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Abstract
Non-genotoxic carcinogens (NGCs) promote tumour growth by altering gene expression which
ultimately leads to cancer without directly causing a change in DNA sequence. As a result NGCs
are not detected in mutagenesis assays. Whilst there are proposed biomarkers of carcinogenic
potential, the definitive identification of non-genotoxic carcinogens still rests with the rat and
mouse long term bioassay. Such assays are expensive, time consuming, require a large number of
animals and their relevance to human health risk assessments is debatable.

Metabolomics and lipidomics in combination with pathology and clinical chemistry were used to
profile perturbations produced by 10 compounds which represented a range of rat non-genotoxic
hepatocarcinogens (NGC), non-genotoxic non-hepatocarcinogens (non-NGC) and a genotoxic
hepatocarcinogen. Each compound was administered at its maximum tolerated dose level for 7, 28
and 91 days to male Fisher 344 rats.

Changes in liver metabolite concentration differentiated the treated groups across different time
points. The most significant differences were driven by pharmacological mode of action,
specifically by the peroxisome proliferator activated receptor alpha (PPAR-α) agonists. Despite
these dominant effects, good predictions could be made when differentiating NGCs from non-
NGCs. Predictive ability measured by leave one out cross validation was 87% and 77% after 28
days of dosing for NGCs and non-NGCs, respectively. Amongst the discriminatory metabolites
we identified free fatty acids, phospholipids, triacylglycerols, as well as precursors of eicosanoid
and the products of reactive oxygen species linked to processes of inflammation, proliferation and
oxidative stress. Thus, metabolic profiling is able to identify changes due to the pharmacological
mode of action of xenobiotics and contribute to early screening for non-genotoxic potential.
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INTRODUCTION
DNA reactive carcinogens (genotoxic carcinogens) are routinely screened for using a
standard battery of genotoxicity assays, including evaluations for mutagenicity in bacteria
and mammalian cells and chromosomal damage in mammalian cells. Non-genotoxic
carcinogenicity is a multi-stage process requiring initiation and subsequent promotion, and
is associated with suppressed apoptosis and increased proliferation, where the replication of
cells arises by spontaneous mutations and increased DNA synthesis1. Non-genotoxic
carcinogens (NGCs) induce cancer in the absence of direct DNA damage; often by causing
changes in gene expression that promote the growth of initiated cells. Therefore, they are not
detected by genotoxicity assays2.

Identification of early stage biomarkers of NGCs has been previously studied to aid the
identification of molecules with carcinogenic potential3. Potential biomarkers include
increased relative liver weight, hepatocyte labelling index4, hepatocellular necrosis,
hypertrophy and cytomegally in short term toxicity studies in both rats and mice5. More
recently, functional genomic studies including transcriptomics6–12, proteomics13 and
microRNA profiling14 have been employed to examine their potential in the early
identification of chemical carcinogenesis.

One of the most notable proteomic studies was carried out using 63 compounds13 reporting
predictability as high as 79.3% for genotoxic and 76.5% from non-genotoxic compounds,
respectively, using protein expression profiles of the rat liver after 28 days of dosing. The
study was well layered as the 63 compounds were divided into 3 different groups each of
which could be further split into subgroups. In total 9 genotoxic hepatocarcinogens, 6 non-
liver carcinogens with positive Ames tests, 14 Ames positive compounds with no
carcinogenic property, 21 non-genotoxic hepatocarcinogens in rat and/or mice as well as 13
Ames negative non carcinogens were profiled. The results suggested PDZ domain-
containing protein 1 as a potential biomarker for NGCs. In addition, the most favourable
prediction accuracy has been reported using transcriptomics8 where 6 different NGCs and
54 non hepatocarcinogens were profiled after 28 days of dosing. Prediction accuracies
yielded 99% sensitivity and 97% specificity highlighting p38 Mapk- and Myc-centered
networks to be significant indicators of early stage hepatocarcinogenesis. These genes were
suggested to be candidate biomarkers for both non-genotoxic hepatocarcinogens and
genotoxic hepatocarcinogens.

The development of genetically modified knockout mice of several nuclear receptors (NRs)
has revealed NR mediation as a common mechanism of hepatocarcinogenesis caused by
numerous NGCs15–16, and the sustained activation of several NRs involve various pathways
leading to cancer17–18. NR-mediated cancer promotion involves altered metabolic pathways
mostly affecting energy homeostasis, inflammation and lipid metabolism, through the
induction of liver growth, cellular hypertrophy (peroxisome and smooth endoplasmic
reticulum proliferation) and hyperplasia leading to cancer (reviewed by Hall et al.17).

Some of the major NRs that have been identified as participants of hepatic carcinogenesis by
non-genotoxic tumour promoting mechanisms are the constitutive androstane receptor
(CAR) and peroxisome proliferator-activated receptor-alpha (PPAR-α)15–16. Upon
activation (receptor binding) by xenobiotics or certain endogenous metabolites, CAR, and
PPAR-α receptors heterodimerize with retinoid X receptor (RXR) prior to DNA
binding19–20 to induce gene expression.
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Despite this accumulating knowledge and new approaches which are being developed, a
comprehensive mechanistic understanding is lacking, and the method for regulatory
assessment of NGCs remains the 2 species lifetime bioassays. This study used a
metabolomics/metabonomics methodology to investigate and compare the early metabolic
effects of non-genotoxic hepatocarcinogens with those of non-hepatocarcinogens. The utility
of this approach to predict the outcome of two year in vivo bioassays as well as shed light on
mechanistic processes was also investigated.

The study design and the selection of test animals was based on a National Toxicology
Program (NTP) 91 day rat toxicology assay, which is a standard regulatory rodent study,
carried out prior to a long term bioassay (http://ntp.niehs.nih.gov/)21. The chemicals selected
for the study included 5 non-genotoxic hepatocarcinogens (NGCs), 1 known genotoxic
hepatocarcinogen and 4 non-genotoxic non-hepatocarcinogens (non-NGCs). All compounds
were administered in the diet.

The NGCs and non-genotoxic tumour promoters studied included phenobarbital (PB, 1000
ppm), chlorendic acid (CA, 1250 ppm), diethylhexylphthalate (DEHP, 1200 ppm), monuron
(Mon, 1500 ppm) and methapyrilene hydrochloride (MP HCl, 250 ppm). 2-
aminoacetylfluorene (2-AAF, 40 ppm) was the genotoxic hepatocarcinogen. The non-NGCs
included cinnamyl anthranilate (Cinn, 30,000 ppm), diethylhexyadipate (DEHA, 25,000
ppm), benzophenone (BP, 1250 ppm) and diethylthiourea (DETU, 250 ppm) (Table 1).
Compounds were selected so that the NGC and non-NGC groups were balanced in terms of
mode of action of compounds, effects on liver weight, cell proliferation and cytochrome
P450 induction. This was to insure that the models did not simply detect markers of these
effects.

Gross physiological changes due to NGCs were investigated to ascertain the ability of
metabolic profiling to distinguish the modes of action of the NGCs and its ability to further
characterise non-genotoxic mechanisms. Particular emphasis was based on the lipidome,
because of the significance of lipid biogenesis in proliferating cells for the provision of
organelle membranes. Moreover, lipid oxidation products and their effects have been
implicated in membrane disruption, inactivation of enzymes, damage to proteins and cancer
development, which also makes lipidomic investigation of primary importance for
mechanistic investigations22. This approach produced models with predictive capability of
87% and 77% after 28 days of dosing for NGCs and non-NGCs, respectively, demonstrating
the promise of this approach.

MATERIALS AND METHODS
Animal studies conformed to both local and national ethical use of animal guidelines and
were performed in accordance with the UK Home Office Animals (Scientific Procedures)
Act 1986.

Test substances
Sodium phenobarbital, chlorendic anhydride, diethylhexylphthalate, monuron,
methapyrilene HCl, diethylhexyladipate, benzophenone, diethylthiourea and 2-
acetylaminofluorene were obtained from Sigma Aldrich (Poole, Dorset, UK). Cinnamyl
anthranilate had been obtained from Lancaster synthesis (Morecambe, UK). Chlorendic
anhydride was hydrolysed to the acid prior to use.

Internal standards used in lipidomic studies were obtained from Avanti Polar Lipids Inc.
(Alabaster Alabama, US). Internal standards for the measurements of aqueous metabolites
were purchased from Cambridge Isotope Laboratories (Andover, Massachusetts, US). All
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other standard chemicals were obtained from Sigma Aldrich (Poole, Dorset, UK). Solvents
used were of HPLC grade.

