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Stroke is a leading cause of long-term adult disability worldwide. Only a small proportion of
stroke survivors (approximately 14%) achieve full recovery of activities of daily living
(ADLs), while 25%-50% require some assistance, and approximately half experience long-
term dependency 1. Prediction of outcome after ischemic stroke therefore is important for
setting realistic and attainable treatment goals, informing patients and their relatives
properly, facilitating discharge planning, and anticipating possible consequences for home
adjustments and community support2. Moreover, knowledge of the expected recovery
pattern is necessary to assess the effectiveness of new therapeutic interventions and their
contribution to recovery and should be applied to select comparable patients populations for
treatment trials3.

A number of standardized measures assess various aspects of stroke outcome and recovery,
including quantification of neurologic deficits, functional outcome measures, and quality of
life measures. Activities of daily living, including dressing, mobility, and bathing, are
assessed most frequently by the Barthel Index (BI4) and by the modified Rankin Scale
(mRS5), but also by the Glasgow Outcome Scale6, the Functional Independence Measure7 or
other ADL assessment tools8. Frequently used measures of quality of life include the Stroke
Impact Scale and European Quality of Life Scale (EQ-5D).9, 10 A considerable number of
prognostic stroke studies used the BI and the mRS as the primary outcome measure reached
after 3 – 6 months and found that scores on scales assessing severity of neurologic deficits
such as the National Institutes of Healt Stroke Scale (NIHSS)11-13 and Canadian
Neurological Scale14 in acute stroke (i.e. within 72 h) are strongly associated with outcome
beyond 3 months2, 15.

A systemic review of prognostic studies8 indicated that age and motor weakness were
important predictive variables of outcome in addition to stroke severity; however gender and
presence of vascular risk factors were not. Employing simple models, a modestly large
percentage of patients could be correctly classified with respect to survival and functional
recovery (70.4% and 72.9%12) and to the severity of impairment on the BI (severe vs. mild
neurologic deficits, AUC 0.789 to 0.808 depending on time of assessment 2 days to 5
days,16). The addition of more clinical variables and application of more complex models
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improved prediction accuracy only slightly (83.9%13). Treatment with recanalization
therapies such as intravenous tissue plasminogen activator (IV tPA) is also an important
predictor of improved outcome.

Advanced neuroimaging techniques are now widely available for the assessment of stroke.
These studies have the potential to improve accuracy of stroke outcome predictive scales,
provide valuable insights into the pathophysiology of stroke injury and recovery, and
provide biomarkers to test the efficacy of putative therapies. In this review, we discuss the
contributions of various neuroimaging studies in predicting recovery and functional
outcomes in ischemic stroke patients, and their role in assessing the efficacy of rehabilitation
therapies both in clinical trials and in individual patients.

Structural Imaging
Computed Tomography

The most widely used imaging procedure in acute stroke is noncontrast head CT, which
allows differentiation between hemorrhagic and ischemic stroke, localization of the lesion,
and assists in decision-making regarding administration of potentially risky stroke therapies
including thrombolytics. As a measure for quantifying ischemic changes on CT, the Alberta
Stroke Program Early Computed Tomography Score (ASPECTS) was developed to evaluate
the extent and location of ischemic changes in 10 regions within the territory of the middle
cerebral artery (MCA)17 and has been found to be a reproducible scale that can help to
predict functional outcome on mRS at 3 months post-stroke. In combination with age and
the severity of neurologic deficits, a subacute ASPECTS of better than 5 had a significant
predictive value of greater functional independence at 3 months (R2=0.701) and 1 year post-
stroke (R2=0.528)18. In another large study, initial lesion volume was found to be a strong
and independent predictor of stroke outcome in a statistical regression model that also
accounts for age and NIHSS. By including the lesion volume as an additive predictive
factor, the fraction of unexplained variability could be reduced by 15%19. As a consequence,
the inclusion of lesion size in predictive models of outcome has the potential to improve
stratification of samples and increase power for effect detection in trials of acute therapies
and of rehabilitative strategies in ischemic stroke.

