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INTRODUCTION
Cardiovascular (CV) diseases in general and heart failure (HF) in particular are major
contributors to death and morbidity in the Western world, where they also are recognized as
important drivers of health care expenditure. The health and economic burden of these
disorders is projected to increase with the aging of populations around the world1-3. Based
on accumulating evidence that chronic overactivity of the renin-angiotensin-aldosterone
system (RAAS) plays a fundamental role in HF pathophysiology, drugs inhibiting key
components of the RAAS have become a cornerstone of contemporary CV drug therapy4-6.
For example, angiotensin-converting enzyme inhibitors (ACEi) reduce biosynthesis of
angiotensin-II (Ang-II), one of the strongest vasoconstrictors, pro-hypertrophic and pro-
fibrotic hormones in man. Moreover, ACEi may prevent proteolysis of bradykinin (BK),
thus enhancing BK-mediated vasodilatory effects that may counteract the profound
vasoconstriction seen in HF patients7. Excessive levels of Ang-II have been implicated in
many CV diseases, and additional to ACEi, the detrimental actions of Ang-II can be
abrogated by direct angiotensin receptor (ATR) blockers (ARB). However, despite
encouraging results from many clinical trials, ACEi and ARBs-based pharmacotherapy is
still far from optimal. ACEi may lose their efficacy over time due to redundant Ang-II-
generating pathways and the so-called “aldosterone escape”8, while conventional ARBs do
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not possess the BK-enhancing properties of ACEi and are considered less effective in HF
compared to ACEi4, 5.

The natriuretic peptides (NPs), consisting of atrial natriuretic peptide (ANP), B-type
natriuretic peptide (BNP), C-type natriuretic peptide and urodilatin (URO) are
predominantly generated by the heart, vasculature, kidney and central nervous system in
response to wall stress and number of other stimuli. Importantly the NPs, particularly ANP
and BNP, represents the body's own blood pressure (BP) lowering system. Besides
promoting vasodilation, NPs counteract pathological growth, fibrosis and dysfunction of
heart, kidneys, brain and the vasculature. Current NP-augmenting strategies include the
design of a number of synthetic NPs as well as inhibition of neprilysin (NEP), the key
enzyme responsible for NP breakdown. Dual-acting angiotensin receptor neprilysin
inhibitors (ARNi) are under scientific scrutiny for the treatment of hypertension and HF.

This review summarizes the current knowledge on RAAS blockade and NP-augmenting
drugs as single or combined strategies in HF. We will discuss challenges that have been met
with some of these compounds, as well as novel therapeutic agents currently being evaluated
which could strengthen our pharmacological armamentarium for HF.

RENIN-ANGIOTENSIN ALDOSTERONE SYSTEM
The RAAS is fundamental in the overall regulation of CV homeostasis through the actions
of important hormones, which regulate vascular tone, and specifically blood pressure (BP)
through vasoconstriction and renal sodium and water retention. These hormones,
specifically Ang-II and aldosterone, also possess direct actions that are important in HF by
mediating cardiomyocyte hypertrophy and cardiac fibrosis with activation of collagen
synthesis and fibroblast proliferation (Figure 1)9-11. RAAS is as well causally involved in
the pathophysiology of cardiorenal syndrome in HF, which carries a particularly poor
prognosis. Thus, blockade of RAAS has become a central therapeutic strategy for HF by
employing RAAS modulating drugs such as ACEi, ARBs and mineralcorticoid receptor
antagonists (MRA)4.

To date these agents have had a positive impact upon HF with improvements in symptoms,
outcomes and survival. Indeed their use is increasingly widespread and their use is moving
from symptomatic HF into earlier stages of mild and asymptomatic myocardial dysfunction
to delay the progression of HF. Recently, a pivotal trial was completed with the
mineralcorticoid receptor antagonist (MRA) epleronone in patients with systolic HF and
mild symptoms12. Importantly MRAs compared to placebo reduced both the risk of death
and risk of hospitalization thus delaying disease progression and providing further
momentum to this continuously expanding therapeutic modality. In addition, the MRA
spironolactone is under investigation in the ongoing TOPCAT trial for efficacy in HF with
preserved ejection fraction (HFPEF), a disease entity for which no specific treatment
recommendations exist4, 13.

Direct renin inhibition upstream of ACE, well-known for decades as a RAAS-blocking
concept, prevents the generation of Ang-I and thus, Ang-II. The first-in-class drug aliskiren
is currently being evaluated in two clinical HF trials, the Aliskiren Trial on Acute Heart
Failure Outcomes (ASTRONAUT) and the Aliskiren Trial of Minimizing Outcomes for
Patients with Heart Failure (ATMOSPHERE)14-16. ASTRONAUT set out to evaluate the
primary and secondary composite endpoints of CV death or HF re-hospitalization at 6 and
12 months, respectively, in 1,782 patients recently hospitalized with HF and reduced systolic
LV function. The very recently published study showed that aliskiren in addition to standard
therapy failed to reduce primary or secondary endpoints but led to significantly larger
decrease from baseline in NT-proBNP levels16. Subgroup analysis demonstrated increased
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all-cause mortality at 12 months for patients with a history of diabetes randomized to
aliskiren while non-diabetics showed net benefit compared to placebo. The reason for such a
bidirectional effect of aliskiren on all-cause mortality depending on the presence or absence
of diabetes deserves further evaluation. In a similar but considerably larger HF cohort
(planned enrolment, n=7,000), ATMOSPHERE will compare effects on mortality and
morbidity by aliskiren, enalapril or dual aliskiren+enalapril treatment. Recent evidence
suggest similar rates of angioedema with aliskiren and ACEi17.