Experimental Design
Fifteen male F344 rats per group were continuously supplied in their diet with one of the 10
compounds at the dose levels stated in table 1. The maximum tolerated dose levels were
selected following literature review in order to select a dose that induced strong effects and
for the NGCs were known to be a carcinogenic dose. A further fifteen rats formed the
control group and received no test substance in their diet. Five rats from each of the eleven
groups were killed after 7, 28 and 91 days respectively by an overdose of anesthetic
(halothane Ph. Eur. Vapour) followed by exsanguination.

Sample collection for histopathology and clinical chemistry
For histopathology liver sections were taken from the three main liver lobes, embedded on
paraffin wax, sections at 5Nm were prepared, stained with haematoxylin and eosin, and
examined by light microscopy. For clinical chemistry plasma was collected and the
following parameters were analysed: glutamate dehydrogenase, alanine aminotransferase,
aspartate aminotransferase, triglycerides, cholesterol, gamma-glutamyl transferase, bilirubin,
albumin, total protein and creatinine using a Konelab clinical chemistry analyser (Thermo
Scientific, Waltham, MA).

Tissue extraction for metabolomics
Multiple samples were taken from of the liver and snap frozen in liquid nitrogen. All
samples were taken as quickly as possible and stored at −80°C until analysis. Liver samples
were prepared using methanol-chloroform-water extraction23. Methanol-chloroform solution
(2:1, 600 μL) was added to approximately 50 mg of frozen tissue and homogenised with a
tissue lyser. Chloroform-water (1:1, 400 μL) was added, samples were sonicated for 15
minutes and centrifuged (13 500 rpm, 20 minutes). The resulting aqueous and organic layers
were separated and the extraction procedure was repeated. Samples were dried under
nitrogen before processing for gas-chromatography-mass spectrometry (GC-MS), flow
infusion-mass spectrometry (FI-MS) and liquid chromatography-mass spectrometry (LC-
MS) analysis.

Gas Chromatography–Mass Spectrometry (GC-MS)
Organic-phase metabolites were derivatised by acid catalysed esterification to form fatty
acid methyl esters (FAMEs) of carboxylic acids and measured using a DSQ II single-
quadrupole mass spectrometer (ThermoScientific, Hemel Hempstead, UK) as described by
Waterman et al.24.

Flow injection-mass spectrometry (FI-MS)
FI-MS experiments for the measurement of free fatty acids, monoacyl phospholipids and
diacyl phospholipids were carried out with electrospray ionisation (ESI) in negative ion
mode on a Thermo Scientific LTQ linear ion trap mass spectrometer coupled to at Micro AS
Autosampler and Surveyor Pump (Thermo Scientific, Waltham, MA). A 10 μL aliquot,
comprising one hundredth of the organic fraction, was diluted into 90 μL of methanol-
chloroform (2:1), and 10μL of sample was injected. As mobile phase MeOH:CHCl3 2:1 was
used with 0.1% formic acid. Data was collected in profiling mode between 100 and 1200 m/
z for 2 minutes following sample injection. The spray voltage was 4.5 kV and the capillary
temperature was 290°C. The sheath gas, auxiliary gas and sweep gas were set at 12, 1 and 1
arbitrary units, respectively. FI-MS spectrums were peak picked by using in-house software.
The data was normalised to wet tissue weights and to total signal intensity. Ion tree
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experiments were conducted to acquire MS/MS for structural elucidation, identification and
conformation of the lipid species present. In this analysis the sample was directly infused at
a rate of 15 μL/min and MS/MS data collected in centroid mode between m/z values of 100
and 1200 for up to 5 min with a parent mass step value of 1 m/z. The isolation width was 1.5
m/z and the collision energy was 35 eV. All other parameters were set as detailed above.

Liquid chromatography mass spectrometry (LC-MS)
Intact liver lipids were also analysed by LC-MS in positive ion mode. A 10 μL aliquot,
comprising one hundredth of the organic fraction, was diluted into 90 μL of methanol-
chloroform (2:1) containing 20 μM 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (PC
(17:0/17:0)) (Avanti Polar Lipids Inc., Alabaster, Alabama, US). The instrumentation
comprised of a Xevo G2 Quadrupole Time of Flight (QToF) mass spectrometer with a Z-
spray ESI source coupled to an ACQUITY Ultra Performance Liquid Chromatography
(UPLC) system. Separation of species was achieved using an ACQUITY CSH™ C18, 1.7
Nm (2.1 × 100 mm) column (Waters Ltd., Elstree, Hertfordshire, UK). Mobile phase A
consisted of 10 mM ammonium formate in acetonitrile:water (6:4), whilst mobile phase B
contained 10 mM ammonium formate in isopropanol:acetonitrile (9:1). The concentration of
mobile phase B was increased from 40–100% in 18 min then equilibrated at 40% for 2 min
with a flow rate of 0.4 mL/min. The ESI source was operated in positive ion mode with the
source temperature set at 80°C and a cone gas flow of 100 L/h. The desolvation gas
temperature was 250°C and the nebuliser gas flow rate was set at 700 L/h. The capillary
voltage was 3 kV and the cone voltage 50 V. Mass spectrometric data was collected from
50–1200 m/z in profiling scan mode. Data were processed using MarkerLynx™ within the
software suit MassLynx™ (version 4.1) by Waters Ltd. (Elstree, Hertfordshire, UK).
Collection parameters were set with a mass window of 0.05 Da and retention time window
of 0.2 min. Data were automatically deisotoped and normalised to wet tissue weights and the
intensity of the internal standard. For structural elucidation, identification and conformation
of the lipid species present, data dependant acquisition (DDA) experiments were conducted.

Analysis of acylcarnitines by flow injection-mass spectrometry
Acylcarntines were analysed according to the Neolynx™ method described by Waters Ltd.
(Elstree, Hertfordshire, UK). Briefly, 40μL of lipid extract was evaporated under nitrogen
and derivatised with 100 μl of 3 M butanolic HCl (Sigma-Aldrich, Louis, Missouri, USA)
for 15 min at 60°C. The samples were dried under nitrogen and reconstituted in 200 μL
acetonitrile containing internal standard mix (1.63 μM [d9] free carnitine, 0.3 μM [d3] acetyl
carnitine, 0.06 μM [d3] propionyl carnitine, 0.06 μM [d3] butyryl carnitine, 0.06 μM [d9]
isovarelyl carnitine, 0.06 μM [d3] octaboyl carnitine, 0.06 μM [d9] myristoyl carnitine, and
0.12 μM [d3] palmitoyl carnitine) (Cambridge Isotope Laboratories, Inc., Andover,
Massachusetts, USA). A 5 μL sample was injected using an Acquity UPLC System and
analysed on a Quattro™ Premier XE triple quadrupole mass spectrometer (Waters Ltd.,
Herefordshire, UK) using ESI. A parent scan in positive ion mode for a common loss of +85
Da was utilised, with the following optimisation parameters: capillary voltage 3.5 kV, cone
voltage 35 V, collision energy 25 V, source temperature 110°C and desolvation temperature
300°C. Samples were introduced by flow injection with a run time of 5 min and a flow rate
of 10 μL/min that increased to 100 μL/min via a linear gradient over the last minute. The
infusion solvent consisted of 1:1 acetonitrile:iso-propanol with 0.2% formic acid. Flow
injection acylcarnitine data were processed using the Neolnyx™ software addition to
Masslynx™ version 4.1 (Waters Ltd., Elstree, Herfordshire, UK) and normalised to wet
tissue weights and to the intensity of the internal standards.
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Targeted analysis of aqueous metabolites
For LC-MS/MS analysis aqueous phase metabolites resulting from the chloroform:methanol
extraction were used. The entire fraction was dissolved in 300 μL of 70:30 acetonitrile:water
containing 20 μM universally 13C and 15N labelled glutamate following protocols described
by West et al.25 The instrumentation comprised of an ABSciex 5500 Qtrap mass
spectrometer (ABSciex UK Limited, Warrington, Cheshire) coupled to a SIL20-A LC
system (Shimadzu Corp., Kyoto, Japan). Mobile phase A consisted of a 100 mM ammonium
acetate, mobile phase B was acetonitrile with a flow rate of 0.3 mL/min. Two μL of the
samples were injected and analytes separated using a 100 mm ZIC-HILIC column with 2.1
mm ID and 3.5 μm particle size (Sequant, Umeå, Sweden) with a linear gradient starting
with 20% A for 2 min followed by an increase to 50% A over 10 min and finally a 3 min re-
equilibration. Metabolites were measured with unscheduled multiple reaction monitoring
events (MRMs) (Supplementary table 1) using a source temperature of 500°C, an ion spray
voltage of +4.5 kV and a dwell time of 50 ms. Peaks were integrated by Quantitation Wizard
within Analyst™ version 1.6 by ABSciex Ltd. (Warrington, Cheshire, UK). Data was
normalised against wet tissue weight and to correct for instrumental variance further
normalised to the intensity of the internal standard. Concentration ratios are reported and are
defined as the area of the analyte peak against the area of an internal reference standard.

