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Abstract
The string method is a molecular-simulation technique that aims to calculate the minimum free-
energy path of a chemical reaction or conformational transition, in the space of a pre-defined set of
reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction
coordinate, but arguably the Cartesian coordinates of the atoms involved are the most
unprejudiced and intuitive choice. Cartesian coordinates, however, present a non-trivial problem,
in that they are not invariant to rigid-body molecular rotations and translations, which ideally
ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the
framework of the string method to integrate an on-the-fly structural-alignment algorithm. This
approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the
use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this
scheme permits the dissection of the free-energy change along the most probable path into
individual atomic contributions, thus revealing the dominant mechanism of the simulated process.
This detailed analysis also provides a physically-meaningful criterion to coarse-grain the
representation of the path. To demonstrate the accuracy of the method we analyze the
isomerization of the alanine dipeptide in vacuum and the chair-to-inverted-chair transition of β-D
mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach
reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we find
that the dynamics and the energetics of these processes are controlled by interactions involving
only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-
grained SOMA calculation defined in terms of these subsets of atoms yields nearidentical
minimum free-energy paths and committor distributions to those obtained via a highly-
dimensional string.

1 INTRODUCTION
Free-energy calculations based on atomistic and coarse-grained molecular simulations play
an increasingly important role in biochemistry and biophysics. These methods provide a
quantitative framework to interpret experimental studies of chemical reactions and
conformational transitions, in terms of populations of states and probabilities of
interconversion between these states. Moreover, the microscopic detail that underlies the
calculations provides a means to formulate novel mechanistic hypotheses, grounded in
molecular thermodynamics.
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Many conformational or chemical reactions of interest are rare events in molecular
timescales, due to significant free-energy barriers separating metastable states. These
barriers are infrequently crossed, or not at all, in conventional molecular dynamics (MD) or
Monte Carlo simulations. Thus, these approaches are often insufficient to derive a
thermodynamic characterization of many interesting problems.

To address this challenge, a number of so-called enhanced-sampling methods have been
developed over the years. Most of these rely on the notion that only a subset of degrees of
freedom is necessary to represent the different states of a molecular system. Biasing forces
or energy terms are added to the standard energy function to ensure exhaustive sampling of
these degrees of freedom, which are often combined in so-called collective variables.
Provided that the biasing scheme is such that the simulations remain close to equilibrium,
free-energy estimates can be rigorously derived a posteriori, from analysis of either the bias
accumulated throughout the simulation, or the resulting probability distributions. Far-from-
equilibrium methods may also be used, but the derivation of equilibrium probabilities is
unfeasible in practice in many cases of interest.

Examples of enhanced-sampling methods based on the concept of conformational collective
variables are umbrella sampling,1,2 adaptive umbrella sampling,3 adaptive biasing force,4

metadynamics5 and Hamiltonian replica-exchange.6,7 These techniques primarily differ on
whether the bias is time-dependent or not, and on the extent to which the bias is pre-
determined or adaptive. Although these methods have been very successful in a wide range
of chemical and biological applications, a common limitation is that they usually require that
a relatively small set of collective variables is used to define the free-energy space. In most
practical applications these are a few collective variables of atomic degrees of freedom e.g.
center-of-mass distances, torsions, coordination numbers, etc. However, many interesting
processes, especially in the area of structural biophysics, are inherently cooperative and
highly multidimensional, and yet restricted to a limited region of conformational space. For
example, a conformational transition in a protein may concurrently involve the re-
configuration of complex side-chain interaction networks, changes in hydration, local re-
folding of the backbone, etc. Thus, there is a growing need for novel enhanced-sampling
methodologies that can tackle highly dimensional problems while preserving the
quantitative value of the traditional approaches.

Recent developments have addressed this need in alternative ways. On one side, methods
such as metadynamics have been reformulated in terms of so-called path-collective
variables,8 i.e. descriptors that represent the evolution of a molecular system along a path in
multidimensional space, using a low-dimensional projection. Alternatively, chain-of-states
methods are based on a framework in which the path is represented by a series of replicas of
the molecular system, referred to as images, each of which reflects different values of the
collective variables in the range defined by two end-points. In both approaches the ultimate
aim is to identify and characterize the optimal reaction path, in an adaptive fashion.

A well-known representative of the chain-of-states approach is the string method in
collective variables.9 This method is an adaptation of the zero-temperature string method,10

originally designed to identify minimum potential-energy paths; the reformulated version
instead identifies minimum free-energy paths in the space of the collective variables. In this
approach, stochastic or molecular dynamics simulations are used to evolve each of the
images in the string, according to an estimate of the mean force exerted on the collective
variables, computed locally at each image. An intermediate correction, referred to as
reparametrization, ensures that the images remain equally distributed along the string
throughout the optimization. By construction, therefore, the string of images eventually
converges to the nearest minimum free-energy path. (A variant of this method, named finite-
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temperature string method,11 introduces additional stochastic forces in the propagation of
the images, and therefore results in an ensemble of paths in the near vicinity of the minimum
free-energy path.) An important advantage of the method is that it is based on local
estimates of the mean force, and therefore permits the use of many collective variables. In
addition, once the minimum free-energy path has been found, the associated one-
dimensional free-energy profile can be retrieved by integration of the mean forces computed
at every image. Recent developments related to the string method in collective variables
include the on-the-path random walk sampling,12 its extensions,13 and the path-
metadynamics technique of Díaz Leines and Ensing.14

Although the string method has clear advantages in highly dimensional problems the
specific choice of collective variables is as critical as for other approaches as this will
influence its optimization as well as the mechanistic interpretation derived from the results.
The most primitive and unprejudiced set of variables one may consider is of course the
Cartesian coordinates of the subset of atoms involved in the chemical reaction or
conformational transition. However, despite being simple to use and easy to interpret,
Cartesian coordinates present non-trivial problems, since they are not invariant by rigid-
body rotations and translation of the molecule of interest. Ideally, both of these ought to be
unrestricted in the simulations, as otherwise the calculated free energies might include
artifactual contributions, as previously noted by Ovchinnikov et al.15

Here, we introduce a variant of the string method that enables us to use atomic Cartesian
coordinates as variables in a molecular system that is freely tumbling. More precisely, we
introduce an on-the-fly structural alignment algorithm in the computation of the mean forces
that drive the evolution of the string, as well as in the integral used to derive the free-energy
profile of the reaction and in the reparametrization step. This formulation, which we refer to
as SOMA (String method with Optimal Molecular Alignment), also permits the dissection
the free-energy profile into individual atomic contributions, using a decomposition-scheme
analogous to others previously reported.16,17

