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Abstract
Genetic association studies have been a popular approach for assessing the association between
common Single Nucleotide Polymorphisms (SNPs) and complex diseases. However, other
genomic data involved in the mechanism from SNPs to disease, e.g., gene expressions, are usually
neglected in these association studies. In this paper, we propose to exploit gene expression
information to more powerfully test the association between SNPs and diseases by jointly
modeling the relations among SNPs, gene expressions and diseases. We propose a variance
component test for the total effect of SNPs and a gene expression on disease risk. We cast the test
within the causal mediation analysis framework with the gene expression as a potential mediator.
For eQTL SNPs, the use of gene expression information can enhance power to test for the total
effect of a SNP-set, which are the combined direct and indirect effects of the SNPs mediated
through the gene expression, on disease risk. We show that the test statistic under the null
hypothesis follows a mixture of χ2 distributions, which can be evaluated analytically or
empirically using the resampling-based perturbation method. We construct tests for each of three
disease models that is determined by SNPs only, SNPs and gene expression, or includes also their
interactions. As the true disease model is unknown in practice, we further propose an omnibus test
to accommodate different underlying disease models. We evaluate the finite sample performance
of the proposed methods using simulation studies, and show that our proposed test performs well
and the omnibus test can almost reach the optimal power where the disease model is known and
correctly specified. We apply our method to re-analyze the overall effect of the SNP-set and
expression of the ORMDL3 gene on the risk of asthma.
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1. Introduction
Genome-wide association studies (GWAS) constitute a popular approach for investigating
the association of common Single Nucleotide Polymorphisms (SNPs) with complex
diseases. Usually, a large number of SNP markers are tested across the genome. Great
interest lies in improving power of testing SNP effects by borrowing additional biological
information. Indeed, a major criticism of genetic association studies lies in its agnostic style
(Hunter and Chanock, 2010): none of biological knowledge was encoded in the standard
genetic association analyses. To overcome such limitations, multi-marker analysis has been
advocated to integrate biological information into statistical analyses and to decrease the
number of tests (Kwee et al., 2008; Wu et al., 2010). Analysis using SNP-sets grouped by
physical locations has better performance than the standard single SNP analysis in re-
analyzing the breast cancer GWAS data (Wu et al., 2010). SNPs can also be grouped into a
SNP-set according to biological pathways, in which a gene harmonizes with other genes to
exert biological functions.

The two factors we try to bridge in genetic association studies are SNPs and disease risk.
Despite the success of SNP-set analyses in assembling multiple SNPs based on biological
information, mechanistic pathways between SNPs (SNP-sets) and disease are still neglected.
Given the availability of multiple sources in genomic data (e.g., gene expression and SNPs)
(Moffatt et al., 2007; Cusanovich et al., 2012), it is desirable to perform joint analysis by
integrating multiple sources of genomic data. Here we combine the information of SNPs and
gene expression by introducing gene expression as a mediator in the causal pathway from
SNPs to disease. Biologically, gene expression can be determined by the DNA genotype
(Morley et al., 2004; Cheung et al., 2005; Fu et al., 2009) and that gene expression can also
affect disease risk (Dermitzakis, 2008). Moreover, results from the SNP-set analysis
augmented by a biological model can be more scientifically meaningful. Statistically, gene
expression can help explain variability of the effect of SNPs on disease when there exists an
effect of SNPs on disease via gene expression and thus increases the power of detecting the
overall effect of SNPs on disease risk.

SNPs that regulate mRNA expression of a gene are so-called expression Quantitative Trait
Loci (eQTL) (Schadt et al., 2003). Statistically, eQTL SNPs can be viewed as the SNPs that
are correlated with mRNA expression of a gene. Cis-eQTL SNPs are the SNPs that are
within or around the corresponding gene, and trans-eQTL SNPs are those that are far away
or even on different chromosomes. Numerous genome-wide eQTL analyses have been
reported to comprehensively capture such a DNA-RNA (i.e., SNPs-gene expression)
association in the genome in different tissues and organisms (Schadt et al., 2003; Morley et
al., 2004; Innocenti et al., 2011). eQTL results can be external information to prioritize the
discovery of susceptibility loci in genome-wide association studies (Hsu et al., 2010; Zhong
et al., 2010; Zhang et al., 2012). Methods are available to integrate multiple genomic data to
draw causal inference on a biological network (Schadt et al., 2005; Zhu et al., 2008;
Hageman et al., 2011; Neto et al., 2013). We focus in this paper on joint analysis of multiple
eQTL SNPs of a gene and their corresponding mRNA expression for their effects on disease
phenotypes. Compared with multi-SNP analyses, this approach further incorporates eQTLs
into genetic association studies, and accounts for a biological process (from DNA to RNA)
within a gene to improve power.

This paper is motivated by an asthma genome-wide association study of subjects of British
descent (MRC-A), in which the association between SNPs at ORMDL3 gene and the risk of
childhood asthma was investigated (Dixon et al., 2007; Moffatt et al., 2007). The MRC-A
dataset consists of 108 cases and 50 controls with both SNP genotype (Illumina 300K) and
gene expression (Affymetrix HU133A 2.0) data available. The original genome-wide study
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reported that the 10 typed SNPs on chromosome 17q21 where ORMDL3 is located, were
strongly associated with childhood asthma in MRC-A data, and the results were validated in
several other independent studies. The authors also found that each of these 10 SNPs was
highly correlated with gene expression of ORMDL3, which is also associated with asthma.
The 10 SNPs, ORMDL3 expression and asthma status can be illustrated as the S, G and Y,
respectively in Figure 1. Instead of analyzing SNP-expression, expression-asthma, and SNP-
asthma associations separately and univariately, here we are interested in assessing the
overall genetic effect of ORMDL3 on the occurrence of childhood asthma, by jointly
analyzing SNP and gene expression data and accounting for the possibility that the OR-
MDL3 gene expression might be a causal mediator for the association of the SNPs in the
ORMDL3 gene and asthma risk. Our ultimate goal is to integrate multiple sources of
genomic data for genetic association analyses.