Univariate statistical analysis
For univariate statistical analysis Microsoft Excel 2010 (Microsoft UK, Reading) and Graph
Pad Prism 5 (La Jolla, California, US) software packages were used. Student’s t-test and 1
way and 2 way ANOVA were used to test for statistical significance.

Multivariate statistical analysis
Multivariate data analysis was performed using SIMCA 13 (Umetrics AB, Umeå, Sweden).
Data sets were scaled by either unit variance (UV) or Pareto scaling (Par)26 and analyzed
using principal components analysis (PCA) and partial least-squares-discriminant analysis
(PLS-DA). Model validity was assessed using 100 random permutations to ensure that the
class separation is genuine and not a chance occurrence. Variables relevant in explaining the
differences between groups were determined by the use of variable importance in the
projection (VIP) score26. Variables with VIP higher or equal to one (VIP≥ 1) were
considered significant. The goodness of the models is numerically represented by values for
the fit (R2) and prediction (Q2). For discriminant analysis models, misclassification tables
were built within the SIMCA package. A misclassification table contains the number of
correctly classified and the number of incorrectly classified groups. The numbers are based
on the multivariate model calculations and provide quantitative means to show the
proportion of correctly classified groups.

Receiver operating characteristic (ROC) analysis
ROC analysis was employed in both a univariate and a multivariate manner to measure the
strength of one or multiple markers (metabolites and other parameters). The ROC curve
analysis tool, ROCCET (ROC curve explorer & tester available at http://www.roccet.ca)
was used to perform these tests. ROC curves visualise the sensitivity (true positive rate)
against the specificity (false positive rate) representing the ability of a marker to determine
the presence or absence of toxicity. A ROC curve can be described by the area under the
curve (AUC) as a measure of the strength of a test, with an ideal marker having an area of
one and an area of less than 0.5 being worse than a random guess.
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RESULTS
Body and liver weights

By day 28 DEHA and Cinn caused body weights to decrease by 30% (p<0.001) and 20%
(p<0.05) of controls, respectively, due to poor palatability. For humane reasons,
administration of these 2 compounds could not be maintained for the full 91 days. Animals
in the Cinn group were killed at day 28 and at the same time animals in the DEHA group
were returned to control diet. This presented the opportunity to investigate whether the
measured changes induced by exposure to DEHA are reversible upon withdrawal of the
compound. The other compounds did not adversely affect body weight by more than 10% of
concurrent controls.

Both liver carcinogen promoters DEHP, PB and non liver carcinogens DEHA, BP and Cinn
caused increases in adjusted liver weights of equal or greater than 120% of concurrent
control values at one or more time points. Liver carcinogens Mon and 2-AAF (genotoxic)
and liver non-carcinogen DETU caused slight increases in liver weights. Liver carcinogens
MP HCl and CA caused no effect and a slight initial decrease in adjusted liver weight,
respectively (Supplementary table 2).

Histology
There were no abnormalities detected in the livers of control animals or from animals
receiving the rat liver carcinogen CA or the non-rat liver carcinogen DETU. The rat liver
carcinogen monuron was without effect on the liver except for the presence of minimal
vacuolation in all animals at day 91 only. DEHP and DEHA caused a minimal transient
increase in mitosis at day 7. Diffuse hepatocyte hypertrophy was a feature produced by
administration of these peroxisome proliferators at most time points studied. Hepatocyte
hypertrophy slightly increased in severity and incidence from day 7 to day 28 for both
chemicals and was greater for DEHA compared to DEHP at both of these time points. By
day 91 the liver morphology of the DEHA group of rats had returned to normal following
the return to control diet at day 35.

The P450 enzyme inducers PB and BP also caused hepatocyte hypertrophy at all time points
studied, but unlike the peroxisome proliferators the effect was localised to the centrilobular
regions of the liver. The incidence and severity of the hypertrophy was the same for both
chemicals at day 7 but was slightly greater for PB at day 28 and 91. Both chemicals also
caused minimal vacuolation at day 28 that progressed to slight vacuolation at day 91. A
transient increase in mitosis was observed at day 7 following treatment with BP but not PB.

Cinn produced minimal hypertrophy at days 7 and 28 that had a diffuse distribution. This
effect was similar to that produced by the peroxisome proliferators, although, there was no
evidence of a transient increase in mitosis at day 7. The rat liver carcinogen, MP HCl, cause
minimal hepatocyte necrosis/apoptosis at the time points investigated. The genotoxic
carcinogen 2-AAF caused biliary hyperplasia and inflammation from day 28 onwards
following a transient increase in minimal mitosis at day 7.

Clinical chemistry
The effects of dietary administration of the various compounds on all clinical chemistry
parameters measured are shown in supplementary table 3. The most prominent effect on the
markers for liver toxicity was a sustained increase in glutamate dehydrogenase (GLDH)
caused by MP HCl (69% (p<0.01), 215% (p<0.01) and 260% (p<0.01) higher than
concurrent control values at days 7, 28 and 91, respectively). Much smaller increases were
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also evident in the other 2 markers ALT on day 91 and AST on days 7 and 91, respectively,
within the MP HCl group. CA produced slight increases in GLDH at days 28 and 91.

All compounds, except for the genotoxic carcinogen, 2-AAF, produced decreases in
triglycerides (TGs) at one or more time-points. The decreases in TGs caused by the
carcinogens were exacerbated as the study progressed to 91 days whereas the decreases
triggered by the non-carcinogens became less prominent. The most marked reduction in TGs
was produced by CA, with values of 42%, 20% and 15% of concurrent controls at days 7, 28
and 91, respectively. In order of decreasing potency, the liver carcinogens DEHP, PB, MP
HCl also reduced plasma TGs at most time points. The non-genotoxic liver carcinogen with
the least notable effect on TGs was MON. This chemical caused a reduction at 91 days only.
In addition to the reduction in TGs the peroxisome proliferators (DEHP, Cinn & DEHA)
also caused reductions in cholesterol (CHOL) and non-esterfied fatty acids (NEFAs) at most
time points. BP and DETU caused sustained increases in CHOL throughout the study.

The largest increases in serum total bile acids (TBA) (6-fold above control levels) occurred
at day 28 in rats given Cinn or DEHA. This increase followed earlier increases, at day 7, of
3- and 2-fold, for each compound, respectively. Cinn also caused small increases in plasma
bilirubin (Bil) levels at days 7 and 28 and it was the only chemical to cause an increase in
plasma gamma-glutamyl-transferase (GGT) levels. The increase of all 3 of these markers
indicates that Cinn caused hepatocellular cholestasis. The increase in TBA caused by DEHA
was shown to be reversible by day 91 following the return to control diet from day 36
onwards. CA and DEHP caused smaller increases in TBA, but not GGT or Bil, at day 91
only.

Lipidomics results
Fatty acid changes in liver analysed by GC-MS—The total fatty acid profiles as
measured by GC-MS were investigated by multivariate data analysis (Q2=40%) (Figure 1 a).
Models were also built for each compound compared with the control group. Greatest
similarity was shown by the PPAR-α agonists DEHP, DEHA and Cinn, with all three
agonists causing increased concentrations of arachidonic acid (AA) (20:4 n-6), γ-linoleic
acid (GLA) (18:3 n-6) and dihomo γ-linoleic acids (DGLA) (20:3 n-6). Decreases were
detected in α-linoleic acid (ALA) (18:3 n-3), linoleic acid (LA) (18:2, n-6) and
eicosadienoic acid (20:2 n-6) (Figure 1 b).

Constitutive androstane receptor (CAR) inducer agonists PB and BP both caused decreases
in the concentrations of palmitic acid (16:0) as the only common feature. Non-genotoxic
carcinogens PB and CA both caused increased concentrations of linoleic (18:2 n-6) and oleic
acids (18:1 n-9), while 2-AAF and Mon both increased arachidic acid (20:0) concentrations.
No models could be built for compounds MP HCl and DETU compared with the control
group indicating these compounds did not significantly change the fatty acid profile of the
liver.

