
Piezo1-dependent stretch-activated channels
are inhibited by Polycystin-2 in renal tubular
epithelial cells
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Mechanical forces associated with fluid flow and/or circum-
ferential stretch are sensed by renal epithelial cells and contribute
to both adaptive or disease states. Non-selective stretch-activated
ion channels (SACs), characterized by a lack of inactivation and a
remarkably slow deactivation, are active at the basolateral side of
renal proximal convoluted tubules. Knockdown of Piezo1
strongly reduces SAC activity in proximal convoluted tubule
epithelial cells. Similarly, overexpression of Polycystin-2 (PC2) or,
to a greater extent its pathogenic mutant PC2-740X, impairs
native SACs. Moreover, PC2 inhibits exogenous Piezo1 SAC
activity. PC2 coimmunoprecipitates with Piezo1 and deletion of
its N-terminal domain prevents both this interaction and
inhibition of SAC activity. These findings indicate that renal SACs
depend on Piezo1, but are critically conditioned by PC2.
Keywords: Fam38A; kidney; Piezo1; PKD;
mechanotransduction; TRP channels
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INTRODUCTION
Mechanotransduction concerns the cellular responses to a variety
of mechanical stimuli [1–7]. Specialized mechano-sensitive cells,
such as hair cells in the inner ear or dorsal root ganglion touch
receptors, are equipped with highly sensitive transduction channel
complexes. Nevertheless, even non-specialized cells respond to

mechanical stress by activating a panel of mechanosensors,
among them stretch-activated ion channels (SACs) [8]. In the
kidney, important progress has recently been made in the
understanding of flow sensing by tubular epithelial cells [9,10].
Bending of the primary cilium at the apical side of tubular cells
induced by the flow of intraluminal urine activates the ciliary
polycystin complex (Polycystin-1, PC1, and Polycystin-2, PC2,
which are mutated in autosomal dominant polycystic kidney
disease), resulting in a calcium influx through the transient receptor
potential (TRP) channel PC2 (for reviews: [11–14]). However,
kidney epithelial cells also respond to changes in intraluminal
pressure [11,13]. Normal pressure at rest within the renal pelvis and
ureter is in the range of 0–10 mm Hg. However, peristaltic pressures
generated by rhythmic papillary contractions required for the
transport of urine vary between 15 and 45 mm Hg [11].
When a renal tubule is subjected to intraluminal pressure, both
apical and basolateral membranes are stretched [15]. This
physiological transient elevation in pressure is transmitted back to
the tubular lumen and leads to repetitive tubular distension and cell
stretching. Intraluminal pressure can also be dramatically elevated
in kidney disease states [11]. Indeed, obstructive uropathy is
associated with a major increase in intratubular pressure, in excess
of 60 mm Hg, leading to tubular circumferential stretch [16–20].
Stretching as well as compression of renal epithelial cells also occur
in polycystic kidney disease (PKD) patients [11]. Abnormal fluid
accumulation in renal cysts causes the cyst wall to stretch [21–23].
Moreover, growing cysts compress neighbouring tubules with
upstream accumulation of urine leading to increased intratubular
pressure. Stretch of epithelial cells has been proposed to impact on
cell proliferation, fibrosis, as well as apoptosis [16–20,23,24]. Thus,
pressure-induced stretch of tubular epithelial cells is relevant to
both physiological and diseased kidney conditions [11].

Recent findings from the Patapoutian laboratory demonstrate that
Piezo1 and Piezo2 are essential components of distinct mechanically
activated cation channels [25]. Importantly, using bilayer
reconstitution experiments, it was further shown that Piezo proteins
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are pore-forming subunits [26]. The function of Drosophila Piezo has
recently been shown in mechanical nociception, in line with the role
of mouse Piezo2 in pain-sensitive dorsal root ganglion neurons
[25,27]. Moreover, gain-of-function mutations in the mechanically
activated ion channel Piezo 2 cause a subtype of distal
arthrogryposis [28]. In addition, gain-of-function mutations in
Piezo1 are associated with xerocytosis, an autosomal dominant
haemolytic anaemia characterized by dehydration of erythrocytes
[29–31]. However, very little is now known about the possible
functional role of Piezo1 in other cell types, including the kidney.

Here, we report the evidence for non-selective SACs active at
the basolateral side of renal tubular epithelial cells and
characterized by a lack of inactivation and a very slow
deactivation. Furthermore, we demonstrate that Piezo1 is required
for SAC activity in proximal convoluted tubule (PCT) cells, but its
stretch sensitivity is highly regulated by PC2.