The article is organized as follows: we first define the collective-variable space and discuss
the framework that enables us to introduce roto-translational operations; then, we review the
string method and introduce the particulars of SOMA from an operational perspective.
Subsequently we demonstrate the quantitative performance of the method for the
prototypical test case, namely the isomerization of the alanine dipeptide. A total of 39
Cartesian coordinates are included in the calculation. Global and atomic free-energy profiles
along the minimum free-energy path are presented, along with committor distributions. Of
particular note is the finding that only a handful of atoms contributes to the work required
for isomerizing the molecule. Interestingly, none of these are in the backbone of the
dipeptide; the isomerization mechanism is instead primarily driven by the interplay between
oxygen and hydrogen atoms in the carbonyl and amide dipoles. Consistent with this
observation, we find that a SOMA calculation using this minimal set of relevant atoms
results in a near-identical minimum free-energy path and very similar free-energy
components and transition state. Lastly, to demonstrate the applicability of SOMA to more
complex systems, we study the chair-to-inverted-chair isomerization of β-D mannose in
explicit water. As for the dipeptide, the results provide detailed insights into the atomic
mechanism of isomerization, which again is controlled by interactions among a handful of
atoms in the molecule. Accordingly, we show that, also for this more intricate transition, the
process can be readily coarse-grained without a significant loss of accuracy.
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2 Methods
2.1 Definition of collective variables and free energy

Let us indicate with X ∈ ℝ3N the Cartesian coordinates of the physical system and denote
with x ∈ ℝ3n the coordinates of a part of it. Additionally, we denote the remainder of the
system by y ∈ ℝ3m so that N = n + m. Let us also define a function R : ℝ3n → ℝ3n that
resets the center of mass of x onto the origin and a rotation matrix U(x → r): ℝ3n → ℝ3n

that optimally superimposes x on some reference structure r through some specific
algorithm, in this specific case Kearsley’s.18 The subset of Cartesian coordinates x
transformed by R and U, i.e.:

(1)

are the collective variables employed in SOMA. Note that xr are roto-translationally
invariant by definition. For a set of arbitrary values zr defined in this space, which can
always be retrieved for any set of z through:

(2)

the following free energy will be calculated in SOMA:

(3)

where we expressed the integral over dX as a product of two partitions of the system dx dy.
Similarly, the potential energy was defined as function of both sets, V (X) = V (x, y). Note
that the set of collective variables chosen partitions the space so that, for a given set zr, all
conformations of x that are identical to zr upon roto-translation operation, are included.
Therefore Eq. 3 fulfills the normalization condition:

(4)

(5)

where Ω ⊂ ℝ3n−6 while the rotation matrix U and translation operator R are defined each in
a 3-dimensional space. The operation of Uzr + R indeed generates all the possible values of
x.

A change of the universal reference system through a rotation operation U′ affects both the
definition of the collective variables, since zr′ = U′zr, and the rotation algorithm used on x.
The free energy becomes:

(6)

(7)

(8)
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(9)

where we applied a change of integration variables, since det(U′) = 1. Therefore the free
energy is invariant upon change in the universal reference frame whenever these two are
connected trough a simple rotation operation. Equivalently it can be stated that G(zr) is the
free energy of the ensemble that contains all the possible roto-translations of the substructure
zr.

A simple relation also connects the mean forces in two different reference systems; more
precisely:

(10)

(11)

(12)

where we used Eq. 9 and the fact that (U′)−1 = (U′)T. From Eq. 12 it can be deduced that
mean forces calculated using a given reference frame r are equivalent to those using another
reference frame r′, except for a rotation identical to that transforming r into r′.

2.2 Free-energy and mean-force calculations via restrained dynamics
Calculation of free-energy differences often involves computing mean forces. Mean forces
may be calculated by imposing either holonomic constraints19,20 or harmonic restraints on
each of the collective variables. It is also possible to adopt a single restraint/constraint on a
function of collective variables. We first rewrite the free energy defined in Eq. 3 in terms of
the explicit product of 3n delta functions:

(13)

The free energy as function of a distance from the 3n coordinates of the collective variables
is closely related. This free energy is:

(14)

Note that if the distance d′ = 0, the integral in Eq. 14 samples exactly the same points in
phase space that satisfy the product of delta functions in Eq. 13. The free energies defined in
Eq. 13 and 14 are related as follows:

(15)
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(16)

(17)

(18)

where in passing from Eq. 16 to Eq. 17 we used the simple layer integral formula. Since in
the last equation the term |∇dzr (x)| is computed only for a set of conformations that are
rotations of the same structure zr, i.e. when d′ = 0, the gradients obtained will be again
rotation of the same vector, whose modulus is constant. Therefore this term can be removed
from the integral resulting in:

(19)

where C(zr) is in principle dependent on the reference conformation, since different
conformations zr could lead to a different value of |∇dzr(x)|. However if we assume C(zr) to
be constant, Eq. 19 becomes:

(20)

which states that the two free energies are identical but for a negligible additive geometric
factor. The validity of this approximation will be verified later in the numerical examples
(see Sec. 3.1.1). Note that Gzr(d′) is a function of zr; therefore one can use partial derivatives
to obtain the mean force with respect to each component of zr.

In the string method, the calculation of mean forces is key, since these guide the
optimization. The mean force is defined as minus the derivative of G(zr)

(21)

In principle this relation implies the use of a conditional probability that can be calculated
via a constrained average,20 i.e. an average computed along a trajectory where the condition
required by the δ function is satisfied using holonomic constraints. As shown in Maragliano
et al.,9 however an estimate of the mean force can also be obtained using a restrained
simulation, i.e. a trajectory where the holonomic constraint is replaced by a stiff potential.
This amounts to replacing the δ function in Eq. 21 with an exponential, hence approximating
the free-energy landscape. As noted previously, this procedure smoothes out the small-scale
ruggedness of the free-energy landscape, to an extent governed by the curvature of the stiff
potential. A discussion of the advantages and limitations of this approach can be found in
Maragliano et al.9 The most commonly adopted restraint potential is a harmonic function,
i.e. k[dzr(x)]2/2. It is worth noting that in practice the value of dzr (x) = 0 is never sampled
during the restrained simulations. Therefore it is important to set the force constant k to a
value as large as possible, but without interfering with the integration of the equations of

Branduardi and Faraldo-Gómez Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2014 April 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



motion.9 Proceeding similarly to Maragliano et al.,9 the expression for the mean force in our
case reads:

(22)

(23)

(24)

Note that the quantity in brackets in Eq. 24 is calculated on the biased ensemble where the
total potential energy is:

(25)

Also note that the force resulting from such restraint is completely equivalent to that
obtained by performing the optimal alignment in a reversed way, i.e. by dynamically
rotating the fixed values zr onto each x sampled by the restrained simulation. This due to the
rotational invariance of the distance:

(26)

(27)

(28)

(29)

(30)

(31)

(32)

As discussed below, in SOMA, we adopt the latter distance, dxx(zr), for numerical
convenience, but it should be stressed that such choice is completely arbitrary.