Free fatty acid and phospholipid changes measured by FI-MS—FI-MS in
negative ion mode detected 127 peaks of which 84 were identified by MS-MS experiments
as either free fatty acids or phospholipids. PLS-DA models were built (Q2=32%) to examine
the changes in control and all of the treatment groups (Figure 2 a). Similar changes were
caused by the PPAR-α agonists (DEHP, Cinn and DEHA) with all agonists increasing the
relative concentrations of free fatty acids eicosatrienoic (20:3 n-3) and arachidonic acid
(20:4 n-6) as well as glycerophospholipids PI(18:0_20:3), PI(16:0_18:1) and PE(18:0_20:4).
All PPAR-α agonists caused a relative decrease in free fatty acids palmitic (16:0), linoleic
(18:2 n-6), eicosapentaenoic (20:5 n-3), docosapentaenoic (22:5 n-3) acid and
glycerophospholipids PI(18:0_20:4), and PE(16:0_22:6). The nuclear hormone receptor
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CAR agonist BP and non-genotoxic carcinogen MP HCl also increased the concentrations of
arachidonic acid, whereas the other 4 compounds (Mon, 2AAF, CA and DETU) all showed
decreased relative concentrations. No model could be build comparing PB and control
samples

Misclassification tables were generated in order to assess how well the PLS-DA model
performs in terms of classifying the treatment groups correctly according to the detected
lipid profiles. The worst performing group was PB with over half the samples misclassified.
All other treatment groups were classified with 80% or higher accuracy (Figure 2 b).

Further data analysis to identify potential generic classifiers of non-genotoxic liver
carcinogens was performed. The PB treated samples were excluded from this analysis
because this group did not produce detectable differences from the control group as
illustrated by the high number of misclassified samples. Day 91 samples were also excluded
since the Cinn group had been killed early and the DEHA group had been returned to
control diet leaving only two compounds in the non-NGC group at this time point. A PLS-
DA model was built (R2=56% Q2=32%) comparing NGCs (CA, DEHP, Mon and MP-HCl)
and non-NGCs (Cinn, DEHA, BP and DETU) at days 7 and 28. Specificity was assessed by
using a misclassification table. NGC samples were correctly assigned to their group in 85%
of cases, whilst Non-NGCs 87.5% of the time (Figure 2 c). Decreased levels of lipids
(VIP≥1) in the NGC group include all three of the 20-carbon free fatty acids, arachidonic
(AA, 20:4 n-6), dihomo γ-linoleic acids (DGLA, 20:3 n-6) and eicosapentaenoic acids
(EPA, 20:5 n-3). Unsaturated fatty acids 15:1 and 16:1 (palmitoleic acid, n-7) and
glycerophospholids including PI(16:0_20:3), PI(18:0_22:5), PE(16:0_22:5) and
PE(16:0_20:4) have also decreased compared to the non-NGCs. Increased levels due to
NGCs were measured in palmitic (16:0), stearic (18:0), oleic (18:1 n-9) and adorenic acids
(22:4 n-6) and phospholipids PI(18:0_20:3), PC(22:4_22:2) and PE(16:0_18:1).

Phospholipid and triacylglycerol changes measured by LC-MS—Similar to the
GC-MS and FI-MS data processing approaches, multivariate data analysis was used to
identify the main trends in the LC-MS dataset. Again, PLS-DA analysis of all treatments
(Q2=34%) visualised clustering of the PPAR-α agonist DEHP, Cinn and DEHA groups
whilst CA also showed good separation from the rest of the samples (Figure 2 d). A list of
metabolites that changed due to exposure to PPAR-α agonists are shown in supplementary
table 4.

The first set of statistical analyses examined the changes in control and treatment groups
using PLS-DA models. Model validity and the degree of over fit were assessed by using 100
random permutations. All models passed validation with the exception of the PB group
which was excluded from further comparisons. The misclassification table also shows that
the PB was correctly assigned only 26.6% of the time with most of the samples in this group
misclassified as controls (Figure 2 e).

The second set of statistical analysis examined changes across groups to identify potential
generic classifiers of non-genotoxic liver carcinogens. NGCs (excluding PB) were compared
with non-NGCs at days 7 and 28. A robust PLS-DA model was generated (R2=79%,
Q2=50%). Misclassification was calculated for this model, correctly assigning 90% and 95%
of the samples for NGC and non-NGC groups, respectively (Figure 2 f). A list of
metabolites that were changed in the NGC group compared to the non-NGC group is shown
in supplementary table 4.

Changes in carnitine species measured by flow-injection mass spectrometry
—By flow-injection mass spectrometry, 37 carnitine derivatives were identified comprising
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of free carnitine and esterified species ranging in size from 2 to 22 carbons. Multivariate
statistics was used in order to assess patterns associated with the non-genotoxic carcinogens.
However, the PLS-DA model generated did not pass validation when all samples were
considered and treatment groups could not be separated based on their potential for non
genotoxic carcinogenesis. Various treatment groups were then compared to the control
group by 2-way ANOVA with Bonferroni post-test. The sum of acylcarnitine concentrations
and individual acylcarnitine concentrations were used to identify groups which are
significantly different to the time matched controls. Univariate statistical analysis of the data
was feasible in this class of metabolites, as only 37 variables were measured, unlike the
lipidomics which necessitated multivariate statistics. As expected the most marked increases
were caused by PPAR-α agonists DEHP, Cinn and DEHA. On day 7 DEHP increased total
carnitine pools by 271% (p<0.001) and DEHA by 230% (p <0.001). On day 29 DEHP,
Cinn and DEHA caused increases by 241% (p <0.001), 91% (p <0.05) and 179% (p
<0.001), respectively (Figure 3 a). Furthermore, there was also an increase in total carnitine
content caused by CA despite the fact it did not show any similarity with the PPAR-α
agonists in all other lipidomic analysis.

End products of β-oxidation acetyl-, propionyl-carnitine and free carnitine ratios were
calculated to determine the rate of oxidation. As expected, DEHP Cinn and DEHA were
found to have significantly (p<0.001) increased relative concentrations of carnitine ratios,
associated with increased oxidation at all relevant time points. The carnitine profile
associated with DEHA did not differ significantly from the control group on day 91 at which
time animals were returned to control diet (Figure 3 a).

Total levels of short and medium (C4-C12) and long chain (C14-C22) carnitines were
calculated and compared to concurrent controls for all treatment groups and time points.
These revealed differences in a number of treatment groups. DEHP had the biggest effect
increasing both short/medium and long chain carnitines at all time points. Short/medium
chain carnitines were increased by 280% (p<0.001) 190% (p<0.01) and 190% (p<0.01)
(Figure 3 b), long chain carnitines were increased in a time dependent manner by 100%
(p<0.05) 160% (p<0.05) and 200% (p<0.001) on days 7, 28 and 91, respectively (Figure 3
c).

Cinn showed no differences in the carnitine metabolites ranging from C4-C22. The increase
in total carnitine levels were due to increased concentrations of free carnitine and β-
oxidation products acetyl- and propionyl-(C2 & C3) carnitines (Figure 3 d). CA caused
changes on days 29 and 91 increasing short/medium and long chain carnitines by 140%
(p<0.01), 130% (p<0.01), 166% (p<0.001) and 88% (p<0.01), respectively. Long chain
carnitine contents were reduced by 78% due to DETU treatment (p<0.001) on day 28.
However, no differences were measured in short/medium chain species.

Monuron showed a time dependent decrease in the liver’s short/medium chain carnitine
profile. These values compared to concurrent control showed no significance by 2-way
ANOVA. However, 1-way ANOVA comparing different time points within the treatment
group showed a decrease (p<0.01) from day 7 to 91 (Figure 3 e) which could relate to
aberrant oxidising ability.

Metabolomics results
Analysis of aqueous metabolites—Targeted metabolic profiling was used to measure
aqueous metabolites associated with energy homeostasis, nucleic acid metabolism and
methionine cycle intermediates. Changes were less profound than that of lipid changes, and
treatment groups could not be separated based on their potential for non genotoxic
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carcinogenesis or pharmacological mode of action. However, strong models could be built
in most cases when comparing individual treatment groups to concurrent controls.

For the measured 31 aqueous metabolites 2 way ANOVA with Bonferroni post test was
used to indentify metabolites differentiating between treatment and concurrent control
samples.