In this paper, we propose to jointly model a set of SNPs within a gene, a gene expression,
and disease status, where a logistic model is used to model the dependence of disease status
on the SNP-set and the gene expression, and a linear model is used for the dependence of the
gene expression on the SNP-set, both adjusting for covariates. We are primarily interested in
testing whether a gene, whose effects are captured by SNPs and/or gene expression, is
associated with a disease phenotype. We formulate this hypothesis in the causal mediation
analysis framework (Robins and Greenland, 1992; Van-derWeele and Vansteelandt, 2009,
2010; Imai et al., 2010). Note that the previous work on causal mediation analysis is mostly
focused on estimation.

We use the joint model to derive the direct and indirect effects of a SNP-set mediated
through gene expression on disease risk. For eQTL SNPs, we show that the total effect of a
gene on a disease captured by a set of SNPs and a gene expression corresponds to the total
effects of the SNP-set, which are the combined direct effects and indirect effects of the
SNPs mediated through the gene expression, on a disease. This framework allows us to
study how the use of gene expression data can enhance power to test for the total effect of a
SNP-set on disease risk. We study the impact of model mis-specification using the
conventional SNP-only models when the true model is that both the SNPs and the gene
expression affect the disease outcome. For non-eQTL SNPs, the null hypothesis simply
corresponds to the joint effects of the SNPs and the gene expression.

Due to potentially a large number of SNPs within a gene and some of them might be highly
correlated, i.e., in high linkage disequilibrium (LD), conventional tests, such as the
likelihood ratio test, for the total effects of multiple SNPs and a gene expression, do not
perform well. We propose in this paper a variance component test to assess the overall
effects of a SNP set and a gene expression on disease risk. Under the null that the test
statistic follows a mixture of χ2 distributions, which can be approximated analytically or
empirically using a resampling based perturbation procedure (Parzen et al., 1994; Cai et al.,
2012). As the true disease model is often unknown, we construct an omnibus test to improve
the power by accommodating different underlying disease models.

The rest of the paper is organized as follows. In Section 2, we introduce the joint model for
SNPs, a gene expression and disease as well as the null hypothesis of no joint effect of the
SNPs and the gene expression on a disease phenotype. In Section 3, we propose a variance
component score test for the total effect of SNPs and gene expression, and construct an
omnibus test to maximize the test power across different underlying disease models. In
Section 4, we interpret the null hypothesis and study the assumptions within the framework
of causal mediation modeling for eQTL SNPs and non-eQTL SNPs. In Section 5, we
evaluate the finite sample performance of the proposed test using simulation studies and
show that the omnibus test is robust and performs well in different situations. In Section 6,
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we apply the proposed method to study the overall effect of the ORMDL3 gene contributed
by both the SNPs and the gene expression on the risk of childhood asthma, followed by
discussions in Section 7.

2. The Model and the Null Hypothesis
The statistical problem is to jointly model the effect of a set of SNPs and a gene expression
on the occurrence of a disease. Assume for subject i (i = 1, …, n), an outcome of interest Yi
is dichotomous (e.g., case/control), whose mean is associated with q covariates (Xi, with the
first covariate to be 1, i.e., the intercept), p SNPs in a SNP-set (Si), mRNA expression of a
gene (Gi) and possibly the interactions between the SNPs and the gene expression as:

(2.1)

where α = (α1, …, αq)T, βS = (βS1, …, βSp)T, βG, and γ = (γ1, …, γp)T are the regression
coefficients for the covariates, the SNPs, the gene expression, and the interactions of the
SNPs and the gene expression, respectively. A SNP-set and gene expression pair can be
defined in multiple ways. For example, S can be the SNPs in a gene and G is the mRNA
expression of the gene. In the asthma data example, S are the 10 typed SNPs around
ORMDL3 and G is the expression of ORMDL3. Alternatively, one can choose the SNP-set/
expression pair based on the eQTL study: eQTL SNP-set/corresponding gene expression.

As SNPs can affect gene expression (Schadt et al., 2003; Morley et al., 2004; Innocenti et
al., 2011), for each subject i, we next consider a linear model for the continuous gene
expression Gi (i.e., the mediator), which depends on the q covariates (Xi) and the p SNPs
(Si):

(2.2)

where ϕ = (ϕ1, …, ϕq)T and δ = (δ1, …, δp)T are the regression coefficients for the covariates
and the SNPs, respectively; and εi follows a normal distribution with mean 0 and variance

. Again, the p SNPs can be the SNPs within a gene or the eQTL SNPs corresponding to a
gene for which the expression level is measured.

Our goal is to test for the total effect of a gene captured by the SNPs in a set S and a gene
expression G on Y, which can be written using the regression coefficients in model (2.1) as:

(2.3)

Note that the null hypothesis (2.3) only involves the parameters in the [Y |S, G, X] model
(2.1). We use [G|S, X] model in Section 4 to facilitate interpretation of the null hypothesis
(2.3) and study the assumptions within the causal mediation analysis framework.
Throughout the paper, we term this null hypothesis as a test for the total effect of a gene.
Later in Section 4 we will show that it corresponds to the total effect of SNPs for eQTL
SNPs and simply to the joint effect of SNPs and expression for non-eQTL SNPs.

3. Test for the Total Effects of a Gene
3.1. Test Statistic for the Total Effect of a Gene

We propose in this section to test for the null hypothesis of no total effect of a gene (2.3)
under model (2.1). As the number of SNPs (p) in a gene might be large and some might be
highly correlated (due to linkage disequilibrium), the likelihood ratio test (LRT) or
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multivariate Wald test for the null hypothesis (2.3) uses a large degrees of freedom (DF) and
has limited power. To overcome this problem, we assume under model (2.1), the regression
coefficients of the individual main SNP effects βSj are independent and follow an arbitrary
distribution with mean 0 and variance τS, and the SNP-by-expression interaction coefficients
γj (j = 1, …, p) are independent and follow another arbitrary distribution with mean 0 and
variance τI. The resulting outcome model (2.1) hence becomes a logistic mixed model. The
problem for testing the null hypothesis (2.3) becomes a joint test of variance components (τS
= τI = 0) and the scalar regression coefficient for the fixed gene expression effect (βG = 0) in
the induced logistic mixed models as H0 : τS = τI = 0 and βG = 0. One can easily show that
the scores for τS, βG, and τI under the induced logistic mixed models are:

where Y = (Y1, Y2, …, Yn)T,  = (X1, X2, …, Xn)T,  = (S1, S2, …, Sn)T, G = (G1, G2, …,
Gn)T, and  = (C1, C2, …, Cn)T = (G1S1, G2S2, …, GnSn)T; μ̂0 = (μ̂01, · · ·, μ̂0n)T and

 is the mean of Yi under H0, and α̂0 is the maximum
likelihood estimator of α under the null model