An additional point that will be useful later is the fact that the restrained mean force requires
to calculate
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(33)

Note that this expression contains no rotation matrix derivative. It is also worth noting that
this optimal-alignment restraint allows the molecule to tumble unrestrictedly in the
simulation box and produces a mean force which is in the reference frame r.

2.3 String method in collective variables: general flowchart
The string method is a computational technique in which a path connecting two end-points
of a molecular system is represented as a parametric function in a multidimensional space;
in practice, this is a series of P intermediate conformations, referred to as images. This
representation relies on a set of descriptors or collective variables (e.g. dihedral angles,
coordination numbers, distances, etc.), which are specified a priori. The implicit assumption
is that these descriptors provide a good approximation of the so-called committor function,
i.e. the function that describes the probability that a trajectory started at any point in space
reaches one end-state before the other. Given an initial guess for the path, the method finds
the closest minimum free-energy path through an iterative procedure, outlined in Fig. 1.
First, all images in the string are evolved according to an estimate of the local mean force in
the space of the collective variables, computed individually for each image. This mean force
may be computed for example via restrained simulations (Fig. 1B); to account for possible
non-linear effects of the descriptors with respect to the Cartesian coordinates of the
molecular system each of the mean-force components is re-scaled by a metric factor. Both
mean-force vectors and metric factors are defined as conditional averages. In addition, the
mean-force vectors may be projected onto the direction orthogonal to the path (Fig. 1C),
although this projection is not strictly required.21 To update the string, the position of each
image in collective-variable space is displaced along the projected mean-force vector, by a
finite step. Because the images evolve downhill in free-energy space, they tend to cluster in
free-energy minima; to avoid this, a reparametrization scheme is introduced so as to keep the
images equally distributed along the string (Fig. 1D). The resulting set of images are then
used as reference conformations for a new series of mean-force calculations. This process is
iterated until convergence, i.e. until the images cease to drift and the length of the string
reaches a value that is approximately constant. The one-dimensional free-energy profile
along the string may be computed after every iteration via integration of the mean force
along the path. Evidently large variations can be expected initially, but as the string
converges so will the free-energy profile, ultimately reaching the minimum free-energy path.

2.4 String method with optimal molecular alignment (SOMA)
In this section, we recast the formalism of the string method in collective variables,
previously described in Maragliano et al.,9 so to adapt it to the space of roto-translational
invariant Cartesian coordinates introduced in Sec. 2.1.

Following the notation of Maragliano et al.,9 the 3n collective variables space of roto-
translational invariant Cartesian coordinates of a subset x of the system can be denoted as

(34)

where r superscript denotes the fact that the coordinates are aligned to the universal
reference frame r after removal of the center of mass according to Eq. 1.
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Another important element is the specific values of the collective coordinates that are used
as a reference in the restrained dynamics. These represent the position of the string of
images at a given iteration. These values are a function of the progress along the path λ

(35)

where r specifies the universal reference frame. In practice λ is an integer number since the
string is discretized so that λ = 1, … , P.

The free energy computed along the string, up to an image denoted by the index q, can be
obtained using the trapezoidal rule:

(36)

(37)

Here we adopt a computationally more convenient integration scheme instead. Since the free
energy is a state function, the free-energy difference between two points in collective
variable space must not change by using a different integration path. Therefore, we can
equivalently split the path connecting two images into:

(38)

where zλi(λi+1) is the image λi+1 optimally aligned onto image λi while zλi(λi) is an image
that is aligned onto itself, i.e. not aligned. The free-energy difference along the string would
therefore read:

(39)

(40)

where in passing from Eq. 39 to Eq. 40 we used the fact that, according to Eq. 9, two
identical structures with different reference frame have identical free energy. By calculating
the remaining terms with the trapezoidal rule we are left with:

(41)

which no longer depends on the reference frame r. This is in agreement with the expectation
that the free energy should not depend on the reference frame, as shown Eq. 9. Interestingly,

in this scheme, the small stepwise increments  guarantee that
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artifactual contribution from rotations are minimized, which is one of the primary goals of
SOMA. Importantly, these difference vectors will be used later for projectors and
reparametrization.

Note that in practice the term  is simply calculated through restrained
dynamics using the image z(λi) instead of both r and z in Eq. 24. This self-fitting scheme
requires some further discussion since Eq. 12 would now read for a generic frame λ:

(42)

that ultimately requires calculating:

(43)

Here one should not be mislead by the dependence of U(x → λ) on zλ. As in Eq. 33 rotation
matrix derivatives should be neglected. Deriving respect to this amounts to introducing an
artifactual free energy contribution due to a change in the definition of the collective
variables.

The second mean force in Eq. 41,  would in principle imply performing a
restrained simulation in which the reference frame zλi(λi) and the center of the harmonic
restraint zλi(λi+1) differ. This would double the number of calculations required. Once again
this is circumvented by using Eq. 12

(44)

according to which the mean force calculated in a reference frame z(λi+1) can be easily
translated into z(λi), by applying the corresponding optimal rotation matrix.

We want to stress again the fact that the restrained dynamics is performed here via a
harmonic potential on the mean-square-deviation as explained in Sec. 2.2. The
computational convenience of this choice is that, since in each mean-force calculation the
image uses itself both as reference frame and restraint center, the forces from optimal
alignment have a smaller variance thus producing a stabler dynamics.

2.4.1 Mean force calculation on the string—At the core of the string method is the
steepest-descent evolution of the z(λ) images, which progressively moves them towards the
minimum free-energy path.

Adapting the notation from Maragliano et al.9 the evolution of each image in fictitious time
is achieved by
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(45)

(46)

In Eq. 45, Δt is the fictitious time step,  is the mean force calculated
at the image zλ(λ), P(zλ(λ)) is a projector of the mean force in the direction perpendicular to
the string (green vs. purple arrows in Fig. 1C) and M(zλ(λ)) is the metric factor. Importantly,
the steepest-descent evolution does not guarantee that the center of mass is removed. After
the evolution the center of mass can always be removed by applying the transformation R in
Eq. 2.

