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Abstract
The neutral theory of molecular evolution (Kimura 1985) is the basis for most current statistical
tests for detecting selection, mainly using polymorphism data within species, divergence data
between species, and/or genomic structures like linkage disequilibrium (Wang et al. 2006). In
most cases informative tests can only be constructed with ample variations within these
parameters and many common tests are difficult to formulate when identity-by-descent is not
clear, for example in gene families or repetitive elements. With the current progress being made
toward whole-genome sequencing and re-sequencing efforts, as well as protein sequencing via
tandem mass spectrometry where genomic sequencing is lacking, we felt it was necessary to re-
visit possible methods for rapid screening and detection of evolutionary outliers. These outliers
might be of interest for other research, such as candidate gene association studies or genome
annotations, drug- and disease-target searches, and functional studies. We focused on methods that
would work on both protein and nucleotide data, could be used on large gene or protein domain
families, and could be generated quickly in order for “first pass” annotation of large scale data.
For these reasons, we chose properties of trees generated routinely in molecular phylogenetic
studies; genetic distance, tree shape and balance, and internal node statistics (Heard 1992). Our
current research looking at protein domain family data and phylogenetic trees from PFAM (Finn
et al. 2008) suggests this approach towards detecting evolutionary outliers is feasible, but
additional work will be necessary to determine the parameters that suggest either positive or
negative selection is occurring in specific gene families. This is particularly true when other
factors such as rapid duplication and deletion of genes containing these domains is taking place,
and we suggest phylogenetic statistics may be useful in combination with existing methodologies
for detailed studies of gene family data.
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Background
As different gene regions have different functional significance, different modes of
evolution will simultaneously occur within the same gene, which makes positive selection
very difficult to detect at the whole gene level. Thus to be able to detect positive selection
more effectively, we need to divide genes into functionally independent segments. Protein
domains are natural candidate for this kind of analysis: they are functionally important, they
are distributed across different genes, and domains of specific functionality are widely
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believed to have a common evolutionary origin (Sleator 2010). In addition, they are widely
seen as evolutionarily conservative, and multiple mutations at the same locus are less likely
which makes selective inference more reliable; that is to say, point mutations are likely to
have shared evolutionary origins(Tokuriki and Tawfik 2009). We hypothesized that the
positively selected members in the domain families will display altered phylogenetic
patterns compared with other members. It is this pattern, in part, which we will utilize for
the detection of outliers and the development of rapid, large-scale annotation methods.
There have been continuous studies in phylogenetic tree shape in the areas of
macroevolution and biogeography (Gould et al. 1977; Raup et al. 1973; Rosen 1978; Schopf
1979; Simberloff 1987), but the employment of phylogenetic trees as a primary mechanism
for detecting positive selection at molecular level requires further development(Delport et al.
2009). While many methodologies utilize phylogenetics to develop and help test models of
selection, such as relative rates tests (Ricklefs 2007) and models using Bayesian parameters
(Huelsenbeck et al. 2008), we decided to examine tree topology as a method for the
statistical detection of positive selection. There were three primary rationales behind this
approach. First, this approach differs from many others in that it can be performed using
solely protein data, and this type of information is becoming more common as researchers
utilize procedures such as tandem mass spectrometry to obtain protein sequences from
divergent organisms with no genomic sequences available. Secondly, this approach differs
from many others in that it can work on any tree regardless of how that tree was constructed.
We are attempting to construct a model that allows for the analysis of selection looking at
tree shape; while this in practice will differ depending upon the methodology used to
construct a tree, in principle the test should be simple enough to utilize on multiple trees
allowing for its application to a large number of possible phylogenies constructed from a set
of data. Lastly, we believed this format of analysis is under-represented within the literature
(for example see (San Mauro and Agorreta 2010) for a review), and therefore study is
warranted to determine the feasibility of the method. The overall goal is to develop a rapid
methodology for first-pass analysis of large-scale genome data where repetitive elements,
duplicated genes, and protein domains are present in abundance. We focus on distance, tree
balance, and internal node statistics as the phylogenetic parameters for our first analysis into
the feasibility of developing this test for the detection of evolutionary outliers, and examine
data and phylogenies available from PFAM (Finn et al. 2008).