(3.1)

To combine the three scores to test for the null hypothesis H0 : τS = τI = 0 and βG = 0, one
may consider the conventional score statistic Qconv = UT U, where U = (UτS, UβG, UτI)

T

and  is the efficient information matrix of U. However, this approach has several major
limitations. First, notice that the score of the regression coefficient of gene expression UβG
is a linear function of Y, while the scores of the variance components of main effects of
SNPs and SNP-by-expression interactions τS and τI are quadratic functions of Y. Hence UβG
has a different scale from (UτS, UτI). It follows that (UτS, UτI) are likely to dominate UβG. A
combination of the three scores using Qconv is hence not desirable. Second, Qconv involves
quartic functions of Y and the information matrix  involves the 8th moment of Y. Hence
calculations of Qconv are not stable, and it is difficult to analytically approximate the null
distribution of Qconv.

We hence propose the following weighted sum of three scores as the test statistic for the null
hypothesis (2.3):

(3.2)

where a1, a2, a3 are some weights. Q is a nice quadratic function of Y. Hence its null
distribution can be easily approximated by a mixture of χ2 distributions. Different weights
can be chosen. With an equal weight a1 = a2 = a3, Q is equivalent to the variance component
test for τcommon by assuming βSj, βG and γj follow a common distribution with mean zero
and variance τcommon. However, this common distribution assumption is strong, as S, G, and
C generally have different scales and so do their effects βSj, βG and γj.

Notice that UτS, , UτI are all quadratic functions of Y in similar forms, we propose to

weight each term UτS, , UτI using the inverse of the square root of their corresponding
variances. This allows each weighted term to have variance 1 and be comparable.

Huang et al. Page 5

Ann Appl Stat. Author manuscript; available in PMC 2014 April 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Specifically, the variances for UτS, , UτI are IτS = 1T(  ·  · )1, IG = 1T (GGT ·  ·
GGT)1, IτI = 1T (  ·  · )1, respectively, where   denotes the component-wise
multiplication of conformable matrices  and , 1 denotes a vector of ones, the diagonal

and off-diagonal elements of  are  and kii′ = 2[μ̂0i(1 − μ̂0i)][μ̂0i′
(1 − μ̂0i′)], respectively (Lin, 1997).

We derive the asymptotic distribution of Q under the null hypothesis (2.3) by accounting Q
= Q(α̂) is a function of α̂, which is the maximum likelihood estimate of α under the null
model (3.1). Define

where U = (U1, U2, …, Un)T, , W =
diag{μi(1 − μi)}. We show in Section 3 of the Supplementary Material that under the null

hypothesis (2.3), the score test statistic Q converges in distribution to ,
where ε is a random vector following N(0, D) and Al is the lth row of

. This means under the null hypothesis, Q follows a mixture
of χ2 distributions, which can be approximated using a scaled χ2 distribution by matching

the first two moments (Satterthwaite, 1946) as , where κ = Var(Q)/[2E(Q)] and ν =
2[E(Q)]2/Var(Q), and the expressions of E(Q) and Var(Q) are given in Section 3 of the
Supplementary Material. Alternatively, one can approximate the mixture of χ2 distribution
using the characteristic function inversion method (Davies, 1980).

3.2. The Omnibus Test for the Total Effect of a Gene
So far we derive the test statistic Q under the outcome model specified in (2.1), which
assumes the disease risk of Y depends on SNPs, gene expression and their interactions.
Denote this Q by QSGC. Suppose that the disease risk of Y depends on SNPs and gene
expression but not their interactions, or even depends only on SNPs, then it is more powerful
to test for the total SNP effect using the test statistics QSG = n−1(Y− μ̂0)T(a1 +a2GGT)(Y
−μ0), and QS = n−1(Y − μ̂0)T (a1 )(Y−μ̂0), respectively. Under these simpler disease
models, the test statistic QSGC loses power as it tests for extra unnecessary parameters. On
the other hand, if the disease risk indeed depends on SNPs, expression and their interactions,
performing tests only using SNPs QS or main effects QSG will lose power, compared to
QSGC

Since in reality we do not know the underlying true disease model, it is difficult to choose a
correct model. It is hence desirable to develop a test that can accommodate different disease
models to maximize the power. Moreover, in a genome-wide association study, it is almost
impossible that one disease model is true for tens of thousands of genes. Thus we further
propose an omnibus test where we identify the strongest evidence among the three different
models with: 1) only SNPs, 2) SNPs and gene expression, and 3) SNPs, gene expression and
their interactions. Specifically, we calculate the p-value under each of the three models, then
compute the minimum of the three p-values and compare the observed minimum p-value to
its null distribution. Because of the complicated correlation among QSGC, QSG and QS, it is
difficult to analytically derive the null distribution of the minimum p-value. To this end, we
resort to a resampling perturbation procedure.
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As shown in Section 3.1, Q converges in distribution to . The
empirical distribution of Q(0) can be estimated using the resampling method via
perturbation (Parzen et al., 1994; Cai et al., 2012). The perturbation method approximates
the target distribution of Q by generating random variables ε̂ from the estimated asymptotic
distribution of ε. This perturbation procedure is also called the score-based wild bootstrap
(Kline and Santos, 2012).

Specifically, set , where ’s are independent N(0, 1). By
generating independent  = ( , …, ) repeatedly, the distribution of ε̂ conditional on the
observed data is asymptotically the same as that of ε. Denoted by {Q̂(0)(b), b = 1, …, B},
where B is the number of perturbations. It follows that the empirical distribution of the Q̂

(0)(b) is the same as that of Q(0) asymptotically. The p-value can be approximated using the
tail probability by comparing {Q̂ (0)(b), b = 1, …, B} with the observed Q. Hence one can
calculate the p-values of QSGC, QSG, and QS by setting

 and  and generate their
perturbed realizations of the null counterpart as {Q̂SGC (0)(b)}, {Q̂SG(0)(b)}, and {Q̂S(0)(b)},
and compare them with corresponding observed values, respectively. Note that for each
perturbation b, the random normal perturbation variable  is the same across the three tests
such that the correlation among QSGC, QSG and QS can be preserved.