Decreased levels of methyl-cytosine and oxo-methionine were measured as effects of DEHP
and DEHA treatment. Methyl-cytosine levels were decreased by 42% (p<0.01) and 34%
(p<0.05) on day 28 by DEHP and DEHA, respectively (Figure 4 a). Oxo-methionine
decreased by 30% (p<0.05) on day 28 by DEHP and 25% (p<0.05) / 33% (p<0.01) on days
7 and 28 by DEHA (Figure 4 b). No changes were measured on day 91 in either DEHA or
DEHP treated groups as compared to controls.

Common features of PPAR-α agonists DEHP, Cinn and DEHA were decreased cytosine
(Figure 4 c) and guanine (Figure 4 d) levels (p<0.001) at all relevant time points (days 7, 28
and 91 for DEHP and days 7 and 28 for Cinn and DEHA).

Only DEHP effected the concentration of NAD, which was increased at all time points by
29, 25 and 43% (p<0.05, p<0.01, p<0.001) on days 7, 28 and 91 compared to concurrent
controls.

Finally there was a marked increase in uridine content due to MP HCl treatment (75%,
p<0.01) and a lesser increase by Cinn (59%, p<0.05) only on day 7.

An interesting common feature of NGCs in terms of aqueous metabolism include changes in
nucleoside content i.e. increased adenine and decreased guanine, cytidine and uracil levels
when compared to the control samples during the course of the study.

Discrimination of NGCs from non-NGCs and assessment of potential
biomarkers by ROC analysis—As expected from previous literature, the dominant
trends in the data were driven by PPAR-α activation and the differences between the NGCs
and non-NGCs were minor in comparison. However, despite this, good predictions were
made using data from GC-MS, FI-MS and LC-MS analyses. The combined datasets were
Pareto scaled and the predictive capability was assessed by multiple PLS-DA models. PLS-
DA models were built comparing NGCs to non-NGCs by using training sets where group
membership was retained and subsequently predicted (Table 2). Predictions were repeated 5
times, by retaining the group membership of a different observation each time for the test
dataset and using the remaining four observations as the training data (each group contained
5 animals). A training observation was either 0 or 1 indicating whether it belonged to a non-
NGC or a NGC class. If the predicted value was close to 0 the sample was predicted to be a
non-NGC if it was close to 1 the sample was predicted to be a non-mutagenic non-
hepatocarcinogen. Predicted values were averaged and expressed as a percentage.

The best predictions were made using the combined dataset at day 28 achieving 87.2%
predictability for NGCs and 76.9% for non-NGCs. It is likely that the predictive ability is
weakened in this study by the PB group which did not produce strong effects. Day 91 was
not considered on its own, as by this point, animals in the Cinn group were terminated and
animals in the DEHA group were returned to the control diet.

The performance of metabolites to discriminate between NGCs (PB, CA, DEHP, Mon, MP
HCl) and non-NGCs (Cinn, DEHA, BP, DETU) were tested using receiver operating
characteristic (ROC) analysis (Table 3). ROC curves were assessed using metabolite levels
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as measured on day 28 only because this time point achieved the best predictive ability at
87% and 77% for NGCs and non-NGCs, respectively.

ROC analyses were conducted on an assay by assay basis using classical biochemical
parameters and those methods which were able to separate NGCs from non-NGCs (i.e., GC-
MS, FI-Ms and LC-MS). Classical biochemical parameters were poor predictors of NGCs
achieving AUCs in the range of 0.5 to 0.75. Total fatty acid content has higher, but still low
predictive ability between 0.75 and 0.79 AUC values and predictive ability stays low even
with multivariate ROC. Individual free fatty acids and phospholipids measured FI-MS were
also poor predictors with AUCs between 0.66 and 0.75. However, combined markers by
multivariate ROC analysis achieved good predictor ability of AUC = 0.87 (Figure 5 a).

Phospholipids and triacylglycerols measured by LC-MS provided the best predictors with
AUC ranging from 0.79 to 0.82 for the top five metabolites, the markers in combination
achieving AUC = 0.85 (Figure 5 b).

Predicting PPAR-α induction—The predictive capability of PPAR-α induction of the
combined dataset was assessed on days 7 and 28 by building training sets where group
membership was retained and subsequently predicted (Table 2). On balance the best
predictions were made using the day 28 dataset. PPAR-α agonists were correctly assigned
90% ± 5% of the time, whereas non PPAR-α agonists were correctly assigned 95% ± 2% of
the time.

Predictability of the individual compounds was also assessed (Table 2). The overall quality
of the predictions suggests that there are differences between the effects of the PPAR-α
agonists. DEHA was the best predicted compound and was correctly assigned to be a PPAR-
α agonist 100% of the time on day 7. CINN was poorly predicted with correct predictions
ranging from 54% to 84% from day 7 to day 28.

The performance of metabolites to discriminate between PPAR-α agonists (DEHP, Cinn
DEHA) from all other treated groups (PB, CA, Mon, MP HCl, BP, DETU, 2-AAF) was also
tested using ROC analysis (Table 3).

Classical toxicology parameters were poor predictors producing areas under ROC curves
between 0.6–0.79 which could not be improved upon by multivariate ROC approach. GC-
MS data AUCs were in the range of 0.76–0.94 (fair to good predictors). The top 5 best
predictive metabolites were eicosatrienoic 20:3 (n-3), γ-linoleic 18:3 (n-6), α-linoleic 18:3
(n-3), linoleic 18:2 (n-6) and arachidonic acids 20:4 (n-6). The combination of metabolites
improved the AUC to 0.907. FI-MS data produced the highest range of AUC values between
0.86–0.95 for the top five discriminators. In agreement with the GC-MS data fatty acids 20:3
and 18:2 are amongst the top five discriminators. Multivariate ROC using a combination of
these metabolites achieved maximum AUC value (AUC=1). Finally LC-MS data also
achieved high AUC values between 0.89–0.91 for the top five metabolites, a combination of
which achieved AUC 0.995.

DISCUSSION
The identification of NGCs in safety assessment in the pharmaceutical and agrochemical
industries is costly, lengthy and animal intensive. There has been great interest in applying–
omic technologies to this problem to identify potential signatures associated with NGCs
which could streamline the process to reduce costs and the time requirements by eliminating
carcinogenic compounds from development before embarking on lengthy bioassays. In this
study we have applied a combined metabolomics/metabonomics and lipidomic screen to
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investigate metabolic changes induced by either NGCs or non-NGCs in a study to mimic 28-
and 91-day toxicology studies in safety assessment. Compounds were administered at their
maximum tolerated dose levels in order to reflect the known carcinogenic and toxicity
effects4, 27–40. The described approach demonstrated metabolomics to be a useful tool for
further elucidating liver toxicity, and evaluating and exploring mode of action specific
effects of molecules. In addition we have identified a signature of metabolomics and
lipidomic changes that characterise NGCs from non-NGCs in the present study.

Body and liver weights
The increases in liver weight observed from the majority of compounds were as expected
from the literature4, 32, 37, 41. While a number of NGCs produce sustained increases in liver
weight, non-NGC which were also associated with increased liver weight were deliberately
chosen for this study. This was to avoid the situation where the metabolic changes detected
between the NGCs and non-NGCs were simply markers of liver growth. Thus, in the ROC
analyses increase in liver weight was poorly predictive (AUC=0.619; confidence
interval=0.466–0.772) equivalent of predictions achievable by chance as would be expected
for our compound selection. The decreases in body weight due to decreased food
consumption observed in rats exposed to CINN and DEHA were not anticipated and meant
that comparisons between the NGCs and non-NGCs could not be made at day 91. However,
this did offer the opportunity to study the reversibility of exposure to DEHA, which has not
previously been reported.

Histopathology and plasma clinical biochemistry
Overall the changes in the plasma clinical biochemistry were small and the compounds
demonstrated the expected hepatic effects known to occur following sub-chronic dietary
administration.

MP HCL was the only compound for which evidence of necrosis/apoptosis was observed
following histopathological examination. The increased levels of glutamate dehydrogenase,
aspartate aminotransferase, and alkaline aminotransferase reflected these changes in
accordance with previously observed effects of MP HCl 42.

Pharmacological mode of action and compound specific effects
The largest effects in the datasets from all the analytical platforms were compound specific,
and in particular the three PPAR-α agonists produced similar profiles which were distinct
from the other groups as demonstrated by GC-MS, FI-MS and LC-MS lipidomic datasets.
This concurs with findings in transcriptomic studies designed to look for characteristic
signatures of NGCs which found distinctive profiles associated with peroxisome
proliferators dominated the effects of other compounds8, 10, 43. However, the
pharmacological mode of action specific effects do not correspond to the
hepatocarcinogenicity of a compound as the PPAR-α agonists subgroups contain both non-
genotoxic hepatocarcinogens and non-mutagenic non-hepatocarcinogens.

