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Abstract

Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the
peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75
different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found
to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely
uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To
facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that
assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor
allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better
understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type) and minor
allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct
categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced
activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer
structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the
minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to
synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity
when in combination with the minor allele.
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Introduction

Primary Hyperoxaluria Type 1 (PH1) is a severe autosomal

recessive kidney stone disease, caused by loss or dysfunction of the

enzyme alanine: glyoxylate aminotransferase (AGT). AGT is a

hepatic peroxisomal enzyme involved in glyoxylate metabolism

that detoxifies glyoxylate in the peroxisomes of cells by converting

it to glycine [1]. If not degraded, excess glyoxylate results in

buildup of oxalate, which is deposited in the kidneys in the form of

calcium oxalate, resulting in nephrocalcinosis, urolithiasis, and

renal failure [1].

The AGT enzyme exists in two polymorphic variants, termed

the major and minor alleles (herein depicted ‘AGTma’ and

‘AGTmi’). The minor allele variant is found in approximately 15–

20% of European and North American populations and results in

two amino acid changes, a Pro11Leu substitution at the N-

terminus of the protein, and a Ile340Met substitution at the C-

terminus [2]. Prior studies in vitro and in vivo have established that

AGTmi shows both reduced activity and stability [3–7]. These

properties have been attributed almost entirely to the P11L

substitution [3,5,6,8,9], which in addition to affecting stability and

activity also generates a weak mitochondrial targeting signal at the

N-terminus of the protein [2,10].

While the minor allele P11L substitution is not itself disease-

causing, Leu11 appears to interact synergistically with other

mutations to cause PH1. These interactions result in a variety of

phenotypic effects. In some cases, the addition of a second

mutation appears to have primarily a destabilizing role, acting

together with Leu11 to generate a severely destabilized and thus

non-functional enzyme. In other cases, the mutations have more

complex effects on protein trafficking [6,11]. For example, a

G170R mutation found on the minor allele is observed in ,30%

of PH1 patients [2]. This allele has been found to show only a

minor (,50%) [3,5,7] to no [9,12] defect in catalytic activity in

purified protein or whole cell enzymatic assays. However in

patients and mammalian cell culture, a majority of the

AGTmiG170R mutant is mislocalized to the mitochondria rather

than the peroxisome [13,14]. The P11L substitution generates a

weak mitochondrial targeting signal that by itself does not appear

to result in significant mistargeting of AGTmi, as the dimer form

of the protein appears to restrict or hide the N-terminus, thus

preventing contact with the mitochondrial targeting machinery
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[2,14,15]. However, the G170R substitution is thought to promote

protein aggregation and unfolding that may maintain the protein

for a longer time in an unfolded or partially folded state where it

shows enhanced interaction with cytosolic chaperones

[1,3,9,12,14]. In this unfolded/partially folded state, the protein

may be more easily targeted for mitochondrial, rather than

peroxisomal, trafficking.

In addition to G170R, over 25 other disease-associated

mutations have been found only in combination with the minor

allele [11]. While some of these alleles have been characterized in

depth biochemically, a number have not been characterized at all.

In previous work, we developed yeast-based assays to characterize

AGT specific activity and stability. The activity assay is based on

complementation of a yeast alanine: glyoxylate aminotransferase

deficiency with the human enzyme [7]. The stability assay

(IDESA) couples growth of yeast to activity of a hybrid

dihydrofolate reductase (DHFR)-AGT construct, wherein muta-

tions that destabilize AGT also destabilize DHFR and reduce

growth of yeast dependent on DHFR activity [16]. In this study,

we used these two assays to characterize mutations in AGT found

in PH1 patients, determining effects of these mutations on protein

specific activity and stability. As controls, we also included some

alleles that have been extensively characterized, including W108R,

G161C, and G161S [4,16–19]. To better understand how specific

mutations interact synergistically with the minor allele polymor-

phism, we examined the majority of the mutations on both alleles–

minor and major. Here we describe the results of this study, in

which we systematically characterize activity and stability of 34

variants on major and minor alleles. By clustering mutant

phenotypes based on how the mutations affect activity and

stability in combination with the major or minor alleles, we classify

the mutants into 4 subclasses that allow better understanding of

the subtypes of molecular defects associated with PH1.