The p-value of the omnibus test can be easily calculated using the perturbation method. Let
P̂S = (QS), P̂SG = (QSG), and P ̂SGC =  (QSGC) be the three p-values using the three
statistics, where (q) = pr{Q̂S(0)(b) > q}, (q) = pr{Q̂SG(0)(b) > q}, and (q) = pr{Q̂SGC
(0)(b) > q}. The null distribution of the minimum p-value, P̂min = min(P̂S, P̂SG, P̂SGC) can be
approximated by

. The p-value
of the omnibus test hence can be calculated by comparing the observed minimum p-value

P̂min with its empirical null distribution { }.

Note that different from permutation where the observed data are shuffled and resampled to
calculate the test statistic Q, the perturbation procedure resamples from the asymptotic null
distribution of Q without re-calculating Q using the shuffled data. Thus, it is much more
efficient than the permutation method. Using a single CPU (2.53 GHz) to run 100 genes
(each with 10 SNPs) and 100 cases/100 controls, the computation time is 134.10 and 809.76
seconds for the perturbation and permutation methods (both with 200 resampling),
respectively. Furthermore, covariates can be easily adjusted using the perturbation method,
but covariate adjustment is more difficult using permutation. Specifically, the permutation
based p-values calculated by simply permuting SNPs and gene expression fail if SNPs/gene
expression are correlated with covariates.

4. Understanding the Total Effect of a Gene and the Assumptions of the
Test Using the Causal Mediation Analysis Framework
4.1. Characterization of SNPs, Gene Expression and Disease Risk in the Framework of
Causal Mediation Modeling

To understand the null hypothesis of no total effect of a gene captured by SNPs in a gene
and a gene expression and the underlying assumptions, we discuss in this section how to
interpret the null in (2.3) within the causal mediation analysis framework. Causal
interpretation can be helpful for understanding genetic etiology of diseases as well as for
applications in pharmaceutical research (Li et al., 2010). Although genotype is essentially

Huang et al. Page 7

Ann Appl Stat. Author manuscript; available in PMC 2014 April 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



fixed at conception, it is at that time effectively randomized, conditional on parental
genotypes and could be viewed as subject to have hypothetical intervention. The statistical
problem of jointly modeling a set of SNPs, a gene expression and a disease can be presented
as a causal diagram (Pearl, 2001; Robins, 2003) in Figure 1 and be framed using a causal
mediation model (VanderWeele and Vansteelandt, 2009 and 2010; Imai et al., 2010) based
on counterfactuals (Rubin, 1974 and 1978). VanderWeele and Vansteelandt (2010) and Imai
et al. (2010) have used the causal mediation analysis for epidemiological and social science
studies, respectively, where the exposure of interest is univariate.

One can decompose the total effect (TE) of SNPs into the Direct Effect (DE) and the
Indirect Effect (IE). The Direct Effect of SNPs is the effect of the SNPs on the disease
outcome that is not through gene expression, whereas the Indirect Effect of the SNPs is the
effect of the SNPs on the disease outcome that is through the gene expression. Within the
causal mediation analysis framework, we derive in the Supplementary Material the TE, DE
and IE of the SNPs on the disease outcome.

Specifically, we define the total effect (TE) of SNPs as

i.e., the equation (2.1) marginalizes over gene expression G. In Section 1 of the
Supplementary Material, we show that for rare diseases, the total effect of the SNPs on the
log odds ratio (OR) of disease risk can be expressed in terms of the regression coefficients in
models (2.1) and (2.2) and is approximately equal to

(4.1)

We can express the DE and IE of the SNPs on the log odds ratio of disease risk in terms of
the regression coefficients in models (2.1) and (2.2). For rare diseases, they are respectively
approximately equal to

(4.2)

(4.3)

These are derived in Section 1 of the Supplementary Materials using coun-terfactuals under
the assumptions of no unmeasured confounding.

The sum of the direct and indirect effects, is equal to the total effect of the SNPs, i.e.,
TE=DE+IE. As shown in the Supplementary Material and discussed in Section 3.2,
identification of the total effect requires a much weaker assumption than those required for
the direct and indirect effects.

4.2. Understanding the Null Hypothesis for eQTL SNPs
Under the assumption that the gene expression G is associated with the SNPs S (i.e., eQTL
SNPs), i.e., δ ≠ 0, using equations (4.2) and (4.3), the test for the joint effects of SNPs in a
SNP set S and a gene expression G on Y, i.e., the total effect of a gene, is equivalent to a test
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for the total SNP effect on the outcome (Y). In fact, for eQTL SNPs, which have non-zero
effects on expression G (i.e., δ ≠ 0), using the expressions of DE and IE in (4.2) and (4.3),
one can show that the null hypothesis of no direct and indirect genetic (SNP) effects is
equivalent to the null hypothesis (2.3) that all the regression coefficients (βS, βG and γ) equal
zero:

The null hypothesis (2.3) that all the regression coefficients (βS, βG and γ) are equal to zero
is also equivalent to the null hypothesis of no total effect of the SNPs provided βS + βGδ ≠ 0
if βS or βG is not 0 for eQTL SNPs (δ ≠ 0), i.e.,

(4.4)

We show in Section 1.4 of the Supplementary Material that the null hypothesis (4.4)
requires only the assumption of no unmeasured confounding for the effect of eQTL SNPs
(S) on the outcome (Y) after adjusting for the covariates (X). Most genetic association
studies make this assumption. In other words, we make no stronger assumption than
standard SNP only analyses for testing the null hypothesis of no total effect of the SNP set in
a gene.