Perhaps the latest advance in RAAS blockade in HF has been the development of innovative
AT1 receptor antagonists which possess dual actions that go beyond simple antagonism of
Ang-II binding. Like conventional ARBs, these molecules target the superfamily of G-
protein-coupled receptors (GPCRs). Activation of GPCRs by an agonist leads to
intracellular dissociation of a heterotrimeric G protein into Ga and G13 subunits, resulting in
activation of second messenger mediated cellular responses. The 13-arrestins are a second
group of proteins which activate specific signaling pathways in a G-protein-independent
manner. Studies have shown that some ligands can selectively activate either G-protein or
13-arrestin pathways18. We recently reported the actions of a novel 13-arrestin-biased ligand
for the angiotensin II type 1 (AT1R), TRV12002719. TRV120027 antagonizes G-protein
signaling like an ARB, but, unlike conventional AT1 receptor antagonists, it activates 13-
arrestin and downstream signals. In rodents, TRV12007 has vasodilating effects similar to a
conventional ARB, but, unlike an ARB, enhanced cardiac contractility while decreasing
myocardial oxygen consumption20. In a large animal model of HF, TRV12007, in
combination with furosemide, has potent renal and systemic vasodilating properties and
preserved GFR despite a reduction in BP21. Currently, TRV12007 has entered early trials in
acute decompensated HF (ADHF).

Together, although efficient RAAS blockade can be achieved at multiple levels, ACEi and
MRA remain the cornerstone of contemporary HF pharmacotherapy4. Despite initial
enthusiasm due to their greater tolerability compared to ACEi, ARBs offer little
cardioprotection at least post-MI, and do therefore no longer appear on the “A-list” of
recommended medical therapy for HF4, 22. Novel ARBs, including contractility-enhancing
compounds seem promising. RAAS blockade afforded by direct renin inhibitors may
eliminate some of the shortcomings of current strategies but no clinical outcome data in HF
are available yet. Moreover, regarding their safety profile important adverse effects do not
seem to occur less frequently than with ACEi17.

NATRIURETIC PEPTIDE SYSTEM
The natriuretic peptide system (NPS) (Figure 2) has emerged as an increasingly important
autocrine, paracrine and endocrine system linked to particulate guanylyl cyclase (GC)
receptors, the second messenger cGMP and its effector molecule protein kinase G23.
Originally discovered by DeBold and co-workers, who reported that the heart synthesized
and released a factor that both augmented natriuresis by the kidney but also possessed BP
lowering properties24. This cardiac factor was identified as atrial natriuretic peptide (ANP)
and recent studies have reported that genetic variations of the ANP gene, which increases
circulating levels of ANP, protects against human hypertension25. Based upon these renal
and vascular actions of ANP an intravenous drug, known as carperitide, has been approved
for HF in Japan. Studies have also well established that ANP mediates its action via the GC-
A receptor which is widely expressed throughout a number of tissues and especially in the
adrenal cortex in which ANP is a potent inhibitor of aldosterone independent of its robust
renin inhibitory actions26, 27. In the kidney, alternative processing of the ANP precursor,
proANP by an unknown protease generates an ANP-like peptide called urodilatin (URO),
which regulates renal sodium and water handling28. Indeed studies evaluating the effects of
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synthetic URO (ularitide) in ADHF patients (SIRIUS I29 and SIRIUS II30) have shown
favourable effects on hemodynamic, neurohumoral and symptomatic profiles without any
compromise in renal function despite a modest and dose-dependent decrease in BP.
Moreover, a larger Phase III trial is currently ongoing, evaluating the efficacy and safety of
ularitide in ADHF patients (TRUE-AHF)31. To complement ANP is the cardiac hormone B-
type natriuretic peptide (BNP), which is approved as nesiritide in the United States and
Canada for the treatment of ADHF. Like ANP, BNP is a ligand for the GC-A receptor and
possesses similar pleiotropic actions which include natriuresis, aldosterone suppression and
vasodilatation. While the seminal VMAC clinical trial32 lead to the US Food and Drug
Administration (FDA) approval of nesiritide for ADHF, two subsequent meta-analyses
suggested that nesiritide administration may be associated with increased short-term risk of
death33 and worsening renal function34 in ADHF patients. However several other studies
including ADHERE (Acutely Decompensated Heart Failure Registry)35-39 failed to
demonstrate these adverse associations with nesiritide therapy. Thus, the ASCEND-HF
clinical trial was designed to address these safety and efficacy concerns that were raised
since its approval. In the ASCEND trial, nesiritide improved symptoms in the European, but
not the United States ADHF patient cohort and was not superior to conventional therapy in
improving mortality in ADHF patients40. Notably, these neutral findings could have been
related to excessive hypotension with doses that are potently vasodilating and thus offsetting
the beneficial renal actions of nesiritide. To underscore the importance of the GC-A receptor
beyond the actions discussed above and relevant to HF are the anti-hypertrophic and anti-
apoptotic actions which may contribute to long-term favourable anti-remodeling actions if a
GC-A agonist can be given chronically23, 41. Indeed, in a recently completed human trial in
mild systolic HF, 8 weeks of BNP administered twice daily by subcutaneous injection
improved symptoms and reduced LV mass as determined by MRI42.