Materials and Methods

Strains and Constructs. Strains used were TH5 (MATa

leu2-3,112 trp1 ura3-52 dfr1::URA3 tup1) and YCG-Fr (MATa ura3-1

trp1-1 ade2-1 his3-11,-15 leu2-3,-112 can1-100 shm1::HIS3

shm2::LEU2 gly1::URA3 AGX1::kanMX4). For activity assays,

mutations were generated by PCR and cloned via homologous

recombination into p416GPD-AGTma or p416GPD-AGTmi. For

stability assays, AGT mutants from activity assays were cloned into

pTB3-dhAGT [16].

Yeast-based assays. The yeast AGT activity assay was

carried out using YCG-Fr as described previously [7]. The stability

assay was carried out using the TH5 strain as described [16],

growing yeast at 30uC. Growth was quantified by measuring the

turbidity of the yeast cultures at OD600 using a SpectraMax 190

plate reader (Molecular Devices) after 68–78 hours (activity assay)

or 40–48 hours (stability assay). Assays were carried out at least

three independent times, and average and standard error reported

for each mutant. For graphs and analysis, mutants expressed on

the AGTma background were normalized to growth of AGTma,

while mutants on the AGTmi background were normalized to

growth of AGTmi.

Bacterial protein expression and

characterization. AGTmiE274D was cloned into bacterial

expression vector pET30a and purified using previously described

methods [7]. Assays of AGT activity were carried out as previously

described [7]. Preparation of apo-AGT was carried out as

described [20]. Absorption measurements were made with a Jasco

V-550 spectrophotometer with a 1 cm path length quartz cuvette

at a protein concentration of 10 mM. Intrinsic fluorescence

emission spectra were recorded on a Jasco FP-750 spectrofluo-

rometer equipped with a thermostatically controlled cell holder.

Spectra of the blanks, i.e. samples containing all components

except protein, were taken immediately before the measurement of

the sample containing AGT.

The molecular dimensions of AGTmiE274D at 10 mM concen-

tration in the presence of 100 mM PLP were determined by size-

exclusion chromatography. The mixture was loaded on a custom

packed Sephacryl S-300 10/600 column equilibrated and run with

100 mM potassium phosphate buffer pH 7.4 on an Akta FPLC

system (GE Healthcare). The injection volume was 500 ml at a

flow rate of 0.4 ml/min with detection at 280 nm. The software

Unicorn 5.01 (GE Healthcare) was used to calculate the elution

volume and the area of each peak. The apparent hydrodynamic

radius of the eluting species was calculated by comparing its

elution volume to that of a set of molecular weight standards under

the same experimental conditions.

The amount of PLP bound to AGTmi and AGTmiE274D upon

incubation with excess exogenous PLP and dialysis to remove

unbound coenzyme was determined by HPLC analysis on a 5-mm

Supelcosyl C18 column (25064.6 mm) connected to a Jasco

PU2080 HPLC control system. The eluent was 50 mM potassium

phosphate buffer, pH 2.35, at a flow rate of 1 ml/min. An UV

275 plus detector set at 295 nm was employed. The enzyme

mixture was denatured by adding trichloroacetic acid to a final

concentration of 10% and then centrifuged to remove the

precipitated protein.

Mammalian protein expression and

characterization. AGTmi wild-type or mutant cDNAs were

cloned into pCDNA3 (Life Technologies) at EcoRI and BamHI

sites. Constructs were transiently transfected into COS-7 cells

using Lipofectamine2000 (Life Technologies) according to the

manufacturer’s protocols. For immunofluorescence staining, cells

were fixed on coverslips with 4% paraformaldehyde, permeabi-

lized in 0.2% Triton-X-100/5% normal goat serum in PBS, and

incubated with either an anti-PMP70 primary antibody (Sigma) to

label peroxisomes, or MitoTracker (Molecular Probes) to label

mitochondria. Images were collected using a Zeiss LSM 510

confocal microscope, provided by the University of Colorado

School of Medicine Advanced Light Microscopy Core facility. For

western blotting, cells were lysed by boiling in 2x Laemmli Sample

Buffer and run on an SDS-PAGE gel. Proteins were transferred to

a nitrocellulose membrane and blotted with an anti-AGT antibody

(kindly provided by Chris Danpure).

Results

Over 75 different missense mutations have been linked to PH1

in patients. We chose 34 of these mutations (Table 1) to examine

in a yeast cell based activity assay [7] and stability assay [16]. The

activity assay relies on complementation of the yeast alanine:

glyoxylate aminotransferase (AGX1) with the human enzyme. In

yeast, deletion of the alanine: glyoxylate aminotransferase enzyme

is not lethal, but yeast lacking this protein in a shm1, shm2, gly1

background are unable to grow on media containing ethanol [21].