Note that in models (2.1) and (2.2), we allow other covariates (X) to affect both the gene
expression and the disease. If the covariates X affect both expression and disease, ignoring
X may cause confounding in estimating DE and IE. As shown in Figure 1, if arrows from X
to G and Y exist and X is not controlled for, assumption (2) in Section 1.2 of the
Supplementary Material is violated. But if the covariates X, the common causes of
expression and disease, do not affect the SNPs S (no arrow from X to S), the estimation and
hypothesis testing for TE is still valid. However, if there does exist an effect of X on S, then
it violates the above assumption of no unmeasured confounding for the S-Y association and
thus the test or estimation for TE will be biased.

4.3. Understanding the Null Hypothesis for non-eQTL SNPs
If SNPs have no effect on gene expression (δ = 0), i.e., they are not eQTL SNPs, then there
is no indirect effect of the SNPs on Y, so that the null hypothesis of no total effect of a gene
(H0 : βS = 0, βG = 0, γ = 0) is not equivalent to testing for no total SNP effect on Y (H0 : TE
= DE + IE = 0). In this case, what the null hypothesis, H0 : βS = 0, βG = 0, γ = 0 tries to
evaluate is simply whether there exists a joint effect of the given set of SNPs S and the given
gene expression G, and possibly their interactive effect, on disease risk. To test for such a
joint effect, we need the first two assumptions regarding no unmeasured confounding in
Section 1.2 of the Supplementary Material: no unmeasured confounding of the SNPs on the
outcome and no unmeasured confounding of the gene expression on the outcome.

4.4. Understanding the Traditional Genetic Analysis Using the SNP Only Model
In standard genetic association analysis, we usually fit the following SNP only model:

(4.5)

which does not take gene expression into account, but simply considers the association
between the outcome and SNPs adjusting for covariates. Note for the special case where
SNP, S, is univariate, the model (4.5) corresponds to single SNP analysis, the most common
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approach in GWAS. Kwee et al. (2008) and Wu et al. (2010) have developed tests for a

SNP-set for  under (4.5), which can be more powerful than individual SNP tests
for the association between the joint effects of the SNPs in a gene and the outcome by
borrowing information across SNPs within a gene, especially when the SNPs are in good
linkage disequilibrium (LD).

Assuming the true models that depend on both SNPs and a gene expression are specified in

(2.1) and (2.2), we study in this section how  in the mis-specified standard SNP only
model (4.5) is related to the regression parameters βS, βG and γ in the true model (2.1) and

what the null hypothesis  under (4.5) tests for. To focus on the fundamental issues
and for simplicity, we first discuss the case of no interaction effect between SNPs and gene
expression on disease risk, i.e., γ = 0 in model (2.1). Under the true [Y |S, G, X] and [G|S, X]
models in (2.1) and (2.2) assuming no S × G interaction (γ = 0), by plugging (2.2) into (2.1),
the true [Y |S, G, X] model can be rewritten as

. Integrating out

, we have the true [Y |S, X] model as

(4.6)

where  (Zeger et al., 1988).

A comparison of (4.5) with (4.6) shows that  and that the effect of S = s1
versus s0 on the outcome Y under the SNP only model (4.5) corresponds to (s1 − s0)T {c(βS +
βGδ)}, which is proportional to the Total Effect of SNPs in 4.1) when γ = 0. It follows that

testing for  in the SNP only model (4.5) is approximately equivalent to testing for no
total effect of the SNPs.

However if there exists a SNP-by-expression interaction on Y and the SNPs are eQTL SNPs,
the naive SNP only analysis using (4.5) does not provide obvious correspondence to the total
SNP effect. As shown in Section 2 of the Supplementary Material, the induced true [Y |S, X]
model in this setting follows

(4.7)

where . This implies that if the [Y |S, G, X] follows the
interaction model (2.1), the induced true [Y |S, X] model depends not only on the linear
terms of X and S but also on the cross-product terms of X and S and the second order term
of S. A comparison of (4.5) with (4.7) shows that the standard SNP only model (4.5) mis-

specifies the functional form of the true [Y |S, X]. The test for  under the mis-
specified SNP only model (4.5) will still be valid for testing the total effects of SNPs,
because under the null the two models are the same. However, the mis-specified model is
subject to power loss, compared to the test based on the correctly specified model. With only
an interaction effect (γ ≠ 0, βS = 0, βG = 0), (4.7) can be written as:

, where

. If we assume this is the true model and fit the conventional
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GWAS model (4.5) to test for the SNP effect, the test is again still valid under the null, but
loses power under the alternative.

4.5. Understanding the relation with Mendelian randomization
The approach here differs in several ways from that based on Mendelian randomization
(Smith and Ebrahim, 2003 and 2005) in which genetic markers (SNPs) are instrumental
variables to assess the effect of an exposure (in our case, a gene expression value) on an
outcome. Here we are interested in using a gene expression to increase power for testing for
the total effect of SNPs on a disease outcome. Furthermore, Mendelian randomization
makes the assumption that SNPs do not have an effect on an outcome except through an
exposure (e.g. gene expression in our case), in other words, no direct effect. No such
assumption is being made here. This is because we are interested in testing for a different
effect, i.e., the effect of SNPs, rather than the effect of an exposure (gene expression) on
disease risk.

5. Simulation Studies
5.1. Simulation Setup

To make the simulation mimic the motivating asthma data (Moffatt et al., 2007), we
simulated data using the ORMDL3 gene on chromosome 17q21. We generated the SNP data
in the ORMDL3 gene by accounting for its linkage disequilibrium structure using HAPGEN
based on the CEU sample (Marchini et al., 2007). The genomic location used to generate the
SNP data is between 35.22 and 35.39 Mb on chromosome 17, which contains 99 HapMap
SNPs. Ten of the 99 HapMap SNPs are genotyped on the Illumina HumanHap300 array, i.e.,
10 typed SNPs.

To generate gene expression and the disease outcome, we assumed there is one causal SNP
Scausal and varied the causal SNP among the 99 HapMap SNPs in each simulation. In
Section 5.4, we further perform a simulation study assuming three causal SNPs. For subject
i, gene expression Gi was generated by the linear regression model Gi = 0 + δ × Scausal,i + εi,
εi ~ N(0, 1.44). The outcome Yi was generated by the logistic model

The parameters and the range of βS, βG and γ were based on the empirical estimates from
analysis of the asthma data. For each simulation, we first generated a cohort with 1000
subjects, and 100 cases and 100 controls were randomly selected from the 1000 subjects to
form a case-control sample.

