningen "
without age,Kininogen !
o .
o .
o _ A
o
T I T T I T
0.0 0.2 04 0.6 0.8 1.0
1-specificity
Figure 3 ROC curves based on multivariable model-based CART analyses (mob) using the stratified male-only subset. Age-adjusted
models demonstrated superior performance in terms of AUC. A clear distinction is seen in the ROC curves for age-adjusted models (solid lines)
compared to age-unadjusted models (dotted lines). See Table 1 for detailed results and the text for discussion of these results.

Predictive performance of multivariable models using
cross-validation

While model based metrics such as AUC, ACC, PPV and
NPV provide a measure of the predictive performance of
a model, equivalent versions of these quantities based on
cross-validation are based on blinded, independent data-
sets and therefore provide the true predictive perfor-
mance of the model. Table 2 presents the AUC (with
95% CI) and ACC for each model and method used
based on LOOCYV and 3CV. A considerable improvement
in AUC was observed in models that included age across
both methods for the stratified male only data. The median
value of this increase was 5.5% for AUC based on LOOCV
and 4% for AUC based on 3CV. When gender is accounted
for in the model, the inclusion of age also results in an
improvement in AUC of 3% for stepPLR (median value
across choices of A, based on both LOOCYV and 3CV) and
a 2.5% increase for mob. In terms of prediction accuracy,
a significant improvement in ACC was observed in models

that included age for both stepPLR and mob for the strati-
fied male only data. For stepPLR, the median value of this
increase was around 5.88% for ACC based on LOOCYV and
around 5.32% for ACC based on 3CV. For mob, the med-
ian value of this increase was around 7.51% for ACC based
on LOOCYV and around 1.93% for ACC based on 3CV.
The mob model based on AFP conditional on the tree ana-
lysis using GP73, AAT, Kininogen and age, after control-
ling for site showed increases of 8.5% and 7.12% in ACC
based on LOOCYV and 3CV, respectively. When gender
effect was accounted for in the model, the inclusion of age
also resulted in improvements of 3.41% and 3.75% for
stepPLR (median value across choices of A) based on
LOOCYV and 3CV, respectively. On the other hand, the
performance of mob was observed to vary between models
and cross-validation methods. These results show an over-
all improvement in the predictive performance of models
based on stepPLR and mob over our previous findings
based on multivariable LR, PLR and CART [26].
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Figure 4 ROC curves based on multivariable model-based CART analyses (mob) incorporating gender and/or age. Age-adjusted models
demonstrated superior performance in terms of AUC when gender effect is accounted for in each model. A clear distinction is seen in the ROC
curves for age-adjusted models (solid lines) compared to age-unadjusted models (dotted lines). Table 1 lists the performance measures for these
models. A detailed discussion of the results is provided in the text.
J

Interpretation of model-based CART (mob) results
Multivariable model-based CART (m0b) analyses revealed
several different and interesting aspects of the data that
more traditional methods such as multivariable LR and
PLR are not capable of exposing. To a lesser extent, meth-
ods like stepPLR and CART (ctree) also suffer from this
issue. Four different statistical models, one for each bio-
marker conditional on the tree analysis based on the
remaining biomarkers, age and/or gender (controlling for
site) were considered in this analysis. As noted earlier,
mob combines a parametric approach based on general-
ized linear models with CART. In this case, the outcome
variable is binary, i.e., whether a patient has HCC or not,
and hence the parametric method of choice is logistic
regression.

The model based on the biomarker GP73 conditional
on the tree analysis using AFP, AAT, Kininogen and age,
after controlling for site, showed excellent performance
in terms of cross-validated measures, particularly when