Magnetic Resonance Imaging
High resolution structural MRI sequences reproducibly identify even small stroke lesions,
but relating the size of lesions to clinical impairment and functional outcome is difficult
especially since small lesions of the subcortical white matter or the brainstem can produce
disproportionate clinical disturbances20. Involvement of the corticospinal tract by the
ischemic lesion is a particularly important factor limiting motor recovery21. Severe white
matter disease may also be an independent predictor of poor functional outcome.22

Diffusion-weighted imaging (DWI) provides an early, distinct, and sensitive measure of
both the size and location of ischemic brain lesions. DWI is sensitive to the movement of
water molecules within the tissue which is reduced in regions of cytotoxic edema during
early ischemia. In patients with nonlacunar strokes in the anterior circulation, lesion volume
assessed by DWI in addition to age and NIHSS score was an independent predictor of
outcome, separating patients with a final BI above or below 8523. DWI lesion volume
significantly increased power of some, but not all24, prediction models; however, this effect
was not large enough to be clinically important in another analysis25. The likelihood of
achieving excellent neurological outcome diminished substantially with growth in DWI
infarct volume in the first 5 days after ischemic stroke of mild to moderate severity26. Some
studies have incorporated information on infarct location to predict neurologic deficits.27, 28
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Diffusion tensor imaging (DTI) permits visualization of white matter pathways in the brain
and has been specifically used to demonstrate damage to the corticospinal tract, which is
commonly associated with motor impairment in chronic stroke patients29. DTI measures
may also be used to predict long-term outcome; in one study, the extent of damage to the
corticospinal tract following a corona radiata infarct assessed 7 – 30 days after a stroke was
related to motor function of the affected hand 6 months later30, 31. The damage to the
pyramidal tract assessed by fractional anisotropy in DTI progressively decreased in the
medulla as well as in proximal portions 1 to 12 weeks after pontine infarction, and these
anterograde and retrograde degenerations were accompanied by deterioration in the clinical
scales of motor function32. The prediction of motor impairment and recovery was improved
if not merely the pyramidal tract but also alternative motor fibers were included in the
classification of damage21.

Efficiency of rehabilitative therapy has been related to DTI parameters of individual tracts
and tract combinations and may indicate a patient’s individual recovery potential and the
optimal rehabilitative intervention33. Additionally, gains from treatment were related to the
degree of injury to specific motor tracts (descending from primary motor cortex,
supplementary motor area, dorsal premotor cortex and ventral premotor cortex,
respectively), and the damage to these tracts had a greater impact on the therapeutic effect
than infarct volume or baseline clinical status34. Damage to the posterior limb of the internal
capsule within 12 hours of symptom onset correlated well with motor impairment at 30 and
90 days; the sensitivity and specificity of the DTI parameters were superior to lesion volume
in the corona radiata or the cortex and to baseline clinical scores35.

Nonmotor pathways can also be studied by relating their damage to higher brain function,
e.g. language performance. Lower fractional anisotropy (FA) values in the superior
longitudinal and arcuate fasciculi of the left hemisphere were correlated with decreased
ability to repeat spoken language and lower FA values in the arcuate fasciculus were
associated with comprehension deficits; these relationships were independent of the degree
of damage to cortical areas36.

All these data stress that the connectivity in networks as assessed by DTI is likely to be more
important for outcome and recovery than the extent of the primary structural lesion.
However, despite all these promising results, structural neuroimaging neither provides
information on the cause of the ischemic lesion and compensatory mechanisms, nor
indicates whether or how surviving tissues are working37. The functional connectivity
between cortical and subcortical components of neural networks determines the capacity for
reorganization and recovery. The studies of these measures require modalities for
physiologic, molecular, and functional imaging.