C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family and is
produced in endothelial cells43, 44 and renal epithelial cells45, 46. CNP mediates it's
biological action through the activation of the GC-B receptor as well as potentially the non-
cGMP mediated receptor, NPR-C26, 47-50. While having an important action to promote
bone growth, evidence has supported that CNP has important CV actions as well. These
include hyperpolarization of vascular smooth muscle49, anti-thrombotic actions50,
promotion of re-endothelialization51 and potent anti-fibrotic properties48, 52, 53. The use of
CNP as a HF therapeutic has been limited by both its rapid enzymatic degradation as well as
by its lack of renal enhancing actions. A designer CNP-based NP has been engineered which
is now in clinical trials for HF and this will be discussed below.

A key component of the NPS is the ectoenzyme neutral endopeptidase (NEP), which is also
known as neprilysin. This membrane bound enzyme is widely expressed but is most
abundant in the kidney. NEP serves as the principal mechanism for enzymatic removal of
the native natriuretic peptides with susceptibility to degradation greatest for
CNP>ANP>BNP54. Furthermore, many other substrates for NEP exist, some of them with
opposing physiological actions. These include endothelin-1, kinin peptides, opioid peptides,
Substance P, amyloid beta protein, and gastrin55-57. Importantly, NEP hydrolyzes Ang I to
angiotensin 1-7 (ANg 1-7)58, and since Ang 1-7 opposes the action of Ang-II, the hydrolysis
of Ang I to Ang 1-7 by NEP potentially has beneficial CV effects. Inhibition of NEP (NEPi)
has been advanced as a therapeutic modality. If NEP only targeted NPs, NEPi would
augment the vasodilating and natriuretic actions afforded by increased levels of these
peptides. However, NEP's ability to catabolize numerous substrates also means that sole
NEPi yields broader effects than anticipated, and explains why NEPi is best combined with
the inhibition of other vasoactive peptides. Candoxatril was the first potent, orally available
NEP inhibitor. Candoxatril mediated a dose-dependent increase in plasma ANP, natriuresis,
and cGMP in humans but also increased circulating Ang-II59. Importantly, Candoxatril's
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effects on BP in hypertensive patients were not clinically meaningful. Candoxatril was also
investigated in HF. In a canine model of severe HF, which is characterized by both NP
elevation and RAAS activation, candoxatril was natriuretic and suppressed aldosterone60. In
human HF, candoxatril increased ANP and BNP levels, promoted natriuresis and decreased
clearance of exogenously administered ANP61. However, systemic and pulmonary vascular
resistances were not altered.

Early strategies to enhance the salutary actions of the NP system have clearly met
challenges. Clinical efficacy of recombinant drugs such as nesiritide, carperitide or ularitide
has been limited by hypotension and their short bioavailability. For the class of single-acting
NEPi, as discussed below, their effectiveness to promote the endogenous NPs and to
improve overall cardiorenal function was only finally realized when combined with RAAS
modulators.

DESIGNER NATRIURETIC PEPTIDES
Therapeutic use of the native NPs has been highly attractive given their diverse intrinsic
protective properties which include natriuresis, diuresis, RAAS suppressing, inhibition of
fibrosis, vasodilatation and angiogenesis. In an effort to overcome the shortcomings of
recombinant NPs outlined above, the concept of designer NPs has emerged as an innovative
advancement in drug discovery for the treatment of various CV diseases. Designer NPs are
novel peptides that have been engineered through modifications in their amino acid
structures or through use of genetically altered forms of native NPs. The rationale behind
this concept is to produce chimeric NPs whose pharmacological and beneficial biological
profiles go beyond those of the native NPs while minimizing undesirable effects.