gender effect was also included (Table 2). This model
also showed a substantial improvement in AUC and
ACC due to the inclusion of age. First, we will use
this model to illustrate mob results. Figures 5 and 6
graphically represent the results for this model when
controlling for gender effect and for the stratified male
only subset, respectively. When gender effect is con-
trolled for in the model it is evident (from Figure 5) that
age alone, independent of other biomarkers, plays a sig-
nificant role in the incidence of HCC (p <0.001) (n = 75
patients corresponding to node pair (1,9) in Figure 5).
Older patients (>61) are at an increased risk of HCC inci-
dence. Among those aged 61 or younger, higher level of
AFP (>1.48) is significantly associated with increased
incidence of HCC (p = 0.017) irrespective of GP73 level
(n = 66 patients corresponding to node pairs (1,2), (2,6)
and (6,8)). The subgroup of 20 patients aged 61 or lower
whose AFP level lies in the range (1.29,1.48] represents
varying incidence of HCC depending on GP73 level.
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Figure 5 Model-based CART analysis based on the biomarker GP73 conditional on the tree analysis using AFP, AAT, Kininogen and
age, after controlling for site, for the complete data set. Variables that appear in the tree were involved in a statistically significant split
(based on p-value < 0.05). Any two (or more) bins that appear at the bottom child nodes in this tree sharing the same mother node represent
disjoint sub-groups of patients identified by this method to be (statistically) significantly different. The sub-groups are defined by the respective
cut-points for biomarker levels and age. For example, when gender effect is controlled for in the model it is evident that age alone,
independent of other biomarkers, plays a significant role in the incidence of HCC (p < 0.001). The node pair (1,9) represents the sub-group of
75 patients older than 61 years that have a significantly higher incidence of HCC compared to younger patients. It provides a unique, visual
representation of complex interactions between biomarkers, age and gender though gender is not found to be statistically significant in any of
the interactions. In addition, this approach identifies potential cut-points for biomarker levels that are significantly associated with the incidence

Finally, younger patients with lower levels of AFP (age <=
61, AFP <= 1.29) represent a subgroup whose HCC inci-
dence significantly increases with higher GP73 and Kini-
nogen levels (GP73>4.035 and Kininogen>1.8).

For the stratified male only subset it is evident (from
Figure 6) that age alone, independent of other biomarkers,
plays a significant role in the incidence of HCC (p < 0.001)
(n = 29 men corresponding to node pair (1,5) in Figure 6).
Older men (>65) are at an increased risk of HCC inci-
dence. Among those aged 65 or younger, higher level of
AFP (>1.48) is significantly associated with increased inci-
dence of HCC (p = 0.001) irrespective of GP73 level (n =
59 men corresponding to node pairs (1,2) and (2,4)). Even
among younger men with lower levels of AFP (age <= 65,
AFP <= 1.48), the incidence of HCC increases with higher
GP73 levels (n =93 corresponding to node pair (2,3)) as
indicated by the increasing red curve.

In terms of overall and consistent improvement in
performance (evaluated by the various measures) due to
the inclusion of age, the mob model based on AFP con-
ditional on the tree analysis using GP73, AAT, Kinino-
gen and age (after controlling for site) is the best
performer for this subset. Figure 7 graphically illustrates
this model. Once again, age alone plays a significant role
in the incidence of HCC (p < 0.001) (# = 42 men corre-
sponding to node pair (1,7) in Figure 7). Older men
(>61) are at an increased risk of HCC incidence. This is
consistent with the finding based on the gender-adjusted
model shown in Figure 5. For men 61 years of age or
younger, a higher level of GP73 (>6.3) is significantly
associated with increased HCC incidence (p < 0.001)
independent of AFP and AAT levels (n = 49 men corre-
sponding to node pair (2,6) in Figure 7). However, men
with a lower GP73 (<= 6.3) and higher Kininogen (>1.55)
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Figure 6 Model-based CART analysis based on the biomarker GP73 conditional on the tree analysis using AFP, AAT, Kininogen and
age, after controlling for site, for the stratified male-only subset. For this subset, age alone, independent of other biomarkers, plays a
significant role in the incidence of HCC (p < 0.001). The node pair (1,5) represents the sub-group of 29 men aged >65 that have a significantly
higher incidence of HCC. The node pairs (1,2) and (2,4) represent the sub-group of 59 men aged 65 or younger for whom a higher AFP level
(>1.48) is significantly associated with increased incidence of HCC (p = 0.001) irrespective of GP73 level. A detailed interpretation of this tree is

provided in the text.

levels in this subgroup have an increased incidence of
HCC with higher levels of AFP (n = 30 men correspond-
ing to node pairs (2,3) and (3,5) in Figure 7). This is indi-
cated by the steep increasing red line below node 5 in
Figure 7.