Methodology and outcomes
Protein distance

The amount of variation of amino acids in a protein sequence is determined by the intensity
of purifying selection or functional constraint, which is determined in part by the degree of
the intolerance of the site toward mutations. This defines the range of amino acids that are
acceptable without influencing the carrier's fitness. Under the assumption that all the
members of a domain family originated from a common ancestor by gene duplication
(Aravind et al. 2006; Breitling and Gerber 2000; Hughes 2005; Orgel 1977; Schmidt and
Davies 2007; Van de Peer et al. 2001), under neutral evolution all the domain family
members should be under the same functional constraint. Thus, substitutions of amino acids
between members should be purely by chance (Guo et al. 2004), and the pairwise distances
between family members are expected to follow a normal distribution (Lehmann and Casella
1998) given observed distributions of protein members within a family (Harrison and
Gerstein 2002) and assuming that duplication within a protein family is more common than
removal of a copy from a protein family or pseudogene formation(Harrison and Gerstein
2002). This seems a likely result over a protein family, and possibly within specific
eukaryote genomes (Gu et al. 2002; Rubin et al. 2000). Even if some family members have
such a large divergence of function that change the functional constraint of some members,
the normal distribution should still be approximately followed considering the stochastic
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nature of these types of events (Gu 1999; Shakhnovich and Koonin 2006), and evidence for
this exists in empirical observations of protein evolution and protein family evolution
(Colless 1995; Huang and Peng 2005; Kishino et al. 1990).

We examined the distribution of five random protein families extracted from PFAM
database (Finn et al. 2008) utilizing the Shapiro–Wilk test (Shapiro and Wilk 1965), in order
to see if a normal distribution was common among large protein domain families. The test
statistic is described as the following:

where x(i) is the ith order statistic;  is the sample mean; the constant ai
is defined as

where m = (m1, …, mn)T, and m1, …, mn are the expected values of the order statistics of
random variables, which are from independent and identical standard normal distributions,
and V is the variance–covariance matrix of the order statistics. A sufficiently small W can be
used to reject the null hypothesis of the data following a normal distribution.

This test is applied with the all the possible pair-wise distances of the members of five
random protein families with family size larger than 25, and the results are listed in Table 1.

The P-values for all the tests are highly significant and thus the null hypothesis can be
rejected with high confidence. The conclusion is that a noticeable proportion of protein
members within families are not under our null model of evolution, where drift is a
predominant mode of evolution, and negative selection is presumed to be common within
families based on the high deviation from the expected normal distribution.

Based on these results from random five gene families, we further hypothesized that a
significant portion of gene families among the present known gene families are evolving
under large amounts of selection, both positive and negative. This hypothesis can be tested
simply using the central limit theory in statistics (Lehmann and Casella 1998). The theory
states that given a distribution with a mean μ and variance σ2, the sampling distribution of
the mean approaches a normal distribution with a mean (μ) and a variance σ2/N as N, the
sample size, increases. The generality of the theory is that regardless of the original
distribution, the sampling distribution of the mean approaches a normal distribution.
Furthermore, most distributions will quickly converge to a normal distribution as N
increases. This theory can be used to model the family distances under the assumption that
the gene families are independent and they are under neutral evolution; that is predominantly
evolving as a result of drift and negative selection. Under neutral evolution, the average
family distance for each family should be mainly determined by the mutation rate. Although
there should be some heterogeneity in mutation rates of different gene families, considering
the random nature of the sampling and random nature of the mutations, the distribution of
the average family distances should not be significantly deviated from normal distribution,
or at least the distribution should be symmetric if not in complete normal distribution (again,
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because of the assertions of the central limit theory). We examined this hypothesis with 100
protein domain families extracted from the PFAM database. The members in human genes
were extracted and aligned with the pileup program in GCG package (GCG 1999), and the
distances between each pair of sequences were calculated with the distances program

(corrected for multiple hits). Thus for a family with n members of human genes, 
distances (D's) will be generated. We sampled 100 protein families with at least 25 members
of human genes and calculated the pair-wise distances for human members in each family i
(i = 1…100), and for each family we calculated the average distance with the following
formula:

If the changes are completely random, it is expected that the  will be following a normal
distribution according to the central limit theory. We obtained a distribution as shown in Fig.
1.