Assessment of Brain Blood Supply and Cerebral Perfusion
Ischemic stroke is directly caused by the reduction of tissue blood flow below a critical
threshold for a critical period of time. Usually this shortage in blood supply is due to the
occlusion of the feeding vessel and the insufficiency of collateral perfusion. Occlusion of a
large intracranial vessel, such as the basilar, internal carotid or middle cerebral artery, is
associated with higher mortality and more severe permanent deficits and therefore the
pathologic vascular state can be expected to contribute predictive value to models of stroke
outcome. Retrospective studies of patients undergoing conventional angiography found that
basilar and internal carotid artery occlusions had the highest NIHSS scores38 whereas
normal angiograms predicted a good prognosis. In a prospective study, results from CT
angiography (CTA) performed within 24 hours of symptom onset were related to outcome
after 6 months39. Larger vessel occlusion significantly increased 6-month mortality (4.5-fold
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increase) and was negatively correlated to good outcome (mRS ≤ two-threefold reduction).
In a multivariate analysis, the presence of basilar and internal carotid occlusions
independently predicted outcome in addition to age and NIHSS. Inclusion of information
from CT angiography contributed significantly more to outcome prediction than the
ASPECTS score40, 41. Evidence of large vessel occlusion therefore may be crucial for
improving outcome by early endovascular interventions. The STOP Stroke study reported
that CTA information improved stroke outcome prediction when combined with the
NIHSS.40 In a pooled analysis from all three of the desmoteplase trials, in patients with a
visible occlusion on noninvasive vessel imaging at baseline, the desmoteplase groups had
greater rates of good clinical response.42

The vascular occlusion and its eventual recanalization are decisive for the evolution of tissue
damage and for clinical deficits, but the final size of an infarct is also influenced by the
extent and quality of collateral circulation to the affected brain area. The presence of robust
collateral flow is best visualized by conventional angiography and has been linked to
improved clinical outcomes and reduced infarct volumes; in cases receiving thrombolysis,
collateralization was a significant univariate predictor in addition to occlusion type and
recanalization43, 44. CT angiography as a non-invasive alternative has better spatial
resolution than transcranial Doppler or MR angiography and can depict leptomeningeal
collaterals. Rapid recruitment of sufficient collaterals was related to favorable outcome,
whereas patients with diminished sylvian and leptomeningeal collaterals had a greater risk
of worsening45. Univariate analysis identified the grade of leptomeningeal vascularity as an
independent predictor of good outcome46.

The validity of perfusion parameters obtained by CT or MRI for prediction of long-term
outcome has not been accurately established, but some data indicate a weak relationship of
PWI lesion size early after the ictus47 as well as perfusion CT-mismatch48 and mRS score 3
months after the stroke, confirming early results of the relationship between cerebral blood
flow measured with 133 xenon49 or with 99m Technetium-labeled
hexamethylpropyleneamine50 and final outcome.

Several studies have suggested that ASPECTS applied to CTP is more accurate in predicting
outcome compared to NCCT ASPECTS.51, 52 Location-weighted CTP analysis may be a
valuable tool for predicting motor improvement and language improvement.5354 For
multimodal MRI, addition of both DWI and MTT lesion volumes to NIHSS information is
superior to NIHSS alone in predicting outcomes.

Penumbral Imaging and Predicting Outcomes and Response to
Reperfusion Therapy

A discussion of the approaches to penumbral imaging and its role in selecting patients for
reperfusion therapies is beyond the scope of this review. However, a number of prediction
scores have been developed and reported in cohorts undergoing reperfusion therapies.

For patients treated with IV tPA within 3 hours of onset, older age, high blood glucose,
NIHSS score, and presence of current infarction on imaging were all related to poor
outcome.55 The DRAGON score includes premorbid mRS, age, glucose, onset-to-treatment
time, NIHSS score and imaging signs (dense artery or early infarct signs on CT); in a large
validation study of patients treated with IV tPA, the score performed well in predicting poor
and good outcome (AUC 0.82 and 0.84 respectively).56 The tool has been adapted for MRI
employing a DWI ASPECTS measure.57 The DEFUSE investigators developed a 5-item
scale (age, NIHSS score, infarct volume, white cell count, hyperglycemia) to predict
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outcome in patients undergoing IV tPA treatment. When applied to the DEFUSE cohort, the
model achieved 83% sensitivity and 86% specificity.58

In several clinical trials of reperfusion therapies including EPITHET, the DEFUSE studies,
and a study of intravenous tenecteplase, reperfusion demonstrated on perfusion imaging in
treated patients was associated with good clinical outcomes. 59-6162 In MR RESCUE,
although treatment with embolectomy with first generation devices did not improve outcome
compared to standard care, reperfusion at day 7 demonstrated both on perfusion imaging and
non-invasive vessel imaging was associated with improved outcomes.63 The Houston Intra-
arterial Therapy 2 (HIAT2) score combining clinical and imaging variables (age, glucose,
ASPECTS NIHSS) predicted poor outcome (regardless of reperfusion) at discharge for
scores ≥ 5 in patients undergoing intra-arterial therapy 64.