Two sets of simulation were performed. In the first set, we selected the SNP rs8067378 as
the causal SNP, as this SNP is highly associated with asthma in the original GWAS (Moffatt
et al., 2007). For each configuration of βS, βG, γ and δ, we generated 2000 data sets to
calculate the empirical size and power. In the second set of simulation, the causal SNP was
chosen one at a time out of the 99 HapMap SNPs. For each selected causal SNP, we
generated 1000 data sets and evaluated statistical power for two different disease models:
(βS, βG, γ) = (0.4, 0, 0), or (0.2, 0.2, 0). In both simulation settings, we used the 10 typed
SNPs of the ORMDL3 gene on the Illumina chip to form the SNP-set for the model (2.1),
i.e., p = 10, in calculating the test statistics QS, QSG, QSGC and the omnibus test. For QSG
and QSGC, both weighted and un-weighted methods were investigated, where a1 = 1, a2 =
(IG/IτS)−1/2, and a3 = (IτI/IτS)−1/2 for the weighted statistic, and a1 = a2 = a3 = 1 for the un-
weighted statistic. The p-values were calculated using the scaled χ2 approximation, the
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Davies’ method by inverting the characteristic function (Davies, 1980) and the perturbation
procedure with 500 perturbations. The results of these approximations were very similar at
the significance level of 0.05. We performed the omnibus test by combining the evidence
from QS, weighted QSG and weighted QSGC.

5.2. Size and Power: By Varying Effect Sizes for a Fixed Causal SNP
We first evaluated the sizes of the proposed score tests, where the null distribution was
approximated by either the scaled χ2 approximation or the perturbation procedure (Table 1).
Type I errors are well protected using both approximation methods under the three models
with statistics QS, QSG, QSGC. The empirical size is close to 0.05 for the omnibus test and
the three models. As the results using different approximation methods are similar at the
level of 0.05, we only present in the following the empirical power using the perturbation
method. We also evaluate the performance of the proposed tests using the characteristic
function inversion method (Davies, 1980) and the perturbation method at smaller sizes (α =
5 × 10−3 and 5×10−4) (Table 1 of the Supplementary Material), and find the methods
perform well.

We assumed rs8067378 is the causal SNP and eQTL, and compared the powers of the three
statistics QS, QSG, and QSGC as well as the omnibus test under three different configurations
of effect sizes (Figure 2). The first setting assumes both gene expression and the interactions
between the SNPs and the gene expression have no effect on the outcome (βG = 0 and γ = 0)
(Figure 2(a)). As expected, QS shows the optimal power as it correctly specifies the model.
The other two tests QSG and QSGC, especially QSGC, over-specify the model and waste DF
for testing the effects of expression and interactions, and hence lose power. The performance
of the omnibus test is close to the QS. As a note, the correctly specified model here means
that gene expression or non-linear interaction has been incorporated in the analyses, not that
typed SNPs are causal.

The second setting assumes the gene expression has an effect on the outcome but there is no
interaction (βG = 0.2 and γ = 0) (Figure 2(b)), while the third setting further assumes an
interaction effect (βG = 0.2 and γ = 0.2) (Figure 2(c)). The tests QSG and QSGC, respectively
have the best power under the correct model. In contrast to the setting 1, QS has the worst
performance among the three tests when expression has an effect on disease, and the power
loss of QS is even more in the presence of the interactions (Figure 2(c)). The un-weighted
QSG also does not perform well in these two cases and has considerable loss of power. The
rest of the tests have similar power. The performance of the omnibus test in both settings is
close to the optimal test with only minimal loss of power.

We also study in Figure 2 the performance of the likelihood ratio test (LRT) for testing for
the joint effects of SNPs and gene expression by comparing the model with an intercept,
SNPs, gene expression and interactions with the model with only the intercept. In general,
our proposed methods outperform the LRT in both power and type I error. The power loss
and the incorrect size of the LRT are likely due to the large degrees of freedom relative to
the sample size (DF=21; 100 cases/100 controls) and the high LD among some of the typed
SNPs.

5.3. Power: By Varying Causal SNPs
In order to investigate the performance under ”synthetic association”, i.e., the causal variant
is untyped (i.e, not on a chip) (Dickson et al., 2010), we assessed the power of the methods
when each of the 99 HapMap SNPs was assumed to be causal. In particular, we were
interested in evaluating how the correlation between the causal SNP and the 10 typed SNPs
affected the statistical powers of the proposed tests. Intuitively, if the causal SNP is untyped
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and has low LD with the typed SNPs, one would expect lower power. We considered two
settings: the outcome is only associated with the causal SNP: βS = 0.4, βG = 0, γ = 0 (Figure
3(a)); and the outcome is associated with the causal SNP and the gene expression but not
their interaction: βS = 0.2, βG = 0.2, γ = 0 (Figure 3(b)). A total of 1000 simulations were
performed.

Figures 3(a) and (b) show that the pattern of simulation results is very similar to those in the
previous section. The test assuming the correct model performs the best. The omnibus test
nearly reaches the optimal power obtained under the true model in both settings. In addition,
the test using the weighted statistic derived under the model with SNPs and gene expression
as predictors (weighted QSG) performs well even when the interaction model is true (data
not shown), although it has some loss of power in setting 1 when only SNPs are associated
with the outcome. As the model (2.1) can be written as

 where β* = βS +Giγ, the main effect only
analyses can still capture the interactive effect γ even though the model is not correctly
specified. So the simpler test QSG can be used as an alternative to the omnibus test if the
computation cost is a concern.

Figure 3 also shows that statistical power depends on the correlation between the causal
SNP (which might be untyped) and the 10 typed SNP. The power rises as the correlation
between the causal SNP and the typed SNPs increases. For example, the statistical power is
high if a causal SNP is in the LD block spanned between the second to the third typed SNPs
(marked as the second and third black triangles from left to right, according to the physical
location, in Figure 3), as it has good correlation with the typed SNPs. The power is generally
low if a causal variant lies in the region between the first and second typed SNPs as it has
little correlation with the typed SNPs. In this case, it is virtually not possible to detect
genetic effects using the typed SNPs on the chip no matter what method one uses. Although
the typed SNPs might not include the underlying causal SNPs, it still provides a valid testing
procedure due to the same model under the null. However, the typed SNPs may or may not
provide a consistent estimate for the effect of the causal SNP, depending on the LD pattern
of the causal SNP and the typed SNPs.