The normality of the distribution was tested with four different statistics (Table 2) and a
Quantile–Quantile (Q–Q) plot (Fig. 2). The normality of the distribution of the average
family distances is significantly rejected by all of the various statistical tests. Two
interesting parameters about the distribution are kurtosis and skewness. Skewness is a
measure of symmetry, or more precisely, the lack of symmetry. Kurtosis is a measure of
whether the data are peaked or flat relative to a normal distribution, thus it is also an
indicator of the variability of the data comparing to that of a normal distribution. The
kurtosis and skewness of the distribution are 0.84 and 0.99, respectively. Both the kurtosis
and skewness for a standard normal distribution are 0. Thus the distribution has a larger
skewness and kurtosis for this sample size than that of a normal distribution.

Based on the above statistical results, we can infer that many gene families have highly
deviated average family distances, thus disrupting the normal distribution expected if drift
predominates. A positive skewness means the right tail is longer; the mass of the distribution
is concentrated on the left of the distribution. Thus more members than expected have larger
average family distances, and this is a sign that some domain families are evolving under the
effects of positive selection, as positive selection is a promising systematic candidate to
diverge family members from each other thus increase the average family distances. Higher
kurtosis indicates more than expected variance is due to infrequent, extreme deviations. This
is also an indicator of the occurrences of the extreme deviations. Thus by combining these
two parameters, we can predict that the members in the right tail of the normal distribution
have a higher probability of being under positive selection than those on the left tail of the
distribution or in the central mass of the distribution, and thus may be more functionally
important gene families.

It is worth noting that this initial assumption is subject to a number of different caveats, and
we are not, in this present study, attempting to assert that positive selection is the only factor
that could cause right-skewing of the distribution. If mutation rates do not remain consistent
across a protein domain family, this could cause the distribution to become skewed (in either
direction, depending upon the nature of the mutation rate changes). While it is beyond the
scope of the present work, we argue that numerous rate tests (Kreitman 1996; Zeng et al.
1998) and maximum likelihood analysis (Yang 1997) could determine if underlying
mutation rates are likely to be consistent across a specific protein family. Thus, we could
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utilize a combination of approaches to determine if positive- or negative-selection were
indeed a likely candidate for causing a particular domain family to be skewed relative to the
observed distribution of families. It is also true that specific changes in function among the
members of a particular lineage in a protein family could also cause skew; that is, if some
members of a domain family underwent neo-functionalization, this may cause them to
diverge more rapidly away from other members within that family. While this is a fair
criticism of our ability specifically to detect positive selection among right-skewed families,
we believe it shows the potential utility of this approach toward finding gene families for
further study. Functional shifts among lineages in domain families may not be the result of
positive selection, but the effects may be adaptive and therefore detection of such events
would be a good outcome for the test application.

Internal node calculation
The nodes in a phylogenetic tree normally represent speciation events (Graur and Li 2000).
In the phylogenetic tree of gene families, the nodes can be regarded as duplication events.
We can consider each of these internal nodes on the tree of an extant protein domain family
to be a duplication event that persisted, and therefore a tree with more nodes has had more
duplication events. In addition, if the newly generated members have not been under
selection because of the functional needs of the organism in which they arise, they will
survive randomly in the genome. We were interested in determining if we could utilize the
average number of nodes between two members of a phylogenetic tree representing a gene
family as a proxy for the degree of divergence between those family members.

One of the commonly used distributions in statistics to model the number of events
occurring in a fixed period of time is the Poisson distribution. This holds assuming these
events occur with a known average rate, and are independent of the time since the last event
(Good 1986). Under a null model of evolution where drift predominates, the number of
duplication events should be modeled satisfactorily with this distribution.