The dominating effects of PPAR-α agonists reflect the major role that PPAR-α has in
regulating central metabolism19. As measured by GC-MS DEHP, Cinn and DEHA all
caused changes in fatty acids partially associated with the highly unsaturated fatty acid
(HUFA) pathways, especially arachidonic (20:4 n-6, increased) and docosahexaenoic acid
(22:6 n-3, decreased) synthesis. Decreases of dietary essential fatty acids linoleic acid (18:2
n-6) and α-linolenic (18:3 n-3) acid following exposure to PPAR-α agonists is consistent
with research which reported Δ6 desaturase (D6D) to be markedly induced by PPAR-α 44

and it is also well established that the synthesis of both n-6 and n-3 HUFA is catalyzed by
the same D6D 45. Other metabolites of n-6 (linoleic acid) increased in concentration while
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n-3 (α-linoleic acid) metabolites decreased. There is considerable evidence on the
differential roles of n-3 and n-6 fatty acids. While n-3 polyunsaturated fatty acids (PUFAs)
have anti-inflammatory properties46 and reduce mRNA levels of c-myc oncogene 47, the n-6
PUFAs have the opposite effects. This is also in line with research showing overexpression
of c-myc due to PPAR-α induction48. Thus, n-6 PUFAs and n-3 PUFAs may promote and
suppress carcinogenesis, respectively. Overproduction of arachidonic acid (20:4 n-6)
measured may also be linked to tumor initiation by arachidonic acid-derived eicosanoids
that are known to cause inflammation49.

Carnitine and acylcarnitine concentrations also changed markedly due exposure to PPAR-α
agonists. These were expected results as PPAR-α agonists are known to increase
peroxisomal β-oxidation of fatty acids (Latruffe and Vamecq, 1997; Mandard et al., 2004).
However, increased β-oxidation cannot be completely attributed to the induction in
peroxisomal enzymes as the mitochondrion also contains all the enzymes necessary for fatty
acid β-oxidation and these enzymes are targets of PPAR-α. The increased capacity for the
breakdown of fatty acids was also indicated by decreased relative concentrations of
triacylglycerols (TGs) as well as phospholipids (PLs) in the case of all three PPAR-α
agonists.

In general exposure to Cinn had a reduced impact on the relative concentrations of altered
metabolites in all lipidomic experiments compared to DEHP and DEHA, which could be
reflective of the fact that Cinn is a weaker peroxisome proliferator50.

The PPAR-α agonist DEHA group showed decreased body weight in response to treatment
and the animals were returned to control diet after five weeks. This presented the
opportunity to investigate whether its effects are reversible. DEHA causes an increase in
relative liver weight and it has previously been shown that increase is sustained if exposure
is continued for 13 weeks 35. For the PPAR-α agonist DEHP the effects of exposure
(increased liver weight, peroxisomal β-oxidation, inhibition of gap junction intercellular
communication and changes in plasma clinical chemistry) have been shown to be reversible
on discontinuation of treatment51. The effects of exposure to the PPAR-α agonist DEHA
also showed reversibility. The effects of 5 weeks dietary exposure to DEHA on relative liver
weight, plasma cholesterol and triglycerides all reversed and there were no significant
differences from control values when DEHA was withdrawn. The metabolic profile of the
liver also showed reversibility on all platforms studied.

PB and BP also have shared mode of action both causing induction of cytochrome P450s37.
However, this was not reflected in their co-clustering in many of the multivariate models
produced of the different analytical platforms. Cytochrome P450s are located on the
endoplasmic reticulum (ER) and PB is known to induce proliferation of the ER. In the
present study the PB group, or indeed the combined PB and BP group, was not associated
with major alterations in the lipidome. Minor changes were detected in the FI-MS lipid data,
and both PB and BP caused decreases in phosphoinositols and increases in phosphocholines
and phosphoethanolamines by day 91. This suggests that PB and BP have similar effects on
the phospholipid content of the liver in a time dependent manner, possibly due to the
induction of cytochrome P450s and the associated changes in the ER.

MP HCl caused strong metabolic alterations that allowed its ready classification in
multivariate models. MP HCl causes liver toxicity and regenerative hyperplasia. It has been
suggested that it causes liver mitochondrial proliferation in the rat and has high binding
affinity for mitochondrial proteins52. In our study, the carnitine profile remained the same
and did not indicate changes in mitochondrial biogenesis or increased mitochondrial fatty
acid β-oxidation. Increased relative concentrations of TAGs and decreased concentrations of
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PCs also suggest against any increase in β-oxidation and mitochondrial proliferation.
However, TG increase agree with studies that show micro vesicular lipid droplet formation
in response to MP HCl53. Decreased concentrations of PCs measured indicate breakdown of
PCs which suggest enhanced choline metabolism. Enhanced choline metabolism has
previously been reported by Craig et al.54 who measured increased concentrations of urine
dimethylglycine (formed during choline catabolism) and trimethylamine oxide (formed by
the oxidation of trimethylamine, the product of choline degradation) after MP HCl treatment
of rats.

The mode of action by which CA causes hepatotoxicity is unknown, although it has been
found to induce replicative DNA synthesis55 and is considered a NGC56. To our knowledge
metabolic effects of this compound have not been documented previously, but in the present
study CA caused strong responses across all metabolic platforms, characterised by opposing
effects compared to the PPAR-α agonists. CA increased dietary essential fatty acids linoleic
acid (18:2, n-6) and α-linolenic acid (18:3, n-3) concentrations and decreased concentrations
of arachidonic acid (20:4, n-6) and eicosapentaenoic acid (20:5, n-3), indicative of decreased
6 desaturase activity. In contrast to PPAR-α agonist induced effects, the peroxisome β-
oxidation end product docosahexaenoic acid (DHA, 26:6 n-3) was decreased, indicating
decreased peroxisomal activity. At the same time however, a time dependent increase in
short-medium and long chain carnitine concentrations suggested an increase in
mitochondrial β -oxidation, which is the only response common to the PPAR-α agonists.

The mode of action of Mon is also unknown, although other urea herbicides such as diuron
are suggested to act by causing cell death and consequently regenerative cell proliferation
that leads to carcinogenesis57. Changes in total lipid content were similar to MP HCl,
associated with increased TAG and decreased PC concentrations. There were no changes
detected in total carnitine concentrations, although the short to medium chain carnitine
content decreased from day 7 to day 91 indicative of a slight up regulation in short- and
medium-chain acyl-CoA dehydrogenase activity.

Potential biomarkers of NGCs and PPAR-α induction
A central aim of this study was to investigate whether metabolomics and lipidomic changes
could be used to discriminate NGCs from non-NGCs. A number of previous studies have
attempted to determine biomarker signatures associated with NGCs. Both proteomics and
transcriptomics have been previously applied to studies of NGCs8, 13.

FI-MS marker lipids detected in negative ESI mode in combination (22:4, LPC(18:1),
PC(18:1_18:2), PE(18:0_20:4) and LPI(16:0)) (Table 3) predicted non-genotoxic
carcinogenic potential across the entire dataset with the best accuracy (AUC=0.88) with
individual markers ranging from AUC 0.75–0.66. Whereas the lipid LC-MS data (positive
ESI mode) of PLs and TGs in combination were slightly less accurate (AUC=0.85),
however, the diagnostic ability of the markers individually were better (AUC=0.8–0.82). To
date there have been relatively few studies of lipid metabolism in liver cancer models.
Beyoglu and colleagues have previously used GC-MS to observe changes in linoleic acid,
palmitic acid, 1-stearoylglycerol and 1-palmitoylglycerol associated with human
hepatocellular carcinoma58. Palmitate containing lipids have previously been implicated in
aggressive breast tumours, being correlated with cell proliferation and tumour growth59.
However, it should be noted that the present lipid changes detected in our study pre-date the
formation of any tumourous material and most likely are associated with the very earliest
stages of non-genotoxic carcinogenicity.

