
Identification of Thyroid Carcinoma Related Genes with
mRMR and Shortest Path Approaches
Yaping Xu., Yue Deng., Zhenhua Ji, Haibin Liu, Yueyang Liu, Hu Peng, Jian Wu*, Jingping Fan*

Department of Otolaryngology head and neck surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China

Abstract

Thyroid cancer is a malignant neoplasm originated from thyroid cells. It can be classified into papillary carcinomas (PTCs)
and anaplastic carcinomas (ATCs). Although ATCs are in an very aggressive status and cause more death than PTCs, their
difference is poorly understood at molecular level. In this study, we focus on the transcriptome difference among PTCs,
ATCs and normal tissue from a published dataset including 45 normal tissues, 49 PTCs and 11 ATCs, by applying a machine
learning method, maximum relevance minimum redundancy, and identified 9 genes (BCL2, MRPS31, ID4, RASAL2, DLG2,
MY01B, ZBTB5, PRKCQ and PPP6C) and 1 miscRNA (miscellaneous RNA, LOC646736) as important candidates involved in the
progression of thyroid cancer. We further identified the protein-protein interaction (PPI) sub network from the shortest
paths among the 9 genes in a PPI network constructed based on STRING database. Our results may provide insights to the
molecular mechanism of the progression of thyroid cancer.
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Introduction

Thyroid tumors include encapsulated benign tumors and

carcinomas, and carcinomas can be classified into papillary

carcinomas (PTC) and anaplastic carcinomas (ATC). Although

frequency of ATC is low (,5%), it is in a very aggressive status of

thyroid carcinomas, responsible for about half of its death and its

patients have a short survival time after diagnosis (6 month in

average) [1]. ATC is evolved from PTC, and they are found to

share genetic alterations [2]. However, limited studies reported

their difference at transcriptome level [2–5], resulting a lack of

systematic analysis of its tumor evolution.

In order to bring insight into the progression of thyroid

carcinomas at systems level, we adopted a two-step computational

strategy [6]. By using an effective machine learning method –

mRMR (maximum relevance, minimum redundancy), we first

identify genes responsible for the progressing transcriptome

difference among normal tissue, PTC and ATC using the mRNA

microarray data from Hebrant et al.’s study [5]. The machine

learning method mRMR does not only identify genes with

independent effect along, but also take the redundancy effect

among genes selected into account. Additional to the pipeline used

by Li et al. [6], we applied different validation methods, such as

leave-one-out validation, 10 fold cross validation and stratified 10

fold cross validation, to determine the number of genes which

separate the three tissue status, due to one validation method along

may provide biased information of prediction accuracy of the

machine learning model. Second, we address the function of these

genes at systems level by integrating known protein-protein

interaction (PPI) from STRING database. A network of shortest

paths among the genes from a background PPI network could be

further revealed.

Materials and Methods

Transcriptome Array Dataset
We adopted the gene expression data of thyroid cancer from

Hebrant et al.’s study [5], which include the transcriptome array

data of 11 anaplastic thyroid carcinomas (ATC), 49 papillary

thyroid carcinomas (PTC) and 45 normal thyroids (Normal) based

on Affymetrix Human Genome U133 Plus 2.0 Array. This dataset

was retrieved from NCBI Gene Expression Omnibus (GEO) with

an accession number GSE33630. The array platform is with

54,675 probes corresponding to 20,283 protein coding genes. The

array signals were normalized with RMA using the Affymetrix

Bioconductor package. For the expression value of a gene, we used

the average value of normalized signals of its corresponding

probes.

STRING PPI data
The PPI data was retrieved from STRING database (version

9.0) (http://string.embl.de/) [7]. The PPI data includes both

known and predicted protein interactions. We constructed a PPI

network based on the STRING PPI data using a R package

‘igraph’ [8]. In the network, proteins are presented as nodes of the

networks and edges corresponding to the protein-protein interac-

tions.
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The mRMR algorithm
We used mRMR (maximum relevance minimum redundancy)

method to define a gene set which can separate the three sample

sets (ATC, PTC and Normal). The mRMR was first used in

analyzing microarray data by Peng et al. [9]. Its idea is to rank

features according to their relevance to the target sample variable,

and meanwhile take redundancy among the features into

consideration. So genes in the selected gene set has the best

trade-off between maximum relevance to phenotype and mini-

mum redundancy within genes in the selected set.