To examine the distribution of nodes, we looked at 100 gene families as above. The
counting of internal nodes for each extant family member was performed with a Perl script
which is available upon request. Fit to a Poisson distribution was checked for the 100 gene
families by comparing the equality of mean and variance, and none of the families followed
a Poisson distribution. This suggests that selection is acting on the birth and death of internal
nodes. When only the stochastic property of the duplication events was considered, we can
expect the number of internal nodes each extant family member traverses to follow a normal
distribution. Again, the test results show that the internal node numbers are not in normal
distribution for the 100 different domain families.

Although there is no existing distribution to model the internal nodes of each family
member, we can hypothesize that the distance between any two family members are not
independent with the number of nodes between them based on the generality of the neutral
evolution. This hypothesis was tested by correlation analysis and regression analysis
between the distance as independent variable and in-between node number as regressor for
five families. The results are shown in Table 3.

For all of the five gene families, we find a significant dependency between the number of
intervening nodes and the genetic distance for a pair of members in the same family. With
these empirical results, we can utilize the number of nodes on the path from one member of
the family to the root as a proxy for the relative age of the family member. To put this more
succinctly, a larger number of internal nodes indicates a younger family member, as more
duplication events are posited. Although the calculation of protein distances has taken the
effects of multiple substitutions into consideration, we analyzed the relationship between
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recent amino acid changes and the age of the members to make the result more reliable. We
randomly chose five hundred members from the C2H2 zinc finger gene family, and
analyzed these domains for this purpose. Zinc finger proteins were chosen as this is a large
family, pervasive in most eukaryote genomes, with numerous functions and a high degree of
conservation (Berg 1990; Laity et al. 2001). The node numbers were plotted against the
amino acid changes at the terminal branch for each of the 500 hundred members (Fig. 3).

We were interested in determining if we can utilize the internal node number within a tree as
a gauge for determining how much amino acid change we would expect to see among
members of the gene family. We defined the members with internal node number equal or
larger than 15 as “young” members, between 8 and 14 as “middle aged”, and with node
numbers of equal or smaller than 7 as “old”. There are no significant location differences for
middle-aged members. Middle-aged family members have larger variances of amino acid
changes than the young or old members; that is, young and old members are more
homogenous relative to each other than are median members.

Utilizing this information, we can consider node number as a potential variable when trying
to determine which specific members of a gene or protein domain family are worthwhile to
analyze from a functional standpoint. That is, we can perhaps utilize this type of information
to direct bench work at proteins or genes that are more likely to have divergent or preserved
functions relative to the entire collection of members within that family. We can allow
middle-aged members to serve as a “ruler” for the amount of variability or functional
constraint among members of a specific family, taking the average of the “middle aged”
members as a guide. Young members with a significantly larger number of amino acid
changes than this “median” value, or old members with significantly smaller number of
amino acid changes compared to this median value are more likely to be functionally
important; that is, to have more divergent function compared to the mass of the gene family.
We propose that this pattern may allow for the identification of gene or protein domain
families that have functions worth investigating at the bench. However, this tool has
relatively little power, as it is not able to detect interesting members of the family that are
“middle aged”. We are undertaking a more thorough analysis of gene families at this time to
refine the statistical methodology necessary to define proteins that have aberrant divergence
patterns within protein and gene family phylogenies. Ultimately, the goal is to have a short-
hand test that could quickly direct interest towards proteins in a phylogeny that might be of
specific functional interest in evolutionary studies, as well as in functional studies and as the
focus of drug- or disease-specific studies.

Tree balance
Phylogenetic tree shapes of protein families are dictated by relative rates of duplication and
subsequent removal from the genome (Colless 1995). Numerous theories concerning tree
shapes for the analysis of morphological data have been proposed (Heard 1992; Heard and
Cox 2007; Heard and Mooers 1996), but less attention has been paid specifically to tree
shape within molecular studies (Aldous 2001) with some notable exceptions (Blum and
Francois 2006). Here we are interested in the extent of symmetry or balance of trees, as they
are reflections of evolutionary events and, more importantly, they are quantifiable. The
equal rates Markov (ERM) model has been regarded as a simple yet valid null model (Yule
1924), under which diversification rates are equal for all lineages within an evolving clade,
but random errors in observed diversification rates can deviate the actual tree shape from
perfect balance (Chan and Moore 2002; Chan and Moore 2005; Mooers and Heard 1997).
There have been numerous empirical studies of morphological data to suggest that real
diversification rates are not equal, with some groups significantly more diverse than others,
and intensive studies have been performed to identify causes for high and low diversity in
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particular clades (Colless 1995; Heard 1992; Heard and Mooers 1996; Huelsenbeck and
Kirkpatrick 1996; Mooers et al. 1995).