In terms of predicting mode of action, lipid classifiers yielded 100% prediction accuracies
for predicting actual PPAR-α induction and false positive prediction was almost completely
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absent across the entire dataset. The best markers of PPAR-α induction were free
eicosatrienoic acid (20:3 n-3) and phosphoinositol (18:0_22:4), both detected by FI-MS, and
achieved AUC 0.95 and 0.93, respectively. Combination of the best predictive metabolites
measured by FI-MS achieved an AUC of 1. The ability of metabolomics to identify PPAR-α
agonists with such high sensitivity and specificity reflects the important metabolic role the
receptor plays within the liver. However, the capability to classify NGCs from non-NGCs
was hindered by this large mode of action effect as the PPAR-α agonist group contained
both NGCs and non-NGCs which co-clustered when we performed unsupervised analysis
such as PCA.

It should be noted that there is a distinct difference between human PPAR-α and rodent
forms of the gene in terms of the induction of non genotoxic carcinogenicity. Morimura and
colleagues demonstrated that the human form of PPAR-α expressed in a murine PPAR-α
knock out mouse restored normal metabolic responses to PPAR-α agonists but were
remarkable resistant to non genotoxic carcinogenicity60. Such mice could be used to
determine metabolic and lipdomic markers associated with NGCs, although it should be
noted in the current study the PPAR-α agonist group consisted of both NGCs and non-
NGCs, and so models describing differences between these two classes should not have
been influenced by purely metabolic PPAR-α agonists effects.

In the current study only 10 compounds were examined and as such should be viewed as a
proof of concept study. The models distinguish NGCs from non-NGCs using metabolomics
suggests that the predictions of the models could be improved by using a larger dataset
covering more compounds and modes of actions (MOAs).

Evaluation of carcinogenesis in relation to PPAR-α dependent and PPAR-α independent
pathways would also help understand differences in susceptibility of various species, where
the major factor is considered to be caused by differences in PPAR-α expression61.

Practical considerations
In this study, the assessments of the lipidome by various analytical techniques has
consistently shown similar patterns which were caused in a compound and mode of action
specific manner. This consistency across analytical platforms strengthens the validity and
robustness of our approach. The best performing metabolic biomarkers for the separation of
NGCs and non-NGCs were measured by intact lipid profiling methods FI-MS and LC-MS,
followed by the total fatty acid measurements of GC-MS.

Implementation of lipidomic screening methods by FI-MS could provide a rapid and
feasible approach for the screening of biomarkers as it provides the simplest laboratory
technology for intact lipid analysis. FI-MS does not require derivatisation methods like
techniques such as GC-MS nor does it require the technical expertise of a separation
scientist. Despite this, there remains a general limited knowledge about the function of most
intact lipid species which makes interpretation of the data most challenging.

The above discussion has focused on methods that can map molecular events, help to
elucidate the MOA of a given substance and ultimately help to improve testing strategies for
NGC screening. Such approaches reported previously, however, are scarcely applied. One of
the reasons for this is perhaps the traditional view on MOA frameworks which represent a
linear cause and effect paradigm. Our current understanding of toxic response (as reflected
by -omics approaches) however, defines a complex, nonlinear adaptive system requiring
integration of multiple biological mechanisms62. Applying multivariate ROC analysis63

could be a useful platform in bridging the gap between the concepts of linear key events and
nonlinear complex mechanism and take -omics technologies more accessible, particularly
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when internal company decisions are made on whether compounds should be taken forward
into the expensive long term animal studies.

Monitoring of multiple biomarkers and retaining complexity by using multivariate ROC
analysis is perhaps particularly important in the case of NGCs which have a wide array of
MOAs. This is illustrated well by this study, where even though only 10 compounds
containing 5 NGCs were profiled, they represented 5 different MOAs. Although the
underlying key events may be common, a single biomarker is unlikely to be able to
accurately predict toxicity outcome across all MOAs.

A significant challenge remains in the interpretation of the data which is greatly impeded by
the general lack of knowledge about the biological role of many of the molecules measured,
particularly for the lipidomics datasets. Combining various -omic disciplines to include
transcriptomics and proteomics datasets alongside metabolomics/metabonomics, and better
pathway mapping tools will help improve biological understanding of species of unknown
functions and the physiological implications of the results. Although it has been argued that
metabolomics approach yield faster and cheaper results than transcriptomics and proteomics,
these tools are increasingly used alongside one another.

We have previously used transcriptomics and metabolomics to understand orotic acid
induced fatty liver disease64–65 and phenobarbital induced NGC24. As for predictability, as
we are still unclear about the biological functions of most genes, proteins and metabolites
involved in NGC, these techniques are believed to be complimentary methods rather
competing screening tools.

Conclusions
This study has shown that metabolomic profiling of the lipidome, reflecting sub-cellular
changes, has utility in elucidating and understanding toxicity and carcinogenic events, and
also has potential in contributing in a design of a new battery of screening methods. Such -
omic signatures for NGCs may provide a significant financial and time saving in assessing
compounds for non genotoxic carcinogenicity. Further work, including validation, exposure
studies and a dose response would help to better define the utility of this methodology.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of gas chromatography-mass spectrometry (GC-MS) analysis results
Partial least squares-discriminant analysis (PLS-DA) scores plot (A) shows total fatty acid
data from lipid extracts of liver tissue samples at all time points. Diethylhexylphthalate
(DEHP), cinnamon anthranilate (Cinn) and diethylhexyadipate (DEHA), the three PPAR-α
agonists, show tight clustering. Metabolic changes caused by PPAR--α agonists (B) DEHP
DEHA and Cinn on day 8 and 29 are increased -linoleic acid (GLA), dihomo-γ-linoleic acid
(DGLA) and arachidonic acid (AA) (in red). Linoleic acid (LA), -α-linoleic acid (-α-LA),
eicosapentaenoic acids (EPA) and docosahexaenoic acid (DHA) concentration were
decreased (in green). End products AA and DHA are synthesised from the dietary essential
fatty acids LA and -α-LA, respectively. Arrows show the direction of changes in lipid
concentrations relative to control samples.
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Figure 2. Summary of the result of intact lipid data collected from lipid extracts of rat liver
tissue samples at all time points
Partial least squares-discriminant analysis (PLS-DA) scores plot of the flow injection-mass
spectrometry (FI-MS) of intact lipid data collected from lipid extracts of rat liver tissue
samples at all time points (A). The major trend is driven by the separation of samples from
animals exposed to the three peroxisome proliferator activated receptor agonists (PPARs)
diethylhexyl phthalate (DEHP) Cinnamylanthranilate (Cinn) and diethylhexyl adipate
(DEHA). Misclassification tables were built (B, C) using FI-MS data. Misclassification
table (B) shows the proportion of correctly classified observations in the predictionset for all
treatment groups. Misclassification table (C) shows the proportion of correctly classified
observations when non-genotoxic carcinogens (NGCs) and non-NGCs are predicted.
PLS-DA scores plot of the liquid chromatography-mass spectrometry (LC-MS) of intact
lipid data collected from lipid extracts of rat liver tissue samples at all time points (D).
Misclassification tables were built (E, F) using LC-MS data. Misclassification tables show
the proportion of correctly classified observations in the prediction set for all treatment
groups (E) and the proportion of correctly classified observations when non-genotoxic
carcinogens (NGCs) and non-NGCs are predicted (F). For list of treatment abbreviations see
table 1.
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Figure 3. Overview of changes in relative carnitine levels
Total carnitine levels increased due to peroxisome proliferator activated receptor alpha
(PPAR-α) agonists diethylhexylphthalate (DEHP), cinnamon anthranilate (Cinn) and
diethylhexyadipate (DEHA). Carnitine levels of DEHA group (which was returned to
control diet after 35 days) returned to control levels (A). DEHP cause the strongest effects,
which were due to an increase in the short and medium chain carnitines throughout the three
timepoints studied (B), as well long chain carnitines which showed a time dependent
increase (C). Total carnitine level increases in Cinn were due to increased free, acetyl-, and
propionyl-carnitines (D). Short and medium chain carnitines decreased in monuron (Mon)
treated samples from day 7 to day 91 (E). Statistical significance was determined by
ANOVA with Bonferroni’s post test for multiple comparisons, labelled * p<0.05, ** p<0.01,
and *** p<0.001.
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Figure 4. Changes in aqueous metabolites affected by peroxisome proliferator activated receptor
alpha (PPAR-α) agonists
Methyl-cytosine (A) and oxo-methionine (B) concentrations were decreased by
diethylhexylphthalate (DEHP) and diethylhexyadipate (DEHA). Cytosine (C) and guanine
(D) concentrations were decreased by all 3 PPAR-α agonists: DEHP cinnamon anthranilate
(Cinn) and DEHA. Statistical significance was determined by ANOVA with Bonferroni’s
post test for multiple comparisons, labelled * p<0.05, ** p<0.01, and *** p<0.001.
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Figure 5. Receiver operating characteristic (ROC) analysis discriminating non-genotoxic
carcinogens (NGCs) from non-NGCs
Free fatty acids and phospholipids measured by flow injection-mass spectrometry (FI-MS)
achieved good predictor ability and the area under the curve (AUC) equalled 0.88 when the
top five best predictors were combined (A). While the top five phospholipid and
triacylglycerol markers in combination measured by liquid chromatography mass
spectrometry (LC-MS) achieved AUC = 0.85 (B).
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Table 2

Predictive capability of combined datasets using PLS-DA, including GC-MS, FI-MS, and LC-MS.