5.4. Additional Simulations: Model mis-specification, Multiple Causal Variants, Varying LD
structures

We performed additional simulations to assess how model mis-specification influences our
proposed test. Gene expression Gi was generated without the normality assumption Gi = 0 +
δScausal,i + εi, εi ~ N (0, 1.44) + uniform(−0.3, 0.3). Two outcome models are explored. The
first model generates the outcome Yi by the logistic model assuming non-linear effects of
SNPs and G as logit{P(Yi = 1|Scausal,i, Gi)} = −1000.9 + (100 + βSScausal,i + βGGi +
γGiScausal,i)0.9, and the second model generates Yi by a probit model Φ−1{P(Yi = 1|Scausal,i,
Gi)} = −0.2 + βSScausal,i + βGGi + γGiScausal,i. Although the model is not correctly specified
in our proposed test under these settings, the joint analyses of SNPs and expression still
outperform the SNP-only analyses when the gene expression contributes to the risk of
developing disease. Similarly, the performance of the omnibus test is very close the the
optimal test obtained under the true model for different scenarios (Figure 4).

We conducted two additional simulation studies by varying the number of causal variants
and LD structures. The pattern of the results from these additional studies is very similar to
what is presented above (Figures 1 and 2 in the Supplementary Material). The first
additional study is similar to the study in Section 5.2, except that there are three causal SNPs
in the ORMDL3 gene instead of a single causal SNP. Using the same ten typed SNPs for the
analyses, we again found that the test performs the best when the model is correctly
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specified and the omnibus test approaches the optimal test obtained under the true model
with limited power loss (Figure 1 of the Supplementary Material).

Similar to analyses in Section 5.3, the second additional study investigates the performance
of the proposed test at 15q24-15q25.1 where SNPs have a different LD pattern from the
ORMDL3 gene. Assuming one causal SNP at a time, we used the same ten typed SNPs to
perform our proposed test. Again, the test performs the best when the model is correctly
specified, and the omnibus test is robust and approaches the optimal test obtained by
assuming the true model, and the power depends on the correlation of the causal SNP and
the typed SNPs (Figure 2 of the Supplementary Material).

6. Analysis of the Asthma Data
We applied the proposed testing procedures to re-investigate the genetic effects of the
ORMDL3 gene on the risk of childhood asthma in the MRC-A data (Dixon et al., 2007;
Moffatt et al., 2007). This subset of the data contained 108 asthma cases and 50 controls
where we have complete data of the 10 typed SNPs and gene expression of ORMDL3. The
SNP data were genotyped using the Illumina 300K chip and the gene expression was
collected using the Affymetrix Hu133A 2.0. We analyzed the data using both additive and
dominant modes: in the additive mode, the genotype was coded as the number of the minor
allele (i.e., 0, 1, 2), whereas in the dominant mode, the genotype was coded as whether or
not the minor allele was present (i.e., 0, 1).

We applied the proposed tests for the total SNP effect of ORMDL3 using the SNP and gene
expression data. There are strong associations between the SNPs and the gene expression (8
out of 10 with p-value<0.05 and the other two with p-values of 0.076 and 0.21), i.e., the
SNPs are eQTL SNPs. We considered six test statistics: QS, un-weighted QSG, weighted
QSG, un-weighted QSGC, weighted QSGC, and omnibus test (Table 2). We compared our
methods with the standard multivariate or univariate methods: the multivariate Wald test,
which has 10, 11 and 21 degrees of freedom under the three models (SNPs only, SNPs and
gene expression, and SNPs, gene expression and interactions). We also included in the
comparison the test using the smallest p-value from the 10 single SNP analyses with the
Bonferroni adjustment or the adjustment using the permutation procedure to account for the
correlation among the SNPs.

The results in Table 2 show that our proposed methods give smaller p-values compared to
the standard testing procedures. The test QSGC, which accounts for the effects of SNPs, gene
expression and their interactions, gives the smallest p-value compared to the tests only using
SNPs, in both additive and dominant modes. For example, the p-values using weighted
QSGC and QS are 0.0028 and 0.044 respectively using the additive SNP model. The omnibus
test calculated using the perturbation procedure by computing the minimum p-value from
QS, weighted QSG and weighted QSGC also provides a more significant signal than those
only considering SNPs, with the p-value being 0.0055. These results are consistent with the
findings in simulation studies.

We also performed genome-wide analyses for both SNP-sets and single SNP. We first
paired eQTL SNPs with their corresponding gene expression (Dixon et al., 2007) and
performed SNP-only analyses and our proposed method. For single SNP analyses, after
adjustment of multiple comparison using false discovery rate (FDR; Storey, 2002), 56 SNPs
with FDR <0.1 were identified in SNP-only analyses and 97 SNPs were identified from the
proposed omnibus test. For SNP-set analyses, we grouped eQTL SNPs that correspond to
the same gene as a SNP-set, and we identified 5 and 15 SNP-sets (FDR<0.1) from SNP-only
analyses and omnibus tests, respectively.
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7. Discussion
We proposed in this paper to integrate SNP and gene expression data to improve power for
genetic association studies. The major contributions of this paper are: 1) to formulate the
data integration problem of different types of genomic data as a mediation problem; 2) to
propose a powerful and robust testing procedure for the total effect of a gene contributed by
SNPs and a gene expression; and 3) to relax the assumptions required for mediation analyses
in the test for the total effect.

Specifically, as shown in Figure 1, we are able to integrate the information of SNPs and
gene expression as a biological process through the mediation model. Our proposed variance
component score test for the total effect of SNPs and a gene expression circumvents the
instability of estimation of the joint effects of multiple SNPs and gene expression, because
only the null model needs to be fit. Mediation analysis to estimate direct and indirect effects
generally requires additional unmeasured confounding assumptions, and previous work
mainly focused on estimation. Here we focus on testing for the total effect of a gene using
SNPs and a gene expression. For eQTL SNPs, we show that the total effect of a gene
contributed by SNPs and a gene expression is equivalent to the total effect of SNPs, which is
the sum of direct and indirect effects of SNPs mediated through gene expression. Testing for
the total SNP effect only requires one assumption: no un-measured confounding for the
effect of SNPs on the outcome, which is the same assumption as the standard GWAS and
thus no stronger assumption is required.