In this study, we apply the analytic methodologies of tree balance of morphological data to
protein data for distance trees generated utilizing PFAM data and available from
PFAM(Finn et al. 2008). The equal rates Markov (ERM) model is essentially the prediction
of the tree shape under neutrality (Heard 1992; Kimura 1985). If the duplication events of
family members are purely random and there are no selective effects, the tree shapes of gene
families are only affected by stochastic factors. Thus under a neutral model we can expect
that most of the trees should be approximately symmetric. If some family members have
been positively selected, the rapid evolution rates may change their expected positions in a
tree and thus disrupt the balance of the trees. Here we adopted Colless's index of
phylogenetic tree imbalance (Colless 1995) to quantify cluster skewness (Heard 1992), and
the index ranges from zero, for a perfectly balanced phylogeny (Fig. 4a), to one for a
perfectly imbalanced phylogeny (Fig. 4b)(Heard and Cox 2007). In our context, the IC is the
standardized sum of differences in member counts between any two groups of protein
domains defined by each internal node:

In the formula, n is the number of family members in a domain family, and the right and left
branches at a node constitute subfamilies of SR and SL. Many other measures of diversity
skewness are also proposed, but Ic has been regarded as among the efficient ones. (Agapow
and Purvis 2002; Blum and Francois 2005).

The imbalance levels of 25 protein families are calculated with the above formula and listed
in Table 4 along with the family size and the median of the pair-wise member distances. The
mean of the family Ic's is 0.38344, which is an indication that most of the trees are not
severely imbalanced by other systematic forces like positive selection. The P-value of the
Shapiro–Wilk normality test is 0.7655, thus we may consider the Ic's are normally
distributed. With an underlying distribution, we are able to detect the outliers that are
located in the right tail of the distribution. However, the caveats for this univariate pattern
are be: (a) the tree we are checking might not a complete tree, all the members of gene
families are found by essentially computational methods, thus they may omit false negatives
and include false positives and distort the tree shape; (b) different families have different
sizes, thus the Ic's from different families have different reliabilities as the stochastic effects
can have a larger influence on a small family than large family, for example a small family
can have a large Ic's solely because of randomness. The first situation can be improved by
the more accurate genomic sequence data and more powerful computational algorithms. The
reliabilities of the Ic's can be measured by the sample size.

If the tree shape is only determined by the stochastic effects (Gould et al. 1977), we can
expect that larger families should have smaller Ic's as increasing sample size is always the
effective measure to decrease sampling errors (Lehmann and Casella 1998). We tested this
hypothesis by regression and correlation analysis. The normality assumption of the
independent variables is satisfied by the reciprocal transformation of the original family size.
The normality of the new data was confirmed by the Shapiro–Wilk normality test with a P-
value 0.5242. The results of the regression analysis are shown in Table 4.

These results strongly support that tree balance is largely determined by random factors for
most gene families unless a significant number of members have been under the influence of

Yang and Wyckoff Page 7

Genetica. Author manuscript; available in PMC 2014 April 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



other systematic effects, such as positive selection or population level changes. This is not
unexpected from other studies (Blum and Francois 2006) which have argued that a branch-
split model may be the best model for cladogram balance, and further have argued that tree
balance needs more study particularly with regard to molecular data (Aldous 2001). From
our analysis, a conservative prediction is that gene families with large family sizes and large
tree imbalance have likely been subjected to more selection (both positive and negative),
although with small families significant imbalances may be caused by either systematic
effects or random factors. That is, tree imbalance statistics by themselves are really useful
for study only in very large protein and gene families. However, again, we would argue that
it is worthwhile to consider tree imbalance statistics, in the context of other analysis
methodologies, to help sort potential selective effects (Table 5).