RESULTS AND DISCUSSION
Cell-attached patch-clamp recordings were performed on the
basolateral side of isolated mouse renal PCTs. SAC activity
recorded at a holding potential of � 80 mV was elicited by
increasing negative pressure at the back of the recording electrode
using a fast pressure-clamp system (Fig 1A). Currents were
characterized by a fast activation, lack of inactivation and a slow
deactivation on termination of the pressure pulse (Fig 1A). The
reversal potential of SACs was around 0 mV, indicating a non-
selective permeation (Fig 1A). No successful patches could be
obtained from the apical side of isolated renal tubules. In cultured
immortalized PCT epithelial cells, SACs were similarly non-
inactivating with a slow deactivation (Fig 1B). Single-channel
conductance of SACs measured in PCT cells was 31.8±0.3 pS
(n¼ 5; Fig 1C). SAC activity was inhibited by the addition of
ruthenium red (50 mM, n¼ 20) or 5 mM GsMTx-4 (L optical isomer,
n¼ 13) to the patch pipette external medium (Fig 1D). In 54% of
the active patches (n¼ 35), we also observed stretch-activated Kþ

channels, presumably TREK-2 ([24]), at a holding potential of
0 mV and reversing at � 80 mV (not shown).

Expression of Piezo1 was detected by quantitative PCR (QPCR)
on whole kidney, isolated PCT or immortalized cultured PCT cells,
whereas expression of Piezo2 was low or barely detectable in
cultured PCT cells (Fig 2A). Transfection of two previously
validated short interfering RNAs (siRNAs) [25] into PCT cells,
resulted in a Piezo1 knockdown of approximately 70–80% without
affecting Pkd1, Pkd2 or other TRP channel subunits expression
(supplementary Fig S1 online). SAC activity was strongly reduced
in those transfected cells (Fig 2B). These findings indicate that
Piezo1 is critically required for SAC activity in PCT cells.

Previously, we showed that SACs in arterial myocytes are
modulated by the polycystin PC1/PC2 ratio [32]. Free PC2 (that is,
in the absence of PC1) or its overexpression (in the presence of
PC1) inhibited SACs in vascular smooth muscle cells [11,32]. We
investigated whether PC2 might similarly regulate SAC activity in
renal tubular epithelial cells. We overexpressed PC2-WT or the
PC2-740X pathogenic mutant (lacking an endoplasmic retention
motif and the PC1 interacting coiled-coil domains) in WT PCT cells
[24,32–37]. SAC activity was notably reduced, with the stronger
inhibition obtained with PC2-740X (Fig 3A–C). Similarly, expres-
sion of the pathogenic point mutant PC2D509V induced SAC
inhibition in PCT cells (� 53% at � 50 mm Hg, n¼ 23). Neither

the pressure value required to elicit the opening of 50% of SACs
(P0.5) nor the slope factor (k) was substantially modified by PC2-
740X expression (Fig 3C). The single-channel current amplitude (i )
of SACs at � 80 mV and the open channel probability (Po) were
not altered in PCT cells expressing PC2-740X, suggesting that the
number of active channels (N) was decreased (supplementary
Fig S2 online). Of note, Piezo1 mRNA expression in the PCT cells
overexpressing PC2-740X was not significantly different from the
control cells (supplementary Fig S3 online).

Next, we investigated whether PC2 and its pathogenic mutants
might similarly modulate the stretch sensitivity of heterologously
expressed Piezo1 (Fig 4). Exogenous Piezo1 currents in PCT cells
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Fig 1 | Native SACs in PCT epithelial cells. (A) Top trace: Cell-attached

patch-clamp recording of SACs at a holding potential of � 80 mV on the

basolateral side of a freshly isolated proximal convoluted tubule. Middle

trace: same patch at a holding potential of 0 mV. Bottom trace illustrates

the pressure pulses. (B) Top trace: SAC activity recorded in a cultured

isolated wild-type PCT cell at a holding potential of � 80 mV. Middle

trace: same patch at a holding potential of 0 mV. Bottom trace illustrates

the pressure pulses. (C) Single channel currents recorded at � 80 mV

and elicited by a continuous � 20 mm Hg pressure stimulation. I–V

curve of SACs in PCT cells recorded at � 20 mm Hg (linear regression).

The single channel conductance of SACs in PCT is 31.8±0.3 pS (n¼ 5)