CD-NP (Cenderitide)
The most advanced designer NP to date was designed by investigators in the Cardiorenal
Research Laboratory at Mayo Clinic and first reported in 200862. This novel 37 amino acid
(AA) hybrid NP named CD-NP (Figure 3), which is now known as cenderitide, consists of
the mature form of native human CNP fused with the15 AA C-terminus of Dendroaspis
natriuretic peptide (DNP), which was first isolated from the venom of the green mamba63.
This unique first generation designer NP62 retains the anti-fibrotic48, 52, 53, anti-
proliferative 64and anti-hypertrophic65, 66 effects and venodilatation67 of CNP as well as
natriuretic and diuretic effects of DNP68, which are very desirable properties for drugs to
combat a number of CV diseases including HF. Importantly, CD-NP also has anti-
proliferative actions in cultured human cardiac fibroblasts and stimulates cGMP production
in these same cells to a greater extent than equimolar concentrations of BNP62. In vitro
studies have demonstrated CD-NP is the first NP to activate both the GC-A and GC-B
receptor at physiological doses69 and is more resistant to proteolytic degradation than ANP,
BNP and CNP70. In normal canines, intravenous (IV) infusion of CD-NP activates plasma
cGMP and had natriuretic, diuretic, RAAS suppressing actions and unloaded the heart with
minimal effects on mean atrial pressure (MAP)62. Further, when compared to conventional
recombinant BNP (nesiritide) therapy, an equimolar dose of CD-NP significantly increased
GFR and was less hypotensive than BNP62. Moreover, infusion of CD-NP in experimental
HF induced by rapid ventricular pacing also had significant cardiac unloading effects,
increases in GFR, renal perfusion, diuresis and natriuresis, and reductions in plasma renin
activity together with a modest reduction in MAP62. In healthy human subjects, CD-NP
infusion increased urinary and plasma cGMP levels, suppressed plasma aldosterone, induced
a significant diuretic and natriuretic responses and a minimal, yet significant reduction in
MAP71. In March 2011, cenderitide received a fast track designation from the FDA and
currently is in Phase II clinical trials targeting post-acute HF patients using chronic
subcutaneous infusion technology72.
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CU-NP
Building the on the encouraging findings of cenderitide in both experimental and human
studies and designer NP technology, a humanized version of cenderitide, called CU-NP, was
created. CU-NP is an engineered NP (Figure 3), consisting of the 17 AA ring of native
human CNP linked to both the C- and N- termini of urodilatin, which is a 32 AA cleavage
product of intrarenal processed proANP73. Although CU-NP is in the early stages of drug
development, initial experimental studies have demonstrated that IV infusion of CU-NP
activates cGMP in canine HF and exerts renal-enhancing, cardiac-unloading and RAAS-
suppressing actions without excessive hypotension74. CU-NP has also direct anti-
hypertrophic effects through the inhibition of the sodium-hydrogen exchanger 1(NHE-1)/
calcineurin pathway75.

ANX-042
Another strategy for drug discovery is the biology of alternative RNA splicing which may
provide unique opportunities to identify drug targets and therapeutics. We recently reported
an alternative spliced transcript for BNP (AS-BNP)76. This alternative spliced BNP
transcript is present in failing human hearts and is reduced following mechanical unloading.
The transcript would generate a unique 34 AA C-terminus while maintaining the remaining
structure of native mature BNP. Importantly, unlike BNP, this novel peptide failed to
stimulate cGMP in vascular cells or to vasorelax pre-constricted arterial rings. From this
structure, we designed a shortened 42 AA peptide from AS-BNP, which is currently known
as ANX-042 (Figure 3), and demonstrated its ability to stimulate cGMP, like BNP, in canine
glomerular isolates and cultured human mesangial cells but lacking similar effects in
vascular cells. In a canine-pacing model of HF, systemic infusion of ANX-042 did not alter
MAP but increased GFR, suppressed plasma renin and Ang-II, while inducing natriuresis
and diuresis. Importantly in 2012, ANX-042 was approved as an investigational new drug
(IND) from the FDA and now has begun a first-in-human clinical trial as a designer renal-
enhancing and non-hypotensive NP which could make ANX-042 a potential novel renal-
selective agent for HF.

In summary, the natriuretic peptides represent the most important endogenous counterpart to
RAAS by conferring cardiac, renal and vascular protection. Therapeutic augmentation of the
NP system in HF has been attempted directly employing a broad range of recombinant and
engineered NPs, or indirectly by preventing NP degradation (through NEPi). In particular
degradation-resistant NPs including designer NPs have shown encouraging early results and
are now under evaluation in clinical trials. NEPi as monotherapy to augment NPs has largely
produced neutral effects in clinical studies, and therefore its greatest potential presumably
lies in the combination with blockers of the RAAS and other neurohormonal systems that
are causally inflicted in HF.

RAAS BLOCKADE COMBINED WITH NPS AUGMENTATION
Dual ACE/NEP (vasopeptidase) inhibition in HF

As previously described, the RAAS and NPS have a yin/yang relationship with each system,
serving as a counter-regulatory constraint on the activity of the other77. This physiological
relationship provides the potential to achieve greater benefits with modulation of both
systems than manipulation of individual systems. Specifically, the beneficial effects of
inhibition of the RAAS may potentially be augmented by enhancement of NP activity.
Conversely, the disappointing clinical effects of NEP inhibitors as monotherapy78 may be
overcome by combination with RAAS blockade.
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Single molecular entities have been developed combining NEP inhibition (NEPi) with both
ACEi and ARBs as single molecules (Table).

Early dual NEPi/ACEi agents (vasopeptidase inhibitors) such as sampatrilat demonstrated
promising effect in HF and hypertension but were discontinued because of poor oral
bioavailability79-81, 96. The most extensively studied ACEi/NEPi thus far has been
omapatrilat. Omapatrilat demonstrated equal potency of inhibition and affinity for both
enzymes. In a pre-clinical HF model omapatrilat prevented cardiac dysfunction and
remodeling and improved survival; also, it produced significant BP reductions in low,
normal and high renin hypertension models, including spontaneously hypertensive rats82, 97.