Conclusions
Phylogenetic trees are relatively easy to generate and are one of the first things that
researchers tend to examine, especially for gene and protein families. Phylogenetic trees are
generally constructed and reside in databases, such as PFAM, devoted to protein or gene
families (Finn et al. 2008).For this reason, we examined whether the properties of
phylogenetic trees would have utility for the examination of positive and negative selection
in extended gene and protein families. Given our work, we believe it is possible to utilize
tree properties, particularly as a method of examining large scale data in order to generate
information regarding selection trends in gene families.

One example would be to look at gene families to determine if some members are under
selection. If some family members have been under positive selection, rapid evolutionary
rates would have the tendency to diverge family members from each other. Similarly,
negative selection eliminates deleterious mutations from family members, and thus it tends
to keep family members close to each other when genetic distances are examined. Utilizing
distance, therefore, we postulate that we could further sort interesting members into
categories representing the degree to which positive or negative selection has been acting.
The pattern for 25 families (discussed above) is shown in Fig. 5. While this is a conceptual
diagram, further empirical studies and simulations might be used to determine the thresholds
or statistical properties necessary to identify boundary lines relating to selective properties
or values of interest.

We have proposed a new perspective for tackling the problem of identification of positive
and negative selection in gene families by utilizing phylogenetic tree patterns to detect
selection at molecular level. We found significant relationships among the parameters of
family size, genetic distance and imbalance of a tree which can be used to examine selective
trends. It is worthwhile to note that, in most cases, these methodologies are not useful by
themselves for separating positive and negative selection effects from other effects, such as
lineage-specific functional shifts, functional recapture, mutation rate changes, and others.
However, these relationships are allowing us to visualize a set of complex relationships
within these phylogenies that are otherwise hard to capture with molecular data. Because of
this, we argue that these methods are likely to be easier to implement and utilize for large-
scale data analysis of gene and protein families, particularly when repeated domain
segments are present, than other methodologies that rely on gathering data beyond
phylogenies. Hence, we argue that the methods detailed here might be a useful “first-pass”
analysis for genomic data, and with further study may be useful in conjunction with other
existing analyses to help guide studies towards genes and proteins that are under selection.
We plan on developing this technique into a large-scale genome annotation tool after the
examination of further parameter space and through more empirical studies of protein
domains and their evolutionary properties.
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Fig. 1.
The distribution of average family distance (d) in 100 gene families, illustrating a long right
tail; as discussed in the text, the distribution has high skewness and kurtosis. This illustrates
the data deviates from a normal distribution, and this is further illustrated in Fig. 2
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Fig. 2.
A quantile–quantile (Q–Q) plot of the average distance (d) of 100 gene families. This is an
alternative way of visualizing the skew and kurtosis discussed in the text. This suggests that
large amounts of selection have been at work in shaping the evolution of nearly all gene
families examined in this paper
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Fig. 3.
Plot of terminal-branch amino acid changes against the internal node number as described in
the text. The internal node number is, for each gene family examined, a proxy for the age of
the gene; the more internal nodes, the more divergence events and therefore the older the
gene, on average. The number of amino acid changes tracks the number of changes from the
preceding node to the gene within the family. This plot is showing, therefore, the
approximate age of a gene or domain within a family versus the amount of evolutionary
change in that domain
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Fig. 4.
Illustration of a perfectly balanced tree (a) and a perfectly imbalanced tree (b). Balance is
one measured component of tree shape. Tree balance measures are one way of considering
how domain “birth” (duplication) and “death” (removal or silencing) are acting over
evolutionary time
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Fig. 5.
Sorting of evolutionary forces using the Median Family Distance (d), reciprocal of the
family size and tree balance statistic (IC) as described in the text. This is an illustrative
picture depicting how we wish to develop these statistics, in conjunction with other existing
methodologies, for sorting of protein families into groups depicting which evolutionary
forces (such as positive and negative selection) were primarily responsible for their
evolution. Shown are the 25 gene families shown in Table 4. While the model would need to
be parameterized for a large set of domains, the model illustrates how such parameterization
could be performed taken into account the actual distribution of such changes
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Table 1