Using mutual information (MI) defined using equation (1), we

quantified relevance as well as redundancy,

I(x,y)~

ðð
p(x,y) log (

p(x,y)

p(x)p(y)
)dxdy ð1Þ

where p(x, y) is a joint probabilistic density of vectors x and y, and

p(x) and p(y) are marginal probabilistic densities.

Relevance D between a gene f and its target variable c is defined

as,

D~I(f,c) ð2Þ

And redundancy R between gene f and genes in gene set T is

defined as,

R~
1

m

X
gi[T

I(f ,gi) ð3Þ

where m is the number of genes in T. The trade-off between

relevance and redundancy is obtained as follows,

Figure 1. IFS curve of the classification of ATCs, PTCs and normal tissue samples. The X-axis indicate the number of genes used for
classification/prediction, and Y-axis is the prediction accuracies by NNA evaluated using leave-one-out (orange), 10 fold (green) and stratified 10 fold
(blue) cross validation.
doi:10.1371/journal.pone.0094022.g001

Table 1. The 10 Genes selected using mRMR and IFS.

Gene Name Entrez Gene ID mRMR score

BCL2 596 1.09662945

MRPS31 10240 0.222372096

ID4 3400 0.32164204

RASAL2 9462 0.390513354

DLG2 1740 0.334284222

MY01B 4430 0.354486787

ZBTB5 9925 0.384452316

LOC646736 0.339571667

PRKCQ 5588 0.359410448

PPP6C 5537 0.340892868

doi:10.1371/journal.pone.0094022.t001
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max f (D{R) ð4Þ

Repeating the above calculation a gene set is selected to

distinguish target variables under mRMR condition with a given

number N of genes.

Using incremental feature selection (IFS), the number N can be

determined. Its idea is to compare prediction accuracy defined in

the following selection among different Ns, and choose the one

with highest accuracy.

Prediction of phenotypes
We used the widely used Nearest Neighbor Algorithm (NNA) to

predict the target variable [10]. ‘‘Nearness’’ is calculated as

follows,

N(x1,x2)~1{
x1x2

jx1jjx2j ð5Þ

where x1 and x2 are two vectors of genes representing two samples.

The smaller N(x1, x2) is, the more similar the two samples are

[11,12].

Model Validation
In Li et al. ’s study [6]., leave-one-out validation was applied to

validate the prediction accuracy of the study. Although the

advantages of this validation method is explain in some studies

[6,13], we noticed that there are other theoretical studies

demonstrated there are bias in the estimation of accuracy in the

leave-one-out validation in many circumstances [14,15]. In order

to provide more information of the accuracy of the prediction

model and to give an accurate estimation of the number of genes

separate different tumor status, we applied two additional

validation methods – 10 fold cross validation [14] and stratified

10 fold cross validation because of the stratification of tumor status

(normal, PTC and ATC) [15].

Shortest paths tracing
Genes do not function only by itself, but also by its interaction

with others as well as environmental factors. Protein-protein

interaction (PPI) network would bring us insights into the

comprehensive biological systems. We attempted to provide such

insights by searching the shortest paths which link the genes

selected using mRMR and IFS in PPI network constructed

according to STRING PPI data. The shortest paths were

estimated using Dijkstra’s algorithm [16].

Enrichment analysis
GO (Gene Ontology) term enrichment and KEGG pathway

enrichment were performed using DAVID tools [17]. We

estimated the P values, corrected P values with Benjamin multiple

testing correction which controlled family-wide false discovery

rate, and fold enrichment values for each functional or pathway

terms.

Results

Ten candidate genes identified by mRMR, NNA and IFS
On the basis of mRMR estimation, we tested the predictor of

NNA described in the Materials and Methods section, with one

feature, two features, … to 400 features. The result of IFS curve

representing prediction accuracy estimated by leave-one-out, 10

fold and stratified 10 fod cross validation, compared with the

number of features is shown in Figure 1. We noticed that although

the estimation accuracies different among the three different

methods, but the minimum number of genes required separating

tumor status is approximately the same – about 9 or 10 (Figure 1

and Table S1). We selected 10 genes to include more candidates

for further analysis and studies, and the accuracy was 0.848, 0.857

and 0.877 for leave-one-out, 10 fold and stratified 10 fold cross

Table 2. Proteins selected on the shortest paths among the mRMR selected proteins.