OCTAVE was the definitive clinical outcome trial to evaluate the beneficial effects of
omapatrilat (versus enalapril)83 in 25,302 untreated or uncontrolled hypertensives.
OCTAVE demonstrated improved systolic BP control with omapatrilat and more patients
achieving target BP compared to enalapril. The trial however, reported an increase in
prevalence of angioedema in omapatrilat-treated patients, 2.2 vs. 0.7%. The mechanism
underlying this rare, but potentially life-threatening, adverse event is presumably related to
enhanced BK levels achieved with blockade of zinc-containing metalloproteinases such as
NEP, and potentially aminopeptidase-P (APP) and dipeptidyl peptidase-4 (DPP4) as
well83, 98. Omapatrilat has also been studied in patients with systolic chronic HF. A 573
patient Phase IIB study (IMPRESS)84 compared omapatrilat 40mg/day to lisinopril 20mg/
day for 24 weeks. Omapatrilat reduced the composite endpoint of death, HF admission or
discontinuation of study treatment for worsening HF compared to lisinopril and produced a
greater improvement in NYHA Class III-IV patients. Furthermore, there appeared to be
greater preservation of renal function with omapatrilat. There was no significant angioedema
signal observed; indeed there were fewer overall adverse events with omapatrilat compared
to lisinopril. These favourable findings led to a major outcome study, OVERTURE85, which
randomised 5,770 NYHA Class II-IV systolic HF patients to enalapril 10mg twice daily or
omapatrilat 40mg once daily for a mean duration of 14.5 months. The primary endpoint
(death or hospitalization for HF requiring IV therapy) was not significantly different
compared to enalapril. A twice daily regimen of omapatrilat may have resulted in a
smoother pharmacokinetic and pharmacodynamic profile (particularly large post-dose falls
in systemic BP with once-daily omapatrilat) and this may have translated into fewer major
primary endpoint events.

Vasopeptidase inhibition unfortunately exemplifies yet another therapeutic strategy that
despite strong scientific rationale and positive early trials has not translated into better
pharmacotherapy for patients with HF.

Triple inhibitors of ACE, NEP and ECE
Endothelin-1 (ET-1) is a pluripotent vasoconstrictor and multifunctional neurohormone that
contributes in the progression of HF and many other CV diseases99-101. ET-1 plasma levels
strongly predict mortality in CV disease and ET-1 production markedly increases in
HF102-104. A multitude of ET-1 receptor antagonists (ERA) have been tested in acute and
chronic HF settings, but the majority failed to improve outcomes. While the concept of ERA
in HF is now widely considered as futile, with the exception of HF due to certain forms of
pulmonary arterial hypertension, abrogation of ET-1 biosynthesis by ET-converting enzyme
(ECE)-inhibition is a strikingly lesser explored avenue. In experimental HF ECE-inhibition
(ECEi) improved cardiorenal function together with reduction of other key neurohormones
such as Ang-II, renin and aldosterone105-107. ECE may also cleave NPs to a physiologically
relevant degree, accordingly its targeting through ECEi might simultaneously augment and
suppress NPs and ET-1 levels, respectively108. In human acute HF, ECEi induced
favourable hemodynamic changes similar to ET receptor blockade and on top of ACEi, but
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no long-term data exist109. Dual ECE/NEP inhibition reduced adverse LV remodeling and
dysfunction in a post-MI HF model87. The ECE/NEP inhibitor SLV-306 (daglutril) was
shown to acutely lower LV filling pressures in human HF, and given over time, to reverse
elevated plasma ET-1 levels and pathological cardiac remodeling similar to ACE-inhibition
in rats with LV hypertrophy88, 89 (Table). Daglutril also abrogated big-ET-mediated BP
increases and enhanced NP levels in healthy humans110. More recently, SLV-338, a similar
dual ECE/NEP inhibitor prevented experimental hypertension-induced cardiac fibrosis
independently of BP lowering90. Triple ACE/ECE/NEP inhibitors have been designed to
suppress biosynthesis of Ang-II and ET-1 and to augment vasodilators including BK, NPs
and adrenomedullin. In rats with HF post-MI, ACE/ECE/NEP inhibition improved LV
structure and function more than either ACE or ECE/NEP inhibition alone86. Although
encouraging, these initial results would need to be evaluated in randomized prospective
clinical trials.

Unfortunately, further clinical development of triple ACE/ECE/NEP inhibitors appears to
have been abandoned, perhaps due to previous concerns about safety with vasopeptidase
inhibitors. The largely negative results from ET-receptor antagonist HF trials may further
have tempered enthusiasm for the field. In addition, unlike with RAAS, it appears that for
the case of ET the scientific community has made considerably less distinction between the
modalities of receptor antagonism and inhibition of biosynthesis (by ECEi).