Test of normality of the pair-wise distances between family members

Family name PFAM ID Pairs Skewness Kurtosis W statistic P-value

4HBT PF03061 528 1.8366 2.1634 0.6799 <2.2e-16

4_1_CTD PF05902 325 −0.2848 −1.2789 0.8722 9.05e-16

DAGK_cat PF00781 861 3.3426 16.9711 0.6858 <2.2e-16

2OG-FeII_Oxy PF03171 780 1.7324 1.7471 0.6871 <2.2e-16

A1 pp PF01661 406 −0.5717 0.4126 0.9422 1.778e-11
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Table 2

Statistical tests of normality of the distribution of average distances of 100 gene families

Test Statistic P-value

Shapiro–Wilk W 0.923649 Pr < W < 0.0001

Kolmogorov–Smirnov D 0.152678 Pr > D < 0.0100

Cramer-von Mises W-Sq 0.477567 Pr > W-Sq < 0.0050

Anderson–Darling A-Sq 2.572776 Pr > A-Sq < 0.0050
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Table 3

Regression and correlation analysis between node number and distance

Family name PFAM ID Correlation Regre. Coeff. Adjusted R2 P-value

4HBT PF03061 0.6841 40.0695 0.4670 4.10723e-4

4_1_CTD PF05902 0.6822 4.0069 0.4638 7.63462e-e

DAGK_cat PF00781 0.5832 25.0035 0.4767 5.63462e-3

2OG-FeII_Oxy PF03171 0.4048 32.0767 0.1628 4.1512e-8

A1 pp PF01661 0.6123 16.8263 0.3734 3.86881e-4
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Table 4

The imbalance levels for 25 gene families

Gene family Ic Family size Median distance 1/Family Size

4HBT 0.669 33 172.06 0.030

4_1_CTD 0.72 26 38.92 0.038

s2OG-FeII_Oxy 0.53 40 187.77 0.025

A1 pp 0.476 29 174.82 0.034

A2 M 0.393 39 139.02 0.025

zf-B_box 0.266 181 177.27 0.005

DAGK_cat 0.427 42 128.45 0.023

DDE 0.463 37 179.01 0.027

Disintegrin 0.585 54 79.85 0.018

DUF1220 0.147 329 130.35 0.003

EMP24_GP25L 0.422 43 220.02 0.023

Ets 0.269 66 89.92 0.015

Gal-bind_lectin 0.347 64 133.65 0.015

G-alpha 0.314 82 99.99 0.012

Galactosyl_T 0.482 42 135.63 0.023

G-patch 0.299 66 149.07 0.015

IBN_N 0.431 27 268.83 0.037

KH_1 0.111 259 198.41 0.003

L27 0.422 51 223.75 0.019

PAN_1 0.438 33 227.97 0.030

RA 0.187 129 331.985 0.007

SapB_2 0.52 32 169.46 0.031

TAS2R 0.194 109 147.155 0.009

T-box 0.189 31 69.22 0.032

ZZ 0.285 60 149.07 0.016
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Table 5

Correlation analysis (a) and regression analysis (c) between tree balance and family size, and the testing of the
significance of regression coefficient with ANOVA analysis (b)

Correlation Coefficients Standard error t stat P-value

(a)

Intercept 0.148 0.0499 2.9738 0.006794

X Variable 11.190 2.1378 5.2344 2.6128E-05

Lower 95% Upper 95% Lower 95.0% Upper 95.0%

0.045196 0.251775 0.045196 0.251775

6.767845 15.61270 6.767845 15.61270

ANOVA df SS MS F Significance F

(b)

Regression 1 0.327628 0.327628 27.39913 2.6128E-05

Residual 23 0.275025 0.011957

Total 24 0.60265

Regression statistics

(c)

Multiple R 0.73732

R Square 0.54364

Adjusted R Square 0.52380

Standard Error 0.10935

Observations 25
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