Conclusions

HCC, like many cancers, is characterized by a large
degree of heterogeneity. This makes the detection of can-
cer by serum biomarkers difficult, which results in late
detection and poor outcome. With the large degree of
genetic heterogeneity, it is generally assumed that no sin-
gle serum biomarker will be able to detect all cases of
HCC. Currently, serum levels of AFP are used in combi-
nation with several imaging methodologies to identify
HCC. However, the clinical usefulness of AFP is limited
by the poor sensitivity of this marker. That is, AFP is ele-
vated in only 60-70% of individuals with HCC. It is
important to note that genetically, AFP negative cancers
are thought to be fundamentally different than AFP posi-
tive tumors. Thus, the detection of serum AFP is useful
in the detection of a specific type of HCC. However, it is

assumed that multiple markers will be required for the
detection of all cases of HCC.

In this paper, we demonstrated the usefulness of incor-
porating multiple biomarkers and relevant clinical vari-
ables into a statistical model for predicting the incidence
of HCC. We built on the foundation provided by our
recent work [26] and investigated the predictive perfor-
mance of two different yet related methods, namely
stepPLR and mob, in distinguishing HCC patients from
cirrhotic patients. These two methods are improvisations
of PLR and CART discussed in our previous study, the
former incorporating stepwise model selection in PLR and
the latter incorporating a model-based approach to CART.
Both these approaches provided significantly improved
results not only compared to the use of single and multi-
ple biomarkers (univariate and multivariable LR) but also
compared to those based on their counterparts, PLR and
CART. A novel aspect of our previous approach was the
application of CART for analyzing and interpreting bio-
marker data for HCC. This non-parametric approach is a
useful alternative to traditional parametric methods like
LR and PLR that automatically incorporates interactions
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Figure 7 Model-based CART analysis based on the biomarker AFP conditional on the tree analysis using GP73, AAT, Kininogen and
age, after controlling for site, for the stratified male-only subset. Once again, age alone plays a significant role in the incidence of HCC

(p < 0.001). The node pair (1,7) represents the sub-group of 42 men aged >61 that have a significantly higher incidence of HCC. This is
consistent with the finding based on the gender-adjusted model shown in Figure 5. For men 61 years of age or younger, a higher level of GP73
(>6.3) is significantly associated with increased HCC incidence (p < 0.001) independent of AFP and AAT levels. The node pair (2,6) represents this
sub-group of 49 men. A detailed interpretation of this tree is provided in the text.

Age
p <0001

>

!

MNode 6{n =49)

MNode 7 (n=42)

0 12 19 55 1] 08 12 18 55

between multiple biomarkers and/or clinical variables. The
extension of this approach using mob in this paper bor-
rows strength from the binary recursive partitioning
approach in CART as well as the parametric approach in
traditional multivariable LR and is based on generalized
linear models. This is reflected in the significantly
improved predictive performance of this method relative
to those based on PLR and CART presented in our recent
study [26]. This flexible modeling approach provided
potentially useful cut-offs for biomarkers and clinical vari-
ables alike that indicated a statistically significant associa-
tion with increased HCC incidence in an interpretable and
systematic manner. The two methods outlined in this
paper can be seen as complementary to PLR and CART
and it sets the stage for further evaluation and validation
of the clinical significance of these results in future, larger
studies. An important finding in this study, as in our pre-
vious study, is the marked improvement in predictive per-
formance due to the inclusion of clinical factors such as
age and gender. This improvement was seen to be inde-
pendent of the method used in the analysis. The inclusion
of other clinical factors such as Alanine transaminase

(ALT), Aspartate transaminase (AST) and Alkaline phos-
phatase (ALK) levels may be able to increase performance
even further. This is currently under investigation.
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HCC: hepatocellular carcinoma; HBV: hepatitis B virus; HCV: hepatitis C virus;
AFP: alpha-fetoprotein; AFP-L3: core fucosylated glycoform of AFP; GP73:
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AST: Aspartate transaminase; ALK: Alkaline phosphatase; LR: logistic
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