The first ingredient of this relation is the mean force  which is calculated by
using the coordinates of the image λ itself as universal reference system as discussed in Sec.
2.4

The second ingredient is the metric factor in Eq. 45, M(zλ(λ)) which is defined as:

(47)

Since the collective variables are defined as center-of-mass zeroed and reference-frame
rotated, each derivative reads as

(48)

(49)

The third ingredient in Eq. 45 is the projector matrix P(zλ(λ)) which is required to extract the
component of the mean force orthogonal to the string. The calculation of this matrix requires

the definition of a discrete approximation of a unitary vector  tangent to the string.
Here, consistent with the discussion in Sec 2.4, we calculate this difference vector by
optimally aligning λ′ onto λ. Therefore the tangent vector reads:

(50)

where λ′ is the index denoting an image that is adjacent to λ, zλ(λ′) is obtained through
optimal alignment of zλ′(λ′) onto zλ(λ), and the distance is defined as
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(51)

where the matrix  may be used to
convert the collective-variable displacement to Cartesian units so that ultimately collective
variables of different nature can be conveniently used at the same.

The projector, defined as the matrix that projects out the parallel part of a vector with respect

to the tangent unit-length vector  can therefore be deduced from:

(52)

which reads, for each component

(53)

(54)

(55)

(56)

where we conveniently contracted the double subscripts of the matrix  running on the
atoms and components, into a single index and observed that the matrix  is diagonal. The
above relation defines the projector.

Since the string is discretized in P images over a range 1 < λ < P, the index λ′ is chosen
according to:22

(57)

Once this projector and the mean forces are calculated, each single image can be evolved
according to Eq. 45.

2.4.2 Evolution of the images—The discrete time evolution of Eq. 45 requires, from a
practical standpoint, the choice of the fictitious time Δt. Because we are using Cartesian
space, it is convenient to limit the displacement of each component to a given value. When
the mean force is large this choice precludes steps that are too large; close to convergence,
when the mean forces are small, it allows continued progress in the optimization.
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We implement this by simply taking

(58)

which is a rather general equation valid also for the case of mixed collective variables. In
this framework every change in collective variables is translated in a change in Cartesian
coordinates through the M(zλ(λ)) matrix. Therefore, the only parameter to be chosen is Δx,
i.e.. the allowed step in Cartesian space.

2.4.3 Reparametrization—By construction, the steepest-descent evolution of the images
results in a drift towards the end-point metastable states, leaving the transition state
unpopulated. To counter this drift, the images’ reference values are corrected at each
iteration so that the distance between adjacent images along the string remains
approximately constant; this operation is referred to as reparametrization.9,10,22 Here, this
reparametrization step requires further elaboration, in account of the fact that the reference
frames of adjacent images differ. Adapting the formalism of Maragliano et al.,9 we first
calculate the vector of the cumulative distances of the evolved images zλm(λm)*:

(59)

where, consistent with Sec. 2.4, the images are optimally superimposed in a pairwise manner
before calculating the image-to-image distance. The cumulative length of the vectors that
would ideally correspond to a set of equal distances among the images is then s(m) = (m −
1)L(M)/(M − 1). The reparametrized images zλm(λm)** are obtained by displacing these
along the difference vector, after optimal superposition:

(60)

where k is chosen so that L(k−1) < s(m) < L(k). Subsequently, the center of mass can be
easily removed from zλm(λm)**. Note that all distances are calculated using Eq. 51.

2.4.4 Free-energy decomposition—The use of Cartesian coordinates allows for an
intuitive decomposition of the total free energy into individual contributions from the
different variables used to define the space of the string. This procedure is analogous to that
used by Miller et al.,16 subsequently discussed by Haas and Chu.17 It is achieved simply by
splitting Eq. 41 on a per-variable basis, which in our case yields a decomposition of the free
energy into single-atom contributions:

(61)

It should be stressed that the atomic contributions are indeed collective, in the sense that
they contain the response of the whole system locally projected on specific atoms. In this
sense they may be influenced significantly by the surrounding atoms not included in the
string.
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2.4.5 Implementation—SOMA is implemented in the PLUMED plug-in,23 and therefore
may be used in combination with a number of molecular dynamics (MD) engines, such as
NAMD,24 GROMACS,25 or AMBER.26 Currently, SOMA calculations use a Python
wrapper script that prepares the simulation inputs for each image; calls the MD/PLUMED
engine to carry out the simulations (including the optimal-alignment procedure); extracts
and projects the mean force at each image, and updates the string; and calls a standalone
version of PLUMED for reparametrization, alignment and distance calculations, so as to
ensure the maximum consistency and minimize code redundancy. In addition, the Python
script is designed to keep track of each of the simulations of the images, which may be
executed as serial or parallel jobs, or distributed through a queue system.

2.5 Simulation details
In order to test the quantitative performance of SOMA, we applied this method to study the
isomerization of the alanine dipeptide (ACE-ALA-NME) in vacuum and the chair-to-
inverted-chair transition of β-D mannose in water. All simulations were carried out with
GROMACS 4.5.525 with the PLUMED 1.3 plug-in,23 adapted for the current study. For the
alanine dipeptide we used the CHARMM2227,28 force-field, while for β-D mannose system
we employed GLYCAM0629 with 1-4 AMBER scaling parameters. All simulations were
carried out at a constant temperature of 300 K, using a stochastic velocity-rescaling
thermostat30 with a time-period of 1 ps. Constraints were applied to all bonds to hydrogen
atoms, using LINCS.31 The simulation time-step was 2 fs. The β-D mannose system
included 661 TIP3P water molecules32 enclosed in a periodic orthorhombic box with
periodic boundary conditions. In this last system, electrostatic interactions were computed
with the Particle-Mesh-Ewald method33 using an isotropic grid-point spacing of 0.12 nm
and a directspace cutoff of 1.3 nm. After standard thermalization and pressurization with the
Berendsen barostat,34 the box size reached 20.2 nm3.