Ensembl Gene ID Ensembl Protein ID Associated Gene Name betweenness

ENSG00000091831 ENSP00000206249 ESR1 5

ENSG00000010610 ENSP00000011653 CD4 4

ENSG00000150991 ENSP00000344818 UBC 4

ENSG00000143933 ENSP00000272298 CALM2 3

ENSG00000132170 ENSP00000287820 PPARG 3

ENSG00000029363 ENSP00000031135 BCLAF1 2

ENSG00000050820 ENSP00000162330 BCAR1 2

ENSG00000100906 ENSP00000216797 NFKBIA 2

ENSG00000106588 ENSP00000223321 PSMA2 2

ENSG00000112365 ENSP00000230122 ZBTB24 2

ENSG00000115956 ENSP00000234313 PLEK 2

ENSG00000141510 ENSP00000269305 TP53 2

ENSG00000204519 ENSP00000282296 ZNF551 2

ENSG00000154342 ENSP00000284523 WNT3A 2

ENSG00000158092 ENSP00000288986 NCK1 2

ENSG00000147044 ENSP00000367408 CASK 2

ENSG00000074071 ENSP00000380531 MRPS34 2

doi:10.1371/journal.pone.0094022.t002
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validation separately. The top 10 genes selected using mRMR

include 9 known genes (BCL2, MRPS31, ID4, RASAL2, DLG2,

MY01B, ZBTB5, PRKCQ, PPP6C), and a miscRNA (miscellaneous

RNA, LOC646736) (Table 1). Interestingly, the 10 candidate genes

have no overlap with the 9 differentially expression gene between

ATC and PTC identified in the Hebrant et al.’s study. One of the

possible reasons is that in our detection, we considered the

variation in transcriptome differences in normal tissue, ATC and

PTC together.

Table 3. KEGG pathway enrichment of the 25 genes selected on the shortest paths.

Term Gene Count P Value Fold Enrichment

T cell receptor signaling pathway 4 0.002282004 13.45238095

Neurotrophin signaling pathway 4 0.003385035 11.71658986

Pathways in cancer 5 0.007626354 5.536803136

Small cell lung cancer 3 0.018690317 12.97193878

Apoptosis 3 0.019971101 12.52463054

Prostate cancer 3 0.02084525 12.24317817

Thyroid cancer 2 0.071736805 25.04926108

doi:10.1371/journal.pone.0094022.t003

Figure 2. 17 shortest paths genes among the 9 genes identified with mRMR methods. We identified 17 genes located on the shortest
paths of STRING PPI network among the 9 mRMR identified genes. Genes in blue are those identified with mRMR methods, and genes in red are
located on their shortest paths. The network is constructed based on STRING PPI data.
doi:10.1371/journal.pone.0094022.g002
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Shortest path genes
We constructed an undirected network based on PPI data from

STRING using ‘igraph’ [8]. Then we traced shortest path between

each pair of two genes from the 9 candidate genes identified using

mRMR, in the PPI network using Dijkstra’s algorithm [16]. There

are 16 genes located on the shortest path among the 9 candidate

genes, and we presented them according to their network

betweenness in the shortest paths composed sub-PPI network

(Table 2 and Figure 2).

Enrichment of the 9 candidate genes and shortest paths
genes

Using DAVID tools [17], we analyzed the functional enrich-

ment of the 9 candidate genes together with 16 shortest path genes

in KEGG pathway and GO term separately. For KEGG

enrichment, the 25 genes are enriched in 7 KEGG pathways

listed with their P value and fold enrichment value in Table 3.

Interestingly, we found most of these pathways are important

pathways related with cancer, such as T cell receptor signaling

pathway, apoptosis, pathways in cancer, small cell lung cancer,

prostate cancer, and thyroid cancer. T Cell Receptor (TCR)

activation promotes several important signals that determine cell

fate through regulating cytokine production, cell survival, prolif-

eration, and differentiation. And T cells are especially important in

cell-mediated immunity, which is the defense against tumor cells.