We characterize the relation among SNPs, gene expression and disease risk in the
framework of causal mediation modeling. This framework allows us to understand the null
hypothesis of no total effect of a gene contributed by SNPs and gene expression, and the
underlying assumptions of the test for both eQTL SNPs and non-eQTL SNPs. We propose a
variance component score test for the total effects of a gene on disease. This test allows to
jointly test for the effects of SNPs, gene expression and their interactions. We show that the
proposed test statistic follows a mixture of χ2 distributions asymptotically, and proposed to
approximate its finite sample distribution using a scaled χ2 distribution, a characteristic
function inversion method or a perturbation method.

We considered three tests: using only SNPs (QS), SNPs and gene expression main effects
(QSG), and SNPs, gene expression and their interactions (QSGC). Our simulation study
shows that all three tests have the correct type I error for testing for the overall SNP effect.
The relative power of these tests depends on the underlying true relation between the
predictors (SNPs, gene expression and their interactions) and disease. As the underlying
biology is often unknown, we further constructed the omnibus test that identifies the most
powerful test among the three disease models, and proposed to use the perturbation method
to calculate the p-value for the omnibus test. Further, the test using only the main effects of
SNPs and gene expression loses limited power compared to the omnibus test and can be
used as a simple alternative.

Our results also show that to test for the total effects of a gene, the tests that incorporate both
SNP and gene expression information, such as QSG and QSGC, are more powerful if SNPs
are associated with gene expression than if they are not. In other words, it is even more
beneficial to incorporate gene expression data with SNP data to detect genetic effects on
disease if gene expression is a good causal mediator for the SNPs. To achieve this, a natural
way is to select SNPs located within or at the neighborhood of a gene, since it has been well-
established that the SNP within a gene can alter its expression value via transcription
regulation (Lee et al., 2008). Alternatively, one can restrict the joint SNP-expression
analysis to known eQTL SNPs. If selection of eQTL SNPs is based on statistical

Huang et al. Page 15

Ann Appl Stat. Author manuscript; available in PMC 2014 April 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



significance, one also needs to be aware of the possibility that cis-action may be a
confounding effect of SNPs on array hybridization (Li et al., 2006).

We mainly focus on testing for the total effect of a gene in this paper. The proposed method
can be easily extended to test for direct and indirect effects separately for eQTL SNPs.
Using equation (4.2), to test for the direct effect of the SNPs, one can test H0 : βS = 0, γ = 0.
Using the notation in equation (3.2), one can test this null hypothesis using the statistic QDE
= n−1(a1UτS + a3UτI), where the null model is a logistic model with X and G. To test for the
indirect effects of the SNPs, using equation (4.3), one can test H0 : βG = 0, γ = 0. Using the
notation in equation (3.2), one can test this null hypothesis using the statistic

, where the null model is a logistic model with X and S. As the
number of SNPs S might be large and some SNPs might be highly correlated (with high
LD), standard regression to fit the null model might not work well. One can fit the null
model using ridge regression. To perform these tests, one will need to make the four
unmeasured confounding assumptions required for estimating direct and indirect effects of
SNPs stated in Section 1.2 of the Supplementary Material.

Gene expression may not be the only mediator for the relation between SNPs and disease.
Other biomarkers, such as DNA methylation, proteins, metabolites of the gene product in
the blood, immunological or biochemical markers in the serum, and environmental factors
can also serve as potential mediators, depending on the context or the disease to be studied.
For instance, epigenetic variations have been reported to exert heritable phenotypic effects
(Johannes et al., 2008). Furthermore, our proposed test can be applied to address many other
scientific questions as long as there exist a causal relationship as illustrated in Figure 1. For
example, the SNP-gene-disease relations can be replaced by the DNA copy number-protein-
cancer stage (early vs. late) in tumor genomics studies to assess if copy number can have
any effect on the clinical stage of cancer. It is advantageous to set up a biologically
meaningful model before applying our proposed test procedure, which makes the best use of
the prior knowledge.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
Causal diagram of the mediation model. S is a set of correlated exposure, e.g., SNP set; G is
a mediator, e.g., gene expression; Y is an outcome, e.g., disease (yes/no); and X are
covariates, including the true and potential confounders.
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Fig 2.
Empirical power. SNPs are assumed to be eQTL SNPs (δ = 1). Each figure plots the powers
of the proposed tests as a function of the main effect of the SNP (βs). The three figures
correspond to the three different true models, the model with only SNP effects, the model
with main effects without interaction, and the model with SNPs, gene expression and their
interaction effects. The dashed line in (a) indicates 5% type I error rate.
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Fig 3.
Simulated power curves for evaluating how different choices of causal SNPs affect the
powers of the proposed tests. The x-axis indicates the physical location (Mb) of the 99
HapMap SNPs at 17q21. The orange vertical bar indicates the relative locations of the causal
SNP and the black triangles indicate the ten typed SNPs. Different lines indicate the power
of different tests. The lower panel of each subfigure is the plot for linkage disequilibrium,
measured as r2 ranging from 0 (white) to 1 (black).
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Fig 4.
Empirical power under model mis-specification. SNPs are assumed to be eQTL SNPs (δ =
1). Each figure plots the powers of the proposed tests as a function of the main effect of SNP
(βs). The six figures correspond to the different true models: the model with only SNP
effects ((a) and (b)), the model with main effects of SNP and gene expression ((c) and (d)),
and the model with SNPs, gene expression and their interaction effects ((e) and (f)). (a) (c)
(e) are simulated under logit[P (Yi = 1|Scausal,i, Gi)] = −1000.9 + (100 +βSScausal,i + βGGi +
γGiScausal,i)0.9 and (b), (d), (f) are simulated under the probit model Φ−1[P (Yi = 1|Scausal,i,
Gi)] = −0.2 + βSScausal,i + βGGi + γGiScausal,i. The dashed lines in (a) and (b) indicate 5%
type I error rate.
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