3 Results
3.1 Isomerization of the alanine dipeptide

3.1.1 Minimum free-energy path—The alanine dipeptide is a simple biomolecule that
features a high barrier (much larger than kBT at room temperature) between two metastable
states. Hence, this system is a typical benchmark for methods that enhance sampling of rare
events.5,8,9,14,17,35-50 The molecular structures of the two main metastable states, referred to
as C7ax and C7eq, are depicted in Fig. 2. The system is frequently studied using the
Ramachandran dihedral angles φ and ψ as collective variables (Fig. 2); however, it has been
shown that the isomerization transition can be accurately described only if the peptide-bond
dihedral angles, Θ and ζ are also included.9,35,51

As mentioned, here we use instead Cartesian coordinates as collective variables, and employ
dihedral angles only to construct the initial string and to represent graphically some of the
results. Specifically, the string is defined in terms of the Cartesian coordinates of all atoms
in the molecule, except the hydrogen atoms in the methyl groups. The number of degrees of
freedom considered is therefore 39. To obtain the set of images for the initial string we
carried out a 9 ps molecular dynamics simulation in which the molecule was driven from
C7eq to C7ax, by steering both dihedral angles progressively and concurrently, using
harmonic potentials on Φ and Ψ with force constant 150 kJoule/(mol rad2). The resulting
path was therefore linear in the space of the Ramachandran dihedral angles, although
naturally the initial images were not equally spaced in the Cartesian coordinates used by
SOMA. This is corrected after the first round of reparametrization.
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It is worth pointing out that the procedure of generating the initial path used here is
intentionally suboptimal, since our purpose is to assess the robustness of SOMA. More
sophisticated approaches may be required for more complex systems. Possible approaches
include geometrical interpolation through morphing,52,53 and the extraction of reactive
trajectories obtained from replica-exchange or enhanced-sampling simulations.
Incorporation of available experimental data might be also advantageous.54

A first SOMA calculation was carried out with 21 images, using 6 ps of sampling time to
obtain the mean-force estimate at each image. In these calculations, we used the restraining
potential specified in Eq. 25 with k = 109 kJoule/(mol nm4) with the self-fitting scheme
introduced in Sec. 2.4. In an initial phase of 0.6 ps the structure of the molecule is steered
toward the reference conformation; thus, each coordinate remained in close proximity to its
reference structure. All images in the string, including the end-points, were displaced along
the mean-force projections using a step of Δx = 0.0025 nm, to ensure a continuous evolution
of the string.

Convergence of the length of the string was observed after 120 iterations of the SOMA
algorithm (Fig. 3A). A few iterations of the string, projected on the Ramachandran space,
are shown in Fig. 3B. It is evident that the string evolves smoothly towards the expected
minimum free-energy path, although we should stress that the Ramachandran projection is
merely a visual guide; the string is actually defined in the 39-dimensional space of the
Cartesian coordinates.

After this first calculation, we doubled the number of images in the string in order to
increase its spatial resolution, and thus be able to obtain more accurate free-energy estimates
along the path, and to identify the true transition state. This string was further optimized for
200 iterations (Fig. 3A). Free-energy profiles along the string were calculated for each of the
last 30 iterations, and then averaged, to obtain the final minimum free-energy profile of the
isomerization, shown in Fig. 4B. This profile features a barrier of 34.6 kJoule/mol, and a
free-energy difference of 8.7 kJoule/mol between the C7eq and C7ax states. These values are
in good agreement with those obtained using umbrella-sampling simulations in the space of
Ramachandran dihedral angles (34.8 and 8.9 kJoule/mol, respectively).

Finally, to assess the validity of the approximations adopted in Eq. 20 for the case of
restrained dynamics, we calculated in post-processing the variability of the geometrical

energy correction term  for each restrained simulation along the string.
The typical variability of this correction within each simulation was only 0.3 kJoule/mol.
Along the string, its average value was also 0.3 kJoule/mol. It is therefore justified to
consider this term constant and thus adopt Eq. 20, and consider C(zr) = C′.

3.1.2 Committor calculations—A general method to assess whether a free-energy
method identifies the transition state, i.e. the quality of the collective variables, is to
compute the so-called committor probability for different points along the path, and in
particular where the free-energy profile is maximum. In a system with two metastable states,
the committor of a point in conformational space to one of the metastable states is the
probability that a trajectory initiated at that point reaches that particular state before the
other. The hypersurfaces defined by the points with identical committor probabilities, or iso-
committor surfaces, provide the optimal foliation of the conformational space from the
reactant to the product states. The committor test is thus an effective procedure to verify the
suitability of the collective variables chosen in enhanced-sampling methods, as well as the
accuracy of calculated reaction paths.9,55
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In practice, the test is performed first by preparing a set of conformations that hypothetically
belong to a particular iso-committor surface. Then, each of these conformations is used as
the starting point for a series of independent, unbiased dynamical trajectories, each of which
eventually reaches one of the two possible states. For every point in the hypothetical iso-
committor surface, the probability that the associated set of trajectories reaches the target
state is then computed; therefore, this analysis yields a distribution of committor probability
values. Ideally, these distributions should be relatively narrow and singly-peaked, displacing
from 0 to 1 as the hypersurface considered becomes closer to the target state. At the
transition state, the committor probability distribution should be peaked at a value of 0.5.

Thus, to assess the results obtained with SOMA for the alanine dipeptide, we calculated the
committor probability distributions for images 22 to 35 along the predicted minimum free-
energy path, using C7ax as the target state. In order to generate the starting ensemble of
conformations at each image, we performed a simulation of 400 ps using a restraining
potential on the path-collective variable previously defined in Branduardi et al.,8 namely:

(62)

This variable is such that the region of space where s(X) = λ consists of states that are
closest to image λ than any other in the string. From these simulations, in which s(X) was
restrained to integer values from 22 to 35, 50 conformations close to the path were selected
for every image. The value of k in Eq. 62 was chosen to be 2.3/〈|(λi, λi+1)|〉2 where the
average is calculated on all the adjacent couples of images of the string. Each conformation
generated through this procedure was the starting point for a series of 200 molecular
dynamics trajectories, randomly initialized according to a Maxwell-Boltzmann atomic-
velocity distribution at 300 K. Each trajectory was terminated when the value of Φ was
either greater than 1 rad or smaller than −1 rad. In the former case, we deemed the trajectory
committed to the C7ax state; alternatively, the trajectory was considered not committed.

Fig. 5A shows the resulting distributions of the committor probability for images 22 to 35,
based on the accumulated statistics from the 10,000 trajectories launched per image. It is
apparent that all distributions are peaked around a single value, which progressively spans
the expected range. In Fig. 5B, we plot the mean-value of the distributions, as a function of
the image number, in comparison with the free energy at each image. It is clear that the
image with a mean committor probability of 0.5 corresponds to the transition state, as
defined from the free-energy profile. These results validate the SOMA methodology and the
minimum free-energy path calculated here for the isomerization of the alanine dipeptide.

3.1.3 Free-energy decomposition and isomerization mechanism—An advantage
of the Cartesian-coordinate formulation of SOMA is that it permits a straightforward
decomposition of the minimum free-energy profile into per-atom contributions, according
Eq. 61. Such analysis reveals which atoms in the molecule are most influential in altering its
chemical or conformational state. That is, when the molecular system changes uphill, driven
by thermal fluctuations, the decomposition identifies the atoms that offer the most
resistance; when the system evolves downhill, the analysis shows which atoms drive the
change. As is well known, any decomposition of a free-energy change is path-dependent;
arguably, however, the dissection of the minimum free-energy path reveals the predominant
mechanism of the conformational or chemical process under consideration.