and the extrapolated reversal potential around 0 mV. (D) Pressure-effect

curves in control conditions (black traces), in the presence of 50 mm

ruthenium red (red traces) or in the presence of 5 mM GsMTx-4 L optical

isomer (magenta traces). GsMTx-4 might act as a gating modifier with

partition in the lipid bilayer and shift of the pressure-effect curve to

stronger stimuli [40]. PCT, proximal convoluted tubule; SAC, stretch-

activated ion channel.
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were significantly higher than native SAC currents (Fig 4A,B
and supplementary Fig S4a,b online). In agreement with earlier
reports [25,26], the current kinetics of exogenous Piezo1 (digitally
subtracted from the mean native SACs current) were characterized
by a fast activation, prominent inactivation (t¼ 49.6±1.5 ms,
n¼ 22), a rapid deactivation on termination of the pressure pulse
(t¼ 8.2±0.5 ms, n¼ 22) and a reversal potential of about 0 mV
(supplementary Fig S5 online). When coexpressed with PC2-740X
in PCT cells, Piezo1 activity was substantially reduced (Fig 4A,B).
Next, we coexpressed Piezo1 together with the PC2-740X mutant in
COS-7 kidney fibroblasts (Fig 4C,D and supplementary Fig S4c,d
online). Again, exogenous Piezo1 currents in COS-7 cells (digitally
subtracted from the mean native SACs current) were rapidly
inactivating (t¼ 39.2±1.8 ms, n¼ 32) and fast deactivating
(t¼ 10.7±0.6 ms, n¼ 32; Fig 4C and supplementary Fig S4d
online). Expression of PC2-WT or the PC2-740X mutant reduced
Piezo1 activity in COS-7 cells, as previously observed in PCT cells
(Fig 4C,D and Fig 5B). Importantly, when coexpressed with TRPC1,
another TRP subunit, Piezo1 activity was not modified, thus
demonstrating the specificity of the inhibitory effect observed with
PC2-740X (Fig 4D). All together these findings indicate that PC2
regulates the stretch activation of Piezo1.

A possible mechanism for inhibition of SACs by PC2-740X
might involve an effect on the biosynthesis and/or transporting of
Piezo1 to the plasma membrane. However, confocal microscopy
in PCT cells transfected with a Piezo1–enhanced green fluorescent
protein (EGFP) construct revealed that Piezo1 localization at the
plasma membrane (colocalization with WGA) was not altered by
PC2-WT or PC2-740X expression (supplementary Figs S6 and S7
online). Thus, these findings indicate that transporting of Piezo1 to
the plasma membrane is not modified by PC2 or PC2-740X
expression. The stronger inhibition of SACs observed with the
pathogenic mutant PC2-740X might be related either to higher
PC2 mutant protein expression (5.3±1.9 fold versus PC2, as
determined by western blots, n¼ 5), increased targeting to the
plasma membrane because of deletion of the endoplasmic
reticulum retention signal and/or lack of interaction with PC1
because of deletion of the interacting coiled-coil domain [36,38].

Next, we investigated whether PC2 might interact, directly or
indirectly, with Piezo1. Both MYC-tagged PC2-WT and PC2-740X
coimmunoprecipitated with Piezo1-haemagglutinin in transiently
transfected COS cells, unlike Kv2.1 or Kv9.3 (Fig 5A and
supplementary Fig S8 online). The N-terminal domain of PC2
was critically required for the interaction and for inhibition of
Piezo1 SAC activity (Fig 5A,B). Finally, when overexpressed in

*
**

*
**

*
**

*
** *

**

68

41

28

0

–50

0 –35 –70

–25

P (mm Hg)

I (
pA

)

%
 T

O
P

1

100

50

0
5 9

Kidney Cells

5 5

Piezo1 Piezo2

5

Tubules

5 si1Piezo1
siNT

si2Piezo1

Fig 2 | Endogenous SAC activity in PCT epithelial cells critically depends

on Piezo1. (A) Quantitative PCR expression of Piezo1 and Piezo2

normalized to Topoisomerase 1 (TOP1) expression in whole kidney,

isolated proximal tubules and immortalized PCT cells. (B) Pressure-effect

curves for mean SAC activity recorded in cultured PCT cells either

transfected with a non-targeting siRNA (NT; P0.5¼ � 21.8±2.8 mm Hg,

k¼ 9.7±3.4, n¼ 68) or with two different siRNAs directed against Piezo1

(si1Piezo1; n¼ 41 and si2Piezo1; n¼ 28). PCT, proximal convoluted

tubule; SAC, stretch-activated ion channel; siRNA, short interfering RNA.

0 – 30 – 60
P (mm Hg)

**
*

**
*

**
*

60

83

*

*

*

41

+ PC2-740X

Mock

+ PC2-WT

– 50

– 25

0
I (

p
A

)

200 ms

n=28

+ PC2-740X

20 mm Hg

10 p
A

Mock

n=44

PCT

Fig 3 | Endogenous SAC activity in PCT epithelial cells is conditioned by

PC2 and PC2-740x. Mean (n¼ 44) cell-attached SAC current (in black) at

a holding potential of � 80 mV in cultured PCT cells transfected with a

mock expression EGFP vector. (B) Mean (n¼ 28) cell-attached SAC

current (in red) at a holding potential of � 80 mV in cultured PCT cells

transfected with PC2-740X ires2-EGFP. In A and B, bottom traces

illustrate the pressure pulses. Same scales for A and B. (C) Pressure-

effect curve for SAC activity in wild-type PCT cells transfected with

either the mock EGFP vector (in black: P0.5¼ � 16.0±1.7 mm Hg,

k¼ 10.4±2.4 or with PC2 ires2-EGFP in magenta: P0.5¼ � 32.8±

12.8 mm Hg, k¼ 15.8±10.6 or with PC2-740X ires2-EGFP in red:

P0.5¼ � 9.6±1.9 mm Hg, k¼ 7.7±1.3). EGFP, enhanced green fluorescent

protein; PC2, Polycystin-2; PCT, proximal convoluted tubule;

SAC, stretch-activated ion channel.