More detailed functions of TCR in cancer is reviewed in

Reference [18]. Moreover, thyroid cancer pathway was also

found enriched by the set of the 25 genes. For GO term

enrichment, 262 GO terms are enriched (Table S2). Several of

them are related with cancer progression, like GO:0042127

regulation of cell proliferation, GO:0042980 regulation of

apoptosis and GO:0043067 regulation of programmed cell death.

These results provide circumstantial evidence supporting our data

analysis pipeline.

Discussion

Genes identified by mRMR and IFS
We identified 9 genes, BCL2, MRPS31, ID4, RASAL2, DLG2,

MY01B, ZBTB5, PRKCQ and PPP6C, and a miscRNA LOC646736

related with thyroid carcinoma in this study. Many of them are

previously known important genes with thyroid development or

cancer progression.

BCL2, B-cell CLL/lymphoma 2, is a protein coding gene

preventing cell apoptosis, and found in many Eukaryotic species.

In our mRMR results, it has the highest mRMR score (1.097),

suggesting it is the most important feature to separate ATC, PTC

and normal tissues. Damage to BCL2 has been identified as a

cause of a number of cancers, including ovarian [19], breast [20],

prostate [21], chronic lymphocytic leukemia [22]. It has also been

found to be differentially expressed between PTCs and normal

tissues [23], and genetic variants in BCL2 could contribute to the

risk of thyroid cancer [24].

Inhibitor of DNA binding/Inhibitor of differentiation 4 (ID4) is

a critical factor for cell proliferation and differentiation in normal

vertebrate development [25]. Its protein belongs to a family of

helix-loop-helix (HLH) proteins (ld1, ld2, ld3 and ld4). ID proteins

contain a HLH domain enabling interaction with other basic

HLH (bHLH)-proteins, and act as dominant negative inhibitors of

gene transcription [26]. Family members of ID genes have critical

row in the tumor genesis of thyroid cancer. For example, ID1

regulates growth and differentiation in thyroid cancer cells [27],

and ID3 was also identified as an early response protein and tumor

marker for thyroid carcinomas [26]. ID4 is most recently

discovered member of ID genes, mainly express in thyroid and

several other tissues [28], and a previous study has already

reported it as a marker in breast cancer [25].

Genes identified on PPI shortest paths
ESR1, EStrogen Receptor 1, is the gene with the largest

betweenness in the PPI network of shortest paths. It encodes

estrogen receptor alpha (ERa), which mediates interaction

between estrogens and its target sites together with ERb. ERa
and ERb are both expressed in thyroid cancer cells, and the

proliferation of thyroid cancer cells is promoted by an ERa agonist

and reduced by enhanced expression of ERb or by an ERb agonist

[29]. Polymorphisms in ESR are also involved in tumor

oncogenesis in several tissues (e.g. breast, prostate, ovary and

thyroid), and may alter responsiveness of the tissues to estrogens

[30–33].

PPARG, peroxisome proliferator-activated receptor gamma,

encodes a member of the peroxisome proliferator-activated

receptor (PPAR) subfamily of nuclear receptors. It is a regulator

of adipocyte differentiation, and has been found in the pathology

of numerous disease. Alterations of PPARG have been discovered

in a large number of thyroid cancer samples, such as PAX8/

PPARG fusion oncogene in follicular thyroid carcinoma and

PTCs [34–37], and another PPARG agonist (RS54444) in ATCs

[38].

Conclusion

In this study, we focused on transcriptome of the progression of

thyroid cancer, by applying a machine learning methods to

identify candidate genes separating three status of thyroid, normal,

PTC and ATC. The transcriptome data includes from 11 ATCs,

49 PTCs and 45 normal tissues. We identified 9 genes (BCL2,

MRPS31, ID4, RASAL2, DLG2, MY01B, ZBTB5, PRKCQ and

PPP6C) and a miscRNA (LOC646736) related with thyroid cancer

progression, additional to the genes identified previously [5]. We

further revealed the PPI network of the proteins coded by these

genes by estimating the shortest path of the interactions based on a

background PPI network constructed based on SRING database.

Our results may provide important insights to understand the

mechanism of the thyroid cancer progression at transcriptome

level.

Supporting Information

Table S1 Prediction accuracy of three validation methods.

(XLSX)

Table S2 GO enrichment of the 25 genes on the shortest paths.

(TXT)
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