Dual angiotensin-receptor/ NEP inhibitors (ARNi)
Based on the above considerations on vasopeptidase inhibitors, newer agents combining
NEPi with not an ACEi but ARB have been developed, again as single molecules (ARNi)
(Table). The rationale for these agents is that ARBs are less likely to interfere with BK
metabolism and thus less likely to contribute to cough and angioedema. LCZ-696 is a fixed
dose combination of valsartan and AHU-377 (NEPi pro-drug) in a 1:1 ratio and is the first
and most clinically advanced compound in this new class91. Pre-clinically, LCZ-696 was
able to lower BP in double transgenic (renin, Ang-II over-expression) rats with associated
increases in plasma cGMP, renin concentration and activity and Ang-II levels indicating that
appropriate receptors were targeted as per expected pharmacological actions91. Furthermore,
enhanced tracheal plasma extravasation was not observed with the ARB/NEPi valsartan/
candoxatril92, suggesting minimal risk of angioedema with the ARB/NEPi combination,
further confirmed by recent patient data on ARB and ACEi17.

A large Phase II placebo-controlled study of LCZ-696 has recently been undertaken in
patients with mild to moderate hypertension93. The key findings after 8 weeks of follow-up
were significantly greater reductions in office and ambulatory BP with LCZ-696 compared
to the equivalent dose of valsartan alone. Importantly LCZ-696 was well tolerated and there
were no cases of angioedema reported. Neurohormonal biomarker assessment confirmed the
expected augmentation of plasma ANP and cyclic GMP as well as plasma renin in the
LCZ-696 cohorts.

LCZ-696 may also have considerable potential in the setting of systolic chronic HF
analogous to the attempt to establish omapatrilat as standard background RAAS blocker
(replacing ACEi) in this setting in the OVERTURE study conducted a decade earlier. The
PARADIGM-HF study95 is an ongoing efficacy and safety assessment of LCZ-696 in
patients with stable chronic HF (left ventricular ejection fraction <40%). Prior to
randomization to either LCZ-696 20mg bid or enalapril 10mg bid, a single-blind run-in
period is undertaken. Patients receive (sequentially) enalapril 10mg bid, LCZ-696 100mg
bid and then LCZ-696 200mg bid over a duration of between 5 to 8 weeks. Patients post-
randomization are then followed until 2,410 primary outcome events (CV death or HF
hospitalization) have been achieved.
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There are a number of interesting design features built in to PARADIGM-HF that are
worthy of comment. Specifically, the single-blind run-in period is designed to firstly switch
patients to a standard comparator agent, enalapril, and to establish that they are able to
tolerate a dose equivalent to that achieved in the SOLVD-treatment study111 that forms the
basis for ongoing use of ACE-inhibitors in systolic HF (mean of 16.6mg/day). Patients are
then evaluated with regard to tolerability of LCZ-696 at progressively increasing doses,
prior to randomization. The other important design feature of PARADIGM-HF is that,
unlike in OVERTURE, patients receive twice daily dosing of LCZ-696. This was
deliberately designed to minimise the potential (as alluded to earlier) for large drops in BP
and other potential hemodynamic disturbance following administration of the full daily dose
given on a once daily basis.

We recently evaluated putative anti-fibrotic and anti-hypertrophic efficacy of ARNi in
cultured neonatal rat cardiac fibroblasts and myocytes using 3H-proline and 3H-leucine
incorporation, respectively, as described112. Cells were stimulated with Ang-II (100 nM)
and co-treated with increasing doses of the ARB Valsartan (Val) in the presence and
absence of LBQ-657, the active metabolite of NEPi prodrug AHU-377. ARNi (i.e. Val
+NEPi) provided dose-dependent, superior anti-hypertrophic (Figure 4 A) and anti-fibrotic
(B) effects compared to Val alone. NEPi alone had only modest effect in cardiomyocytes,
and, predictably no discernable effect in fibroblasts113. We further explored the potential
utility of ARNi to modulate cardiac remodeling after myocardial infarction (MI). One week
after experimental induction of MI in rats, animals were randomized to four weeks of PO
treatment with ARNi (LCZ-696; n=11) or vehicle (n=6). At endpoint, ARNi-treated rats
exhibited significantly reduced cardiac hypertrophy (Figure 4 C-F).

There is considerable further therapeutic potential for ARNi. One obvious area worthy of
exploration is that of HFPEF. HFPEF is a heterogenous disorder that is often driven by
hypertension and chronic ischemia, two conditions where ARB/NEPi may be efficacious.
Furthermore, NPs have direct anti-fibrotic effects in cell culture and this has also been
observed in vivo114. HFPEF is a disease characterized by pathological myocardial fibrosis
and thus the augmented anti-fibrotic activity of a combined ARB/NEP inhibitor may be of
particular benefit in this setting.