Fig. 4B shows the per-atom contributions to the free energy of isomerization of the alanine
dipeptide, as a function of the image number. In Fig. 6, we show the underlying atomic
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mean forces, projected along the corresponding displacement vectors, for a few
representative images. Strikingly, only a handful of atoms plays a significant role in the
process, none of which are in the backbone of the molecule. Early on in the isomerization
from C7eq (image 1) to C7ax (image 42), the only prominent contributions are those from
atoms HR and OR (Fig. 4A for atom names), i.e. the peripheral atoms in the N-terminal
backbone dipoles, connected by the peptide bond (image 5). After reaching a plateau, the
isomerization proceeds resisted only by the Cβ atom in the side-chain, and by atoms HL and
OL, in the C-terminal dipoles (image 20). After the transition state (image 28), it is mostly
these two atoms that drive the molecule downhill (image 35) towards the C7ax conformation.

As mentioned above, it is known that the Ramachandran dihedrals Φ and ψ, are insufficient
to identify the most probable path of the isomerization process. In addition to these, it is
necessary to consider the peptide-bond torsions, Θ and ζ (Fig. 2A).9,35,51 Our results provide
a clear rationale for this observation: Φ and ψ define the arrangement of the nitrogen and
carbon atoms in the backbone dipoles, relative to Cα−Cβ side-chain, but none of these
atoms, except Cβ, resist or drive the isomerization process. All the relevant atomic
contributions are considered, however, when the peptide-bond torsions Θ and ζ are also
included. Altogether these four backbone torsions define the relative position of the
hydrogen and oxygen atoms in the backbone dipoles, relative to the dipeptide side-chain.

From a mechanistic standpoint, the ranking of the atomic contributions to the free-energy
profile indicates that the isomerization of the alanine dipeptide is primarily resisted (uphill)
or driven (downhill) by electrostatic interactions among the oxygen and hydrogen atoms in
the backbone dipoles, sterically restricted by the Cβ atom in the dipeptide sidechain. Because
the molecular energetics is encoded by the force-field, one would expect this mechanism to
be consistent with a decomposition of the average potential-energy landscape into its various
bonded and non-bonded contributions. As shown in Fig. 7, this is indeed the case. The most
probable isomerization path appears to be the result of two competing contributions; the
Coulomb term, which by itself would favor the concurrent rotation of the N- and C-terminal
torsions; and the bond-angle term, which seems to reflect the presence of a strong steric
barrier, which must be circumvented. By comparison, all other energy terms, including that
from the dihedral-angles, have a marginal contribution. This is not to say that these terms are
irrelevant; evidently they are key to define the chemical structure of the molecule. However
they do not influence the isomerization of the molecule between the C7eq and C7ax states.

3.1.4 Dimensionally-reduced string with essential degrees of freedom—As we
reported in the previous section, the dissection of the free-energy profile into atomic
contributions indicates that only a handful of atoms in the alanine dipeptide influences the
isomerization mechanism. This result explains why all four backbone dihedrals are required
to characterize this process via enhanced-sampling approaches based on torsions, and is also
consistent with a qualitative inspection of the contributions to the internal-energy landscape
of the molecule. This notwithstanding, the ultimate implication of the atomic decomposition
is that most of the atomic degrees of freedom in the molecule are unnecessary to obtain a
reasonably accurate description of the conformational change. Therefore, one should be able
to re-compute the minimum-free-energy path using a string of reduced dimensionality, and
obtain nearly identical results, both in terms of the free-energy profile, the committor
probabilities, and the mechanism.

Thus, we repeated the SOMA optimization procedure and subsequent analysis, for a sting
that includes only the Cartesian coordinates of atoms OL, HL, OR, HR and Cβ, which are
the dominant contributors (Fig. 4), as well as Hα, whose contribution is much smaller but
not entirely negligible. The dimensionality of this string is therefore reduced from 39 to 18.
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As Fig. 8 shows, the free-energy profile resulting from this second SOMA calculation is
nearly identical to that obtained previously. The decomposition again shows that atoms OL,
HL, OR, HR and Cβ are key, while the contribution from Hα is minor. The only significant
differences between high and low-dimensional strings are seen early on in the isomerization,
with a greater contribution of atoms HR and OL in the reduced string. Further inspection
(not shown) reveals that these subtle differences in the calculated free energy are due to
differences in the atomic mean-force vectors calculated for each image (second term in Eq.
61), rather than in the displacement vectors among images (first term in Eq. 61). That is, in
the low-dimensional string there is a slight redistribution of the mean forces, on account of
the missing degrees of freedom, but the dimensionality reduction has a minimal effect on the
reparametrization and structural-alignment algorithms. Thus, the overall mechanism of the
isomerization revealed by the free-energy dissection is largely unchanged.

Importantly, analysis of the committor probabilities for the low-dimensional path yields
excellent results, considering the extreme simplification of the string and how sensitive these
quantities are to the precise definition of the path and its transition state (Fig. 9). The
committor distributions are somewhat broader than in the high-dimensional case (Fig. 9A),
and the committor probability of the transition state (image 29) is slightly greater than 0.5
(Fig. 9B). However, better results could hardly be expected, given the fact that the
dimensionality reduction used here is guided by a ranking of the atomic free-energy
contributions along the entire length of the path. Committor distributions are however local
features that pertain to the transition state; thus, all degrees of freedom with a non-zero free-
energy change across the transition state ought to be considered for an optimal result, strictly
speaking.

In sum, we conclude that the results obtained for the low-dimensional string provide further
validation to the proposed atomic mechanism of isomerization of the alanine dipeptide, and
to thus to the SOMA approach. Moreover, these results illustrate the potential of the string
method as a framework for a rational, physically meaningful coarse-graining of degrees of
freedom in chemical and conformational transitions.

3.2 Isomerization of β-D mannose in explicit solvent
In order to further assess the proposed method, we applied SOMA to the chair-to-inverted-
chair isomerization of β-D mannose in water. The chair inversion in saccharides is a
complex process that has been studied in depth via free-energy techniques,56-59 using ad-hoc
descriptors to enhance the transition, for example the Cremer-Pople60 puckering
coordinates. We analyze this mechanism to show that SOMA can be successfully applied in
solvated molecular systems featuring non-trivial conformational pathways, with minimal
knowledge of the system a priori.