Assessment of Hemorrhagic Transformation
Hemorrhagic transformation (HT), visualized on noncontrast CT or T2*-weighted MRI
sequences is a biomarker of potentially poor outcome. GRE is significantly more sensitive to
HT than CT or other MRI sequences.65 Rating scales incorporating the extent of hemorrhage
along with measures of neurologic deterioration have shown that the presence of HT,
particularly when considered “symptomatic ICH”, is predictive of poor functional outcome.
However, compared to other predictive factors, the contribution of symptomatic ICH may be
smaller.66 Of interest, even “asymptomatic HT” appears to be a predictor of poor
outcome.67 A number of baseline imaging biomarkers that are predictive of HT have been
reported, including the volume and severity of ischemic injury (measured on DWI, ADC,
CBV, or Tmax), 68-73 as well as biomarkers of blood brain permeability.70, 74

Role of Functional Imaging in Stroke Patients
Since destroyed tissue usually cannot be replaced or regenerated in the adult human brain,
improvement or recovery of neurological deficits can be achieved only by reactivation of
functionally disturbed but morphologically preserved areas or by recruitment of alternative
pathways within the functional network. These compensatory mechanisms are expressed in
altered patterns of blood flow or metabolism at rest and during activation within the
functional network involved in a special task, and therefore functional imaging tools can be
applied successfully to study the physiological correlates of neuroplasticity and recovery
noninvasively after localized brain damage. Neuroimaging studies focused on brain injury
and recovery following stroke can include measurements at rest, comparing location and
extent to deficit and outcome, and measurement during activation tasks, comparing changes
in activation patterns to functional performance. Longitudinal assessments at rest and during
activation tasks during the early and later periods following a stroke can demonstrate
recruitment and compensatory mechanisms in the functional network responsible for
complete or partial recovery of disturbed functions. 75-81.

Motor and Somatosensory Deficits
The degree of motor impairment and the potential for motor recovery depends on the site of
the lesion, the combination of lesions in cortical areas and fiber tracts, and the involvement
of deep gray structures, e.g. the basal ganglia, thalamus and brainstem. The patterns of
altered metabolism and blood flow and the patterns of activation after stimuli or during
motor tasks are manifold and reflect the site and extent of the lesion, but they are also
dependent on the paradigm of stimulus or task.

While there is a lack of a clear concept of “neuronal plasticity” applicable to recovery from
motor stroke due to varying experimental study designs, one recent review concluded that

Heiss and Kidwell Page 5

Stroke. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



“motor recovery after stroke depends on a variety of mechanisms including perilesional
motor reorganization, use of motor pathways in subcortical structures, use of collateral
pathways in the ipsilateral hemisphere, use of collateral pathways in the contralateral
hemisphere, or possibly the development of entirely new motor networks”76. In most fMRI
or PET studies involving active or passive movements, a widespread network of neurons
was activated in both hemispheres. While changes in both the damaged and the undamaged
hemisphere can be observed, ipsilateral activation of motor cortex is consistently found to be
stronger for movement of the paretic fingers after recovery from stroke. In contrast,
movements of the unaffected hand (as in normal subjects) are accompanied mainly by
activation of the contralateral cerebral cortex. In addition to stronger intensity, the spatial
extent of activation in motor cortex is enlarged, and activation on the ipsilateral side is also
seen in premotor and insular cortex. These results indicate that recruitment of ipsilateral
cortices plays a role in recovery; in one study, the higher the activation in the ipsilesional
motor cortex, supplementary motor cortex and insula, the better the recovery 1 year after
stroke 82.

It has also been demonstrated that task-oriented arm training increased activation bilaterally
in the inferior parietal area, in premotor areas and in the contralateral sensorimotor cortex,
suggesting bilateral functional brain reorganization83. In summary, newly learned
movements after focal cortical injury are represented over larger cortical territories, an effect
which appears to be dependent on the intensity of rehabilitative training. It has also been
shown that the unaffected hemisphere actually inhibits the generation of a voluntary
movement by the paretic hand,84 and this effect of transcallosal inhibition can be reduced by
repetitive transcranial magnetic stimulation (rTMS)85, 86. Recovery from infarction is also
accompanied by substantial changes in the activity of the proprioceptive systems of the
paretic and non-paretic limb, reflecting an interhemispheric shift of attention to
proprioceptive stimuli associated with recovery87.