The recently published PARAMOUNT-study94 was a phase-2 parallel-group, double-
blinded RCT comparing LCZ-696 with valsartan in 301 patients with HFPEF and elevated
plasma levels of NT-proBNP. Patients assigned to LCZ-696 showed a greater reduction in
NT-proBNP at 12 weeks of follow-up, the primary endpoint. More patients on LCZ-696
exhibited improved NYHA functional class and of note, reduced LA size compared to
valsartan, consistent with reverse LA remodeling. Whether the latter was due to greater
reductions of LV and LA wall stress by LCZ-696, or rather reflected distinct drug effects on
total arrhythmia burden (over 40% of subjects had a history of atrial fibrillation) is
debatable, since LV filling pressures estimated by Doppler echocardiography were not
different. Of note, attenuation of atrial remodeling was also seen in our experimental study
(Figure 4 F). Another encouraging signal was that two important risk groups, namely
diabetic patients and those with the highest BP exhibited greater reductions of plasma NT-
proBNP by LCZ-696 than valsartan, although the study was underpowered to detect
subgroup differences115. At the same time, no enhanced risk of angioedema or other adverse
events were reported in PARAMOUNT. Besides LCZ-696, novel single-molecule ARNi are
under preclinical evaluation116. No data are currently available.

Development of the new drug class of ARNi and initial results hold promise as a
breakthrough in the search for better medical therapies for HF. Beyond HF the ongoing
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evaluation of ARNi should and hopefully will be extended to post-MI LV systolic
dysfunction and diabetic nephropathy.

Future Directions
Today there continues to be a high clinical need for novel therapeutic agents that optimally
control HF and major predisposing CV diseases such as hypertension and coronary artery
disease. To date, therapeutic strategies targeting the RAAS constitute first-line HF
pharmacotherapy and underscore the deleterious effects of this system in HF pathogenesis
and progression. Therapeutic augmentation of the NPS by inhibition of NP breakdown or
administration of synthetic NPs is another promising area under current investigation. Novel
concepts in HF seek to maximize the beneficial properties of the NPS coupled with
counteracting RAAS or ET in order to achieve optimal end-organ protection, including the
most recent new class of compounds, ARNi. As such, with the promising results of most
recent clinical trials examining ARNi, we believe new therapeutic opportunities lie ahead.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Simplified schematic of the renin-angiotensin-aldosterone system (RAAS)
A multitude of stressor signals induce the angiotensin gene. The prohormone
angiotensinogen is cleaved by the protease Renin to the direct precursor angiotensin-I (Ang-
I), and further to biologically active angiotensin-II (Ang-II). These steps can be inhibited by
Renin-inhibitors or ACE-inhibitors (ACEi), respectively, but important alternative Ang-II-
generating pathways exist. Alternative splicing of Ang-I and prohormones Ang-(1-12) or
Ang-(1-9) by neprilysin (NEP) results in generation of Ang-(1-7). Binding of mature Ang-II
to the type-1 angiotensin receptor (ATR-1) activates intracellular signaling cascades that
exert adverse biological effects within the cardiovascular system such as pathological
cardiac hypertrophy, vascular remodeling and renal fibrosis.
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Figure 2. Simplified schematic of the natriuretic peptide system (NPS)
ANP, BNP and URO stimulate Cyclic GMP (cGMP) production by binding to the guanylyl
cyclase (GC) receptor A, while CNP generates cGMP by binding to the GC-B receptor.
Cyclic GMP modulates the activity of cGMP-dependent protein kinase G (PKG) to exert its
pluripotent cardiac, vascular and renal biological actions. Cyclic GMP also regulates
phosphodiesterases (PDEs) and cation channels. The cGMP signal is terminated by a variety
of PDEs that hydrolyze cGMP to GMP. The NPs are removed from the circulation and
inactived by the clearance receptor (NPR-C) and also degraded by a variety of peptidases
including neprilysin (NEP) and dipeptidyl peptidase IV (DPPIV). In addition to the
clearance capacity of NPR-C from the circulation, evidence has promoted the concept that
the NPR-C mediates non-cGMP regulated biological actions.

von Lueder et al. Page 19

Circ Heart Fail. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Amino acid structures of designer natriuretic peptides
CD-NP (cenderitide) consists of amino acids from native human CNP (green) and DNP
(light blue). CU-NP consists of amino acids from native human CNP (green) and URO
(pink). ANX-042 consists of amino acids from native human BNP (red) and 16 amino acids
(yellow) from the C-terminus of the alternative spliced transcript of BNP.
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Figure 4. Cardiac anti-remodeling effects of ARNi in vitro and in vivo
A, B. Effects of ARB (Valsartan, Val) versus ARNI (Val+NEPi) on Ang-II-stimulated
neonatal rat cardiomyocytes hypertrophy (A) and cardiac fibroblasts collagen synthesis (B)
as determined by 3H-leucine and 3H-proline incorporation, respectively. Data is shown as
percentage of unstimulated control (=100%). ARB dose-dependently attenuated Ang-II
mediated effects in both cell-types, with further additional reduction in ARNi-treated cells.
Overall, ARNI (Val+NEPi) provided dose-dependent, superior anti-hypertrophic (Figure 4
A) and anti-fibrotic (B) effects compared to ARB alone. The effects of NEPi alone in
cardiomyocytes were modest, and negligible in fibroblasts. Unstimulated (negative) and
Ang-II-stimulated (positive) controls are the first open and solid columns, respectively, from
the left. Dashed line demarks level of unstimulated control. ***P<0.001 vs Ang-II
stimulated control; ##P<0.01 ARB+NEPi vs ARB for equal dose of Val, unpaired t-test. C-
F. Effects of ARNi on cardiac remodeling after myocardial infarction (MI). One week after
surgical ligation of the left anterior descending coronary artery in outbred male Sprague–
Dawley rats (250 g), animals were randomized to treatment with ARNi (LCZ-696, 68 mg/kg
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body weight administered PO) with ARNi (n=11; solid columns) or vehicle (n=6; open
columns). After four weeks of treatment, ARNi-treated rats exhibited significantly smaller
weights of all cardiac chambers, consistent with reduced cardiac hypertrophy (Figure 4 C-
F).
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Table