The two chair isomers are represented in Fig. 10. We use the standard nomenclature based
on the location of the carbon atoms in the ring with respect to a plane crossing C2, C3, C5
and O5 (see Fig. 11 for atom names). In the orientation depicted, if the carbon atom C4 lies

above the plane while C1 is below it, the isomer is called “chair” or . Conversely, the

isomer is called “inverted chair” or . The transition from one conformer to the other
proceeds through a series of intermediates in which adjacent ring atoms adopt different
staggered conformations. If two couples of adjacent atoms form a plane, the conformer is
classified as “boat” or B; if the plane is formed by three adjacent atoms and one on the
opposite side of the ring, the conformation is called “skew-boat”, or S. Subscripts or
superscripts are added to B or S to denote the atoms that are above or below the plane.
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To characterize the complete isomerization transition with SOMA, we used the Cartesian
coordinates of all non-hydrogen atoms in the molecule (12) to define a string of states. An

initial set of 24 images was extracted from a targeted MD trajectory in which  was driven

toward  conformer in 20 ps. The string was optimized as described above, using steps of
0.0025 nm and a spring constant of 109 kJoule/(mol nm4), and appeared to be converged
after 100 iterations. To obtain a more accurate path, we increased the number of images to
78 and optimized the string with 20 additional iterations using a reduced step of 0.001 nm.
The resulting free-energy profile is shown in Fig. 11B. The free-energy difference between

 and  was 30.3 kJoule/mol. This value is somewhat smaller than that obtained by
Spiwok et al.59 for β-D glucopyranose, namely 40 kJoule/mol. This discrepancy can be
ascribed to the different chirality of the two molecules.

To better understand the topological features of the resulting path, in Fig. 12 we show
various iterations of the optimization procedure projected onto the space conventional
Cremer-Pople puckering coordinates. Briefly, these coordinates represent the deviation of a
six-membered ring with respect to an ideal plane, by using three values, namely Q, θ and φ,
which define a set of polar coordinates. Following the implementation of Autieri et al.,57

these are defined by:

(63)

(64)

(65)

where zj is the distance of each atom of the ring with respect to the mean plane passing
through the ring itself. In this space the conformations of the molecule are depicted in a

spherical projection with the two chair conformations  and  positioned at opposite
poles. Skew-boat and boat conformations alternate one another along the equator.

As Fig. 12 shows, the string rapidly converges to a path that crosses the equatorial boat and

skew-boat intermediates, ending up in the  conformation. This pathway is in qualitative
agreement with that found by Autieri,57 in spite of the differences in the force-field used. It
also resembles that reported by Ardèvol et al.58 based on Car-Parrinello metadynamics
simulations in vacuum, as well as that found by Spiwok et al.59 for β-D glucopyranose with
the same force-field used here. The consistency of these results is worth noting, given that
SOMA requires only that two end-points are defined, and does not rely on process-specific
conformational coordinates.

The per-atom decomposition of the free-energy profile in Fig. 11B shows that the
isomerization mechanism is controlled for the most part by the electrostatic dipoles at the
periphery of the sugar ring, which act as handles that resist or drive the conformational
change; this is analogous to what we observe for the alanine dipeptide. The initial part of the

transition, from  to , involves the out-of-plane displacement of the ring oxygen atom,
O5, which offers the most resistance, along with C6, O6, O1 and O2 (Fig. 13, image 8).

Eventually the strain on the molecule is somewhat reduced (Fig. 13, image 7), and the 
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intermediate is metastable (Fig. 13, image 21), in agreement with the results from Spiwok et

al.59 for β-D glucopyranose. Conformations B3, O,  and 1,4B can be subsequently reached
with a steady increase in the free energy, provided that further uphill rearrangements of O1
and O2 take place (Fig. 13, images 31, 41 and 46). A second metastable state is found in the

 conformation, as atoms O2 and O3 become displaced towards the center of the ring
plane (Fig. 13, image 51). This intermediate was detected by Autieri et al.57 but not by
Spiwok et al.,59 due to the particular chirality of β-D glucopyranose. The last free-energy

barrier, towards , requires again uphill forces in several atoms (Fig. 13, image 55), but
arises mostly from the resistance posed by O3 and O4. Finally, after the transition state, a
global stress release takes place, with most of the atoms included in the string contributing
to lower the total free-energy of the system (Fig. 13, image 69).

As we did for the alanine dipeptide, we further assessed the hypothesis that the process just
described is the dominant atomic mechanism of isomerization by re-computing the
minimum free-energy path after removing from the definition of the string those atoms with
a negligible contribution to the profile shown in Fig. 11B. This coarse-grained string was re-
optimized over 50 iterations. The resulting free-energy profile and per-atom contributions
are shown in Fig. 14. It is apparent that the mechanism remains largely unchanged.

4 Conclusions
We have introduced a variant of the string method in collective variables,9 which we refer to
as String-method with Optimal Molecular Alignment (SOMA). This approach is particularly
suited for the calculation of minimum-free-energy paths in terms of highly-multidimensional
sets of Cartesian coordinates. In this scheme, rotations and translations of the molecular
system of interest need not be restricted, and a posteriori projections of the free energy on
internal degrees of freedoms are not required.15 Thus, the SOMA method provides a
straightforward approach to analyze chemical or conformational reactions in gas and
solution. The use of Cartesian components can also be exploited to identify and characterize
the most probable reaction mechanism at the atomic level. Thus, this approach provides a
detailed understanding of the molecular system, as well as a physically-meaningful
framework for rational coarse-graining. To illustrate the potential and performance of the
SOMA methodology, we have analyzed the isomerization of the alanine dipeptide in
vacuum and the chair-to-inverted-chair transition of β-D mannose in explicit solvent.
Notwithstanding the simplicity of these systems, the SOMA calculations reveal novel
insights into to the mechanism of these isomerizations, which to our knowledge had not
been previously reported. We have also shown how these insights can be used in practice to
drastically reduce the dimensionality with which the isomerization path is described, while
retaining the dynamical quality of the transition state, and near-identical energetics and
mechanism. In sum, we anticipate that the SOMA method will be an insightful and
straightforward approach to characterize the thermodynamics and mechanisms of a wide
range of molecular processes in chemistry and biophysics.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. General flowchart of the calculation of the minimum free-energy path with the string
method
(A) An initial set images is obtained, for example via targeted MD simulation. (B) A number
of simulations with restraints centered on the images (orange circles) are performed. (C) The
mean force and the metric factor are calculated at each image, and the free-energy profile
along the string is calculated by integration; the component of the mean force orthogonal to
the path may also be retrieved via a suitable projection. (D) The images are evolved
according to the projected mean force, and the string is reparametrized to maintain the
images equally spaced. The entire procedure is then repeated starting from (B), until
convergence.
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Figure 2. Molecular structure of the alanine dipeptide in the C7eq and C7ax isomers
The Ramachandran dihedral angles φ and ψ define the conformation of the backbone. The
peptide-bond dihedral angles Θ and ζ define the arrangement of the amide and carbonyl
dipoles, relative to each other and the side-chain. The C7eq metastable state is characterized
by Φ = −1.41 rad, Ψ = 1.25 rad, Θ = −3.12 rad and ζ = 3.07 rad, while for C7ax state Φ =1.26
rad, Ψ = −1.27 rad, Θ = 3.13 rad and ζ = −3.03 rad (after minimization in vacuum with the
CHARMM22 force-field). All molecular graphics in the article were produced with VMD.61
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Figure 3. Convergence of the string to the minimum free-energy path
(A) Evolution of the string length as a function of the iteration number. The string was
initially defined with 21 images (black line); after convergence, the iterations were resumed
after doubling the number of images (red line). (B) Evolution of the string, projected onto
the space of the Ramachandran dihedral angles Φ and Ψ. For clarity only 5 iterations are
displayed, along with the iteration number. The projection of the average string over the last
30 iterations from consisting of 42 images is displayed in red. The standard deviation of this
average is less than 3 · 10−2 rad in both Φ and ψ. A free-energy landscape in the space of Φ
and Ψ, obtained with umbrella-sampling simulations, is shown in the background. Isolines
reflect increments of 5 kJoule/mol.