(A) NGCs vs. non-NGCs

NGCs day 7 82% ± 5% non-NGCs day 7 75% ± 8%

NGCs day 28 87% ± 4% non-NGCs day 28 77% ± 8%

NGCs days 7 & 28 85% ± 3% non-NGCs days 7 & 28 76% ± 6%

NGCs all days 82% ± 3% non-NGCs all days 71% ± 4%

(B) PPARs vs. non-PPARs

PPARs day 7 86% ± 10% non-PPARs day 7 101% ± 2%

PPARs day 28 90% ± 5% non-PPARs day 28 95% ± 2%

PPARs days 7 & 28 88% ± 5% non-PPARs days 7 & 28 98% ± 1%

(C) individual PPARs vs. non-PPARs

DEHP day 7 94% ± 3% Cinn day 7 54% ± 14%

DEHP day 28 94% ± 6% Cinn day 28 84% ± 4%

DEHP days 7 & 28 94% ± 6% Cinn days 7 & 28 73% ± 12%

DEHA day 7 102% ± 3%

DEHA day 28 94% ± 2%

DEHA days 7 & 28 99% ± 3%

Predictive capability of combined dataset to distinguish between NGCs and non-NGCs (A), PPARs and non-PPARs (B) and the individual PPARs
(C) form other compounds. The predictive capability of the combined dataset was assessed by building training sets where group membership was
retained and subsequently predicted. Analyses were carried out separately for the day 7, 28, and 91 kill animals. Abbreviations: Cinn, cinnamon
anthranilate; DEHA, diethylhexyadipate; DEHP, diethylhexylphthalate; FI-MS, flow injection-mass spectrometry; GC-MS, gas chromatography-
mas spectrometry; LC-MS, liquid chromatography-mass spectrometry; NGC, non-genotoxic carcinogen; PPAR, peroxisome proliferator-activated
receptor.
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Table 3

Performance of potential biomarkers based on ROC (Receiver Operating Characteristic) curves. GC-MS data
is reported relative to universally deuterated tridecanoic acid as a standard and LC-MS data is reported relative
to (PC (17:0/17:0)) as a standard. Thus, AUC curves are generated from semi-quantitative data.

(A) Discriminators of NGCs from non-NGCs

Classical toxicology parameters

AUC p-value C.I. Fold change

1 ALP 0.77 5.12E-02 0.62–0.91 0

2 GGT 0.75 1.02E-02 0.61–0.88 0.52

3 Creatine 0.72 7.37E-01 0.56–0.87 −0.03

4 Body weight 0.68 4.53E-01 0.51–0.84 0.16

5 AST 0.68 2.44E-01 0.47–0.82 0.07

6 Combined 0.66 0.15–0.84

Gas chromatography-mass spectrometry

1 Eicosenoic acid 20:1 (n-9) 0.79 3.68E-03 0.65–0.93 0.09

2 Stearic acid 18:0 0.79 6.42E-04 0.64–0.90 −0.28

3 α-linoleic acid 18:3 (n-3) 0.77 2.56E-03 0.63–0.91 0.07

4 Eicosadienoc acid 20:2 (n-6) 0.76 8.76E-03 0.61–0.91 0.09

5 Linoleic acid 18:2 (n-6) 0.75 4.16E-03 0.61–0.88 0.3

6 Combined 0.74 0.33–0.89

Flow injection-mass spectrometry

1 22:4 (m/z 305.5) 0.75 1.42E-03 0.60–0.90 0.44

2 LPC 18:1 (m/z 512.5) 0.69 9.47E-02 0.50–0.83 −0.38

3 PC(18:1_18:2) (m/z 768.75) 0.67 6.19E-02 0.47–0.83 −0.2

4 PE(18:0_20:4) (m/z 776.67) 0.67 6.14E-02 0.48–0.84 −0.21

5 LPI 16:0 (m/z 571.5) 0.66 1.57E-01 0.50–0.83 0.18

6 Combined 0.88 0.73–0.99

Liquid chromatography-mass spectrometry

1 LPA (12:0) (m/z393.301) 0.82 2.33E-02 0.71–0.94 5.7

2 PE(44:0) (m/z 860.775) 0.82 3.21E-03 0.70–0.93 4.72

3 TG(53:3) (m/z888.805) 0.82 5.25E-03 0.69–0.93 4.55

4 TG(51:2) (m/z 862.791) 0.8 9.89E-04 0.66–0.91 3.59

5 TG(55:6) (m/z 910.797) 0.8 2.98E-04 0.66–0.92 4.42

6 Combined 0.85 0.69–0.95

(B) Discriminators of PPAR-α agonists from non-PPAR-α agonists

Classical toxicology parameters

AUC p-value C.I. Fold change

1 Liver to body weight 0.79 1.02E-03 0.63–0.91 0.61

2 Cholesterol 0.7 3.76E-02 0.54–0.86 −0.35

3 AST 0.68 3.71E-01 0.54–0.82 0.24

4 Bile acids 0.67 1.54E-02 0.51–0.83 0.9

5 ALT 0.63 6.35E-01 0.46–0.78 0.33
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(B) Discriminators of PPAR-α agonists from non-PPAR-α agonists

Classical toxicology parameters

AUC p-value C.I. Fold change

6 Combined 0.79 0.54–0.96

Gas chromatography-mass spectrometry

1 eicosatrienoic acid 20:3 (n-3) 0.94 6.11E-07 0.88–0.99 0.38

2 γ-linoleic acid 18:3 (n-6) 0.87 1.78E-04 0.77–0.95 0.12

3 α-linoleic acid 18:3 (n-3) 0.87 1.46E-03 0.75–0.95 −0.09

4 linoleic acid 18:2 (n-6) 0.78 3.55E-02 0.63–0.91 −0.3

5 arachidonic acid 20:4 (n-6) 0.76 2.72E-02 0.60–0.90 0.3

6 Combined 0.91 0.79–0.98

Flow injection-mass spectrometry

1 20:3 (m/z 305.5) 0.95 2.28E-08 0.89–0.99 0.54

2 PI(18:0_22:4) (m/z 913.75) 0.93 3.65E-07 0.84–0.98 −0.87

3 PI(16:0_18:1) (m/z 835.75) 0.92 1.06E-07 0.82–0.98 0.68

4 18:2 (m/z 279.42) 0.89 1.22E-05 0.76–0.97 −0.62

5 18:1 (m/z 281.42) 0.86 3.62E-05 0.77–0.94 0.4

6 Combined 1 1

Liquid chromatography-mass spectrometry

1 TG(48:6) (m/z 812.661) 0.91 5.51E-08 0.83–0.98 1.19

2 PE(28:3) (m/z 647.464) 0.9 5.16E-04 0.81–0.97 −2.01

3 TG(51:7) (m/z 852.719) 0.9 7.70E-05 0.81–0.97 −1.49

4 PC(36:6) (m/z795.635) 0.9 3.63E-07 0.80–0.96 3.85

5 PC(47:2) (m/z 830.575) 0.9 1.73E-07 0.78–0.97 2.47

6 Combined 1 0.98–1

Performance of potential biomarkers based on receiver operating characteristic (ROC) curves. Biomarkers were assessed for the discrimination of
non-genotoxic carcinogens (NGCs) from non-NGCs (A) and the discrimination of peroxisome proliferator activated receptor-α (PPAR-α) agonists
form other compounds (B). The utility of a biomarker based on its AUC (area under curve) was used according to the following value ranges: 0.9–
1.0 = excellent, 0.8–0.9 = good, 0.7–0.8 fair, 0.6–0.7 = poor. Abbreviations: ALP, alkaline phosphatase; AST, aspartate aminotransferase; C.I.
confidence interval; GGT, gamma-glutamyltransferase; LPA, lysophosphatidic acid; LPC, lyso-phosphocholine; LPI, lysophosphatidylinositol; PC,
phosphocholine; PE phosphoethanolamine; TG, triacylglycerol.
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