Renal mechanotransduction

R. Peyronnet et al scientificreport

1145&2013 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION EMBO reports VOL 14 | NO 12 | 2013



PCT cells, PC2-740X colocalized with Piezo1–EGFP at the plasma
membrane (supplementary Fig S9 online).

In conclusion, we show that Piezo1 acts as a stretch-activated
cationic channel in renal tubular epithelial cells and PC2, as well
as its pathogenic mutants, inhibit its activity. We demonstrate a
coimmunoprecipitation of PC2 together with Piezo1 in transfected
cells, which is critically dependent on the N-terminal domain of
PC2. These findings indicate that PC2 might interact via its
N-terminal domain, either directly or indirectly, with Piezo1
thereby possibly inhibiting its stretch sensitivity at the plasma
membrane. Overexpression of the PC2-740X mutant produced a
large decrease in the amplitude of both native and exogenous
Piezo1/SAC currents. The stronger effect on SACs observed
with expression of PC2-740X might be related to the enhanced
mutant protein expression, increased localization at the plasma

membrane and/or a lack of interaction with PC1 [36]. This finding
might illustrate the possible role of a dysregulated PC2/Piezo1
functional interaction in some aspects of PKD. We anticipate that
our findings will provide a strong basis to further investigate
the pathophysiological role of Piezo1 in kidney disease states
associated with an increase in intrarenal pressure, including
obstructive uropathies and PKD.

METHODS
Cell lines culture and transfection. COS-7 cells were cultured in
DMEM (Gibco BRL Life Technologies) supplemented with 10%
fetal calf serum (Hyclone). COS-7 were transfected using the
DEAE-Dextran protocol. PCT cells were transfected using jetPEI
(Polyplus transfection) according to the manufacturer’s instruc-
tions. TRPC1, Piezo1 or the disease-causing mutant PC2-740X
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(inserted into ires2-EGFP or ires2-DsRed vectors) were transfected
at 0.5 mg of plasmid DNA per 35-mm dish containing B25,000
cells per dish.
Molecular biology, biochemistry and immunostainings. The
mPC2 (Entrez GeneID: 5311) deletion construct (mPC2-740X),
corresponding to the human pathogenic R742X mutant [39], was
generated by PCR and cloned into a ires2-DsRed vector. TRPC1
coding sequences were cloned into a ires2-EGFP plasmid. EGFP
as well as DsRed mock vectors were used in control experiments.
All inserts were sequenced in their entirety. QPCR experiments
were performed using Sybr green on a Light Cycler 480 (Roche).
Oligonucleotide sequences are available on request. siRNAs
directed against Piezo1 have been previously validated (initially
called siRNA1 and siRNA3) in [25] and transfected in PCT
cells using the HiPerFect Transfection Reagent (Qiagen SA,
Courtaboeuf, France).
Electrophysiology. Electrophysiological procedure has been
previously described elsewhere [24,32]. Briefly, single-channel
cell-attached patch-clamp recordings were performed on isolated
renal tubules (mean pipette resistance of 4.0 MO) or immortalized
PCT and COS-7 cells (mean pipette resistance of 1.4 MO). The
pipette medium contained (in mM): NaCl 150, KCl 5, CaCl2 2 and
HEPES 10 (pH 7.4 with NaOH). The pipette solution also
contained 10 mM TEA, 5 mM 4AP and 10mM glibenclamide to

inhibit eventual contaminating Kþ channels. The bath medium
contained (in mM): KCl 155, EGTA 5, MgCl2 3 and HEPES 10 (pH
7.2 with KOH). The osmolarity of all solutions was adjusted to
310 mOsm. Membrane patches were stimulated with 300 ms long
negative pressure pulses of � 10 mm Hg increments with a period
of 3 s, through the recording electrode using a fast pressure-clamp
device (ALA High Speed Pressure Clamp-1 System, ALA-
Scientific). The holding voltage for all experiments was � 80 mV
for SACs recordings, unless otherwise indicated. Detailed
information about materials and methods is available in the
Supplementary Information online. Statistical significance:
*Po0.05; **Po0.01; ***Po0.001.

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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