Important clinical and preclinical studies of combined NEP inhibitors in cardiovascular disease

Drug Study or model characteristics Study endpoints Key results (NEPi drugs vs
comparator)

ACEi+NEPi (vasopeptidase inhibitors)

Sampatrilat79 Patients with hypertension BP, plasma renin activity,
urinary cGMP excretion

Good antihypertensive effect. No
increase of plasma renin activity

Sampatrilat80 Patients with resistant hypertension BP, plasma renin activity at 8
wks

Sustained antihypertensive effect
superior to ACEi. No increase of
plasma renin activity

Sampatrilat81 Preclinical. Rats with HF post-MI LV hemodynamics and
remodeling at 5 wks

Reduced mortality and LV
remodeling, improved hemodynamics

Omapatrilat82 Preclinical. Hamsters with HF due to
dilated cardiomyopathy.

Survival, LV remodeling and
function at 8 wks.

Reduced mortality and LV
remodeling, improved hemodynamics

Omapatrilat83 Omapatrilat vs enalapril in patients with
hypertension (OCTAVE)

BP control at 24 wks Antihypertensive effect superior to
ACEi, but increase of angioedema

Omapatrilat84 Omapatrilat vs lisinopril in NYHA class
II-IV systolic HF (IMPRESS)

Exercise capacity at 12 wks,
HF death/morbidity at 24 wks

Reduced composite of mortality and
HF hospitalizations. No angioedema
and fewer AE than ACEi

Omapatrilat85 Omapatrilat vs enalapril in in systolic
HF NYHA 2-4 (OVERTURE)

Composite of mortality and HF
hospitalizations at 62 wks

No difference in primary endpoint

ACEi+NEPi+ECEi

Benazepril+daglutril86 Preclinical. Rats with HF post-MI LV hemodynamics and
remodeling after 4 wks
treatment

Better preserved LV structure and
function than ACEi or ECEi/NEPi
alone

NEPi+ECEi

CGS2630387 Preclinical. Rats with HF post-MI LV hemodynamics and
remodeling after 30 days
treatment

Reduced LV remodeling and filling
pressures, increased LV function
compared to NEPi alone

Daglutril (SLV-306)88 Preclinical. Rats with hypertension (salt
sensitive Dahl rats)

LV remodeling and
neurohormonal activation at 6
wks

Reduced LV remodeling and ET-1
levels similar to ACEi

Daglutril (SLV-306)89 Patients with ADHF Acute hemodynamics after
single-bolus dose

Reduced LV filling pressures, but no
clear dose-response

SLV-33890 Rats with renovascular (2K1C)
hypertension

LV remodeling and BP at 12
wks

BP-independent inhibition of cardiac
fibrosis

ARB+NEPi (ARNi)

LCZ-69691 Preclinical and clinical. Double
transgenic hypertensive rats. Healthy
human controls.

BP effects in hypertensive rats.
Pharmacokinetics in healthy
humans.

Double transgenic rats: sustained BP
reductions. Humans: well-tolerated,
effective blocker of AR and NEP

Valsartan/candoxatril92 Preclinical study in normal rats. BP effects, tracheal plasma
extravasation

Antihypertensive effect of ARNi
similar to omapatrilat. No observation
of tracheal plasma extravasation /
angioedema

LCZ-69693 Patients with mild to moderate
hypertension.

BP lowering at 8 wks Greater reductions in blood pressure
with LCZ-696 than ARB alone.
Safety endpoints met

LCZ-69694 Patients with HF and preserved EF and
elevated NT-proBNP (PARAMOUNT)

NT-proBNP changes,
symptoms, LV remodeling

Reduced NT-proBNP and left atrial
size, improved NYHA-class

LCZ-69695 Patients with stable chronic HF and
reduced EF (PARADIGM-HF)

Death or HF hospitalization Ongoing (estimated completion date
april 2014)

NEPi indicates neprilysin inhibitor; ACEi, angiotensin-converting enzyme inhibitor; BP, blood pressure; cGMP, cyclic GMP; wks, weeks; HF,
heart failure; MI, myocardial infarction; LV, left ventricle; NYHA, New York Heart Association (functional class); AE, adverse events; ET-1,
endothelin-1; 2K1C, 2-kidney 1 -clip model; ARNi, angiotensin receptor neprilysin inhibitor; EF, ejection fraction, NT-proBNP, N-terminal pro
brain natriuretic peptide.
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