Human AGT can complement the yeast deficiency, allowing

growth on ethanol, and mutant forms of AGT that have reduced

activity in vivo and in vitro show reduced growth in this assay [7].

The stability assay relies on a dihydrofolate reductase (DHFR)

fusion that complements a DHFR deficiency in yeast. A target

protein of interest is inserted internally in DHFR, linking stability

of the target protein with that of DHFR. As DHFR is essential,

growth of yeast correlates with DHFR activity, such that

mutations that reduce stability decrease growth of yeast [16].

Allele-Specific Characterization of AGT Variants

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e94338



A number of AGT mutations from PH1 patients are found only

in association with a minor allele polymorphic variant, AGTmi.

We examined the interaction between each of the 34 mutants and

AGTmi and AGTma, characterizing the effect of the mutation on

activity and stability of each polymorphic allele. We then clustered

the mutants according to four different classifications (noted in

Table 1) reflecting how the mutations affect protein activity and

stability: mutations defective in activity and stability but not

synergistic with the minor allele (Group I); mutations defective in

activity and stability, synergistic with the minor allele (Group II);

mutations showing no defects (Group III); and mutations showing

defects in activity but not stability (Group IV).

The largest number of mutants (‘Group I’, 11 total) showed

defects in activity in both the major and minor alleles, defects in

stability in the minor allele, and for 8 of 11 mutants analyzed,

defects in stability in the major allele (Fig. 1). Of this set of 11

mutants, ten were previously uncharacterized (Table 1). Fig. 1A

shows activity of each allele in the context of the wild-type

sequence (AGTma, top) or with the additional P11L, I340M

mutations (AGTmi, bottom), while Fig. 1B shows the effects of

each mutation on stability. With the exception of L25R, G109V,

Table 1. List of PH1-associated mutations tested.

Mutation Allele Prior Activity Analysis Prior Stability Analysis

Group I

L25R ?

G109V Mi

R111Q ?

G161R Ma ma[5,18] mi[16]/ma[18]

M195R Mi

D201E Ma

L269P Ma

L284P Mi

L298P Mi

L359P Ma

L384P Ma

Group II

I56N Ma Mi

E95K Mi mi[11]

G161C Mi mi[18,19,24]/ma[24] mi[18,19]

G161S Mi mi[18,19,24]/ma[24] mi[18,19]

L166P Mi mi/ma[24]

M195L Mi

D243H ?

C253R Mi mi/ma[16,24]

P319L ? mi[9]/ma[19] mi[9]/ma[19]

A368T Mi mi[9] mi[9]

Group III

D129H Ma

L153V Ma

I279M ?

Q282R Ma

S287T ?

Group IV

R36C Mi mi[16,24]/ma[24] mi[16]

G47R Mi mi[16] mi[16]

G82R Mi mi[16] mi[16]

H83R Mi mi[9,11,16] mi[9,16]

W108R Mi mi[4,16,19] mi[16,19]

H261Q ? mi[16] mi[16]

E274D Mi mi[16] mi[16]

S275R Ma Mi mi[16] mi[16]

doi:10.1371/journal.pone.0094338.t001
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and L384P, which we did not analyze due to cloning issues,

mutants were analyzed for stability effects in both alleles. We

found that all of these variants showed ,15% wild-type activity

and stability in both AGTma and AGTmi. The one variant for

which activity had previously been determined, AGTma G161R

(0.3–6.2% activity compared with AGTma) [5,18] showed similar

activity in our analysis. Based on our results, we speculate that

Group I mutations cause loss of activity due to global protein

destabilization. Four of these mutations consist of Leu to Pro

substitutions in a-helical domains. Such substitutions are often

very deleterious, as the insertion of the proline distorts the

secondary structure. In this set of mutants, we found that generally

both AGTma and AGTmi are equally destabilized and show

equivalent loss of activity. Although four mutants in this category

were found only in patients in association with AGTmi, these

results showing defects in activity when combined with AGTma

suggest that these mutations would likely cause disease if found in

conjunction with the AGTma allele as well.

A second group of mutants (‘Group II’, 10 total) also showed

defects in activity and stability in AGTmi, but exhibited good

activity in the AGTma background (Fig. 2). Eight of these mutants

were originally found on the AGTmi background in patients (with

one, I56N, also found associated with AGTma) [11]. For two

mutants (D243H and P319L) the patient allele has not been

identified [22,23]. Three of these variants (I56N, M195L, and

D243H) are completely uncharacterized, while the other seven

have been characterized for effects on activity (Table 1) [9,24].