Branduardi and Faraldo-Gómez Page 25

J Chem Theory Comput. Author manuscript; available in PMC 2014 April 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Minimum free-energy profile for the isomerization of the alanine dipeptide, and per-
atom decomposition
(A) Molecular structure of the alanine dipeptide, indicating the atom names used in the text.
(B) Total free-energy profile along the converged string (black line), and per-atom
decomposition (colored lines). The first image corresponds to the C7eq state and the last one
corresponds to the C7ax state. The statistical error on the total free-energy profile, obtained
from averaging the last 30 iterations of the string after convergence, is less than 1 kJoule/
mol on average and less then 0.2 kJoule/mol on average for each atomic contribution (not
shown). A more detailed figure with the associated error bars can be found in the Supporting
Information.
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Figure 5. Committor probability test of the calculated minimum free-energy path for alanine
dipeptide isomerization
(A) Probability distributions of the committor to state C7ax as a function of the image
number, around the transition state. Note that the distribution for state 29 is strongly peaked
around a value of 0.5. Individual plots are shown in the Supporting Information. (B) Mean
committor probability, from the distributions in panel (A), as a function of the image
number. A close-up of the free-energy profile around the transition state is overlaid for
comparison (in red). Note that the mean committor probability of the transition state (image
29) is approximately 0.5.
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Figure 6. Atomic mechanism of isomerization of the alanine dipeptide
The figure shows the projections of the atomic mean-force vectors for representative images

along the lowest free energy path. The vectors shown are defined as , i.e. they
represent the atomic mean forces along the displacement vector along the path. For clarity,
only forces of magnitude larger than 200 kJoule/nm are displayed.
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Figure 7. Decomposition of the internal energy landscape of the alanine dipeptide, in the space of
the Ramachandran dihedral angles
The internal-energy landscape was obtained from the umbrella-sampling calculations used
in Fig. 3B, averaging the potential energy of 100 conformations at each point in the Φ/Ψ
space. The most relevant contributions to the internal energy are shown alongside. Note that
although the internal-energy and freeenergy landscapes are very similar, they are not
identical. This indicates that the variations in conformational entropy in the Φ/Ψ space are
much smaller than the changes in potential energy. The projection of the average over the
last 30 iterations of the string optimization is shown with black dots.
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Figure 8. Minimum free-energy profile and per-atom decomposition for the isomerization of the
alanine dipeptide, using a string with reduced dimensionality
The coloring scheme is the same as in Fig. 4B. The first image corresponds to the C7eq state
and the last one corresponds to the C7ax state. For comparison, the free-energy profile
obtained with the high-dimensional string (Fig. 4B) is shown in grey.
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Figure 9. Committor probabilities for the minimum free-energy path for the alanine dipeptide
isomerization, calculated with the low-dimensional string
(A) Probability distributions of the committor to state C7ax as a function of the image
number, around the transition state. A more detailed view is enclosed in the Supporting
Information. (B) Mean committor probability, from the distributions in panel (A), as a
function of the image number. A close-up of the free-energy profile around the transition
state is again overlaid for comparison (in red). Note that the mean committor probability of
the transition state (image 29) slightly greater than that obtained for the high-dimensional
string, but still close to 0.5.
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Figure 10. Representative conformations of the  and  isomers of β-D mannose
The arrows indicate the major differences in the positions of the ring atoms with respect to
the plane defined by C2, C3, C5 and O5. See Fig. 11A for atom names.
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Figure 11. Minimum free-energy profile for the isomerization of β-D mannose, and per-atom
decomposition
(A) Molecular structure of β-D mannose with atom names used in the text. (B) Final free-
energy profile obtained through SOMA and per-atom decomposition. Intermediate states are
indicated. The statistical error on the total free-energy profile, obtained from averaging the
last 30 iterations of the string after convergence, is less than 1 kJoule/mol on average and
less then 0.2 kJoule/mol on average for each atomic contribution (not shown). A more
detailed figure with the associated error bars can be found in the Supporting Information.
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Figure 12. Optimization of the string for the  to  isomerization of β-D mannose
Different iterations of the string are shown, projected onto the space of qx, qy, qz Cremer-
Pople coordinates. A sphere of radius 0.6 is shown as reference for the path. The various
intermediate conformations are denoted with standard saccharides nomenclature. The
projection of the average string from the last 30 iterations of string optimization is shown
with a continuous thick red line.
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Figure 13. Representative conformations of β-D mannose along the  to  isomerization
The figure shows the projections of the atomic mean-force vectors for representative images

along the final string. The vectors shown are defined as , i.e. they are the
atomic mean forces along the displacement vector along the path. For clarity, only forces of
magnitude larger than 400 kJoule/nm are displayed.

Branduardi and Faraldo-Gómez Page 35

J Chem Theory Comput. Author manuscript; available in PMC 2014 April 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 14. Minimum free-energy profile and atomic contributions for the isomerization of β-D
mannose, using a string with reduced dimensionality
Atomic contributions are indicated with colors. The coloring scheme is the same as in Fig.

11B. The first image corresponds to the  state and the last one corresponds to the 
state. For comparison, the free-energy profile obtained with the high-dimensional string
(Fig. 11B) is shown in grey.
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