Post-stroke aphasia
In right-handed individuals with language dominance in the left hemisphere, the left
temporo-parietal region is most frequently impaired, and the degree of impairment is related
to the severity of aphasia. The functional disturbance as measured by regional cerebral
metabolic rate of glucose (rCMRGlc) in speech-relevant brain regions early after stroke has
been shown to be predictive of the eventual outcome of aphasia; moreover, the metabolism
in the hemisphere outside the infarct was also significantly related to outcome of post-stroke
aphasia 88.

Additionally, the functionality of the bihemispheric network has a significant impact on
outcome; although the brain recruits right-hemispheric regions for speech-processing when
the left-hemispheric centers are impaired, outcome studies have revealed that this strategy is
significantly less effective than repair of the speech-relevant network in adults89. Patients
with subcortical and frontal lesions improved substantially and regained regional left
supramarginal temporal gyrus activation at follow-up. Patients with temporal lesions
improved only in word comprehension and could not reactivate the left supramarginal
temporal gyrus90-92. One study demonstrated improved aphasia recovery post-stroke by use
of inhibitory repetitive magnetic stimulation (rTMS) on the right which favored recruitment
of left-hemispheric language networks 93.

The activation studies in the course of recovery of post-stroke aphasia suggest various
mechanisms for the compensation of the lesion within the functional network.

A hierarchy for effective recovery might be deduced:
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• Optimal recovery can only be achieved by restoration of the original activation
pattern after small brain lesions outside primary centers.

• If primary functional centers are damaged, reduction of collateral inhibition leads
to activation of areas around the lesion (intrahemispheric compensation).

• If the ipsilateral network is severely damaged, reduction of transcallosal inhibition
causes activation of contralateral homotopic areas, which is usually not as efficient
as intrahemispheric compensation. In most instances, the disinhibition of
homotopic areas contralateral to the lesion impairs the capacity for recovery – a
mechanism, which might be counteracted by rTMS of these contralateral active
areas. This approach might open a new therapeutic strategy for post-stroke aphasia.

Conclusions
Prediction measures of recovery and outcome after stroke perform with only modest levels
of accuracy if based only on clinical data. Prediction scores can be improved by including
morphologic imaging data, where size, location and development of the ischemic lesion is
best documented by MRI. In addition to the primary lesion, the involvement of fiber tracts
contributes to prognosis and consequently the use of DTI to assess primary and secondary
pathways improves prediction of outcome and of therapeutic effects. The recovery of
ischemic tissue and the progression of damage are dependent on the quality of blood supply.
Therefore, the status of the supplying arteries as well as of collateral flow is not only crucial
for determining eligibility for acute interventions, but has also an impact on the potential to
integrate areas surrounding the lesion that are not typically part of a functional network into
the recovery process. The changes in these functional networks after a localized lesion are
assessed by functional imaging methods, which additionally show altered pathways and
activated secondary centers related to residual functions and demonstrate changes in
activation patterns within these networks with improved performance. These strategies in
some instances record activation in secondary centers of a network, e.g. also in homolog
contralateral areas, which might be inhibitory to recovery of primary centers. Such findings
might have therapeutic consequences e.g. image guided inhibitory stimulation of these areas.
In the future, a combination of morphological imaging including DTI of fiber tracts and
activation studies during specific tasks might yield the best information on residual function,
reserve capacity and prospects for recovery after ischemic stroke.

Prediction of long-term functional outcomes following ischemic stroke is complex; imaging
approaches in both the hyperacute and subacute stages provide added value over clinical and
treatment prediction variables. In the future, this information, combined with clinical data
may be used to guide both acute and recovery therapies and provide valuable prognostic
information. Large databases including both clinical and imaging data may be developed to
allow prognostic and therapeutic decision-making to be individualized based on specific
clinical factors and individual pathophysiology.
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