Four (G161S, G161C, P319L, and A368T) have been analyzed for

stability effects in vitro and in a cellular model system [9,18]. In vitro

measurements of activity have varied, depending on differences in

expression and purification conditions: characterization of AGTmi

G161S, G161C, L166P, and C253R from one group showed ,

1% AGTmi activity [24], while a separate analysis revealed a

more mild defect for AGTmi G161C and G161S (catalytic

efficiency equal to about 30% and of 60% of AGTmi,

respectively), but found that only ,10% of the purified protein

was soluble [19]. Further analysis of the G161C and G161S

mutants in a cell culture model confirmed low steady-state protein

levels in comparison to AGTmi, and showed that this is due to the

presence of significant amounts of aggregates within cells derived

from the apo-form of the variants [18]. In our in vivo assay, all ten

Group II variants showed poor growth in the activity assay (0–

20% of wild-type) and stability assay (0–10% of wild-type) in

AGTmi, but retained near wild-type activity (50–100% of wild-

type) in AGTma. In the previously mentioned in vitro analysis of

four mutants (G161S, G161C, L166P, and C253R), significantly

greater activity in AGTma compared with AGTmi was also

observed [24]. In the AGTmi background, Group II mutants

appear to have defects in stability that correlate with a defect in

activity, similar to Group I. However, unlike Group I, the

mutations appear to interact synergistically with AGTmi, as

activity is not significantly impaired in the AGTma background.

Stability with AGTma was variable in this group, with one variant,

C253R, showing ,60% of wild-type stability, but all others

showing much less. While the activity assay would suggest that all

proteins in this group maintain a native, folded conformation (a

requirement for activity) in AGTma, the stability assay, which is a

more stringent measure of stability involving insertion of each

protein into the reporter DHFR, suggests that the stability of some

of these mutants (I56N, M195L, G161S, P319L, L166P, and

G161C) is not equivalent to that adopted by wild-type AGTma. In

agreement with this, a strongly reduced thermal stability of mi-

G161S and mi-G161C in the purified form, and a strongly

reduced half-life and an increased propensity to aggregation of the

variants expressed in eukaryotic cells have been reported [18,19].

Group III consists of five mutants that have not been previously

characterized, which showed similar activity and stability (within

50–100%) as wild-type AGT. Shown in Figure 3 are the activity

Figure 1. Group I: mutants defective in activity/stability in both alleles. Indicated mutations in AGTma (top) or AGTmi (bottom) were tested
for effects on activity (A) or stability (B). Growth of mutants was normalized to % growth of wild-type. Average and standard error of at least three
independent assays is presented.
doi:10.1371/journal.pone.0094338.g001
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(Fig. 3A) and stability (Fig. 3B) measurements of these mutants in

AGTmi. As we did not see a substantial deficit in the AGTmi

background, which is less stable and has less activity than AGTma,

we did not generate these mutants in combination with AGTma.

Overall, these variants showed near wild-type growth in both

assays, with the exception of L153V and S287T that showed

,50% reduction in growth in the stability assay. Althought we

cannot exclude that the reduction in stability seen with L153V and

S287T may contribute to the disease phenotype, these mutants are

are clearly in a different class than the other classes of mutants

analyzed, which generally showed severe defects.

We speculated that these proteins could show near wild-type

activity and stability in the heterologous yeast assays, but the

mutations could affect peroxisomal trafficking in mammalian cells.

To examine this, we expressed four of these variants (D129H,

L153V, S287T, Q282R) in the context of the minor allele in COS-

7 cells and examined localization (Fig. 3C) and expression

(Fig. 3D). All constructs showed wild-type peroxisomal localiza-

tion, as assessed by colocalization with PMP-70, a peroxisomal

marker (Fig. 3C), and by absence of colocalization with

Mitotracker, which labels mitochondria (data not shown).

Steady-state expression of variants visualized by western blotting

showed no differences compared with AGTmi expression levels.

While the mutants were analyzed in the AGTmi background and

we cannot exclude the possibility that they could show effects in

AGTma or could have more complex effects in hepatocytes, based

on their normal expression and localization in COS-7 cells and

wild-type activity in the yeast growth assay we postulate that they

could represent amino acid changes that, although found in

patients, are not deleterious or causative of disease.

Group IV includes eight mutants that showed near wild-type

stability in AGTma and AGTmi but significantly reduced activity

in AGTmi and, in all but two cases, AGTma. These mutants were

previously characterized only on the minor allele (the allele they

were associated with in patients) [16], and include known active

site mutants G82R, H83R, W108R, and H261Q. In Fig. 4a, we

characterize each mutation in the major allele. While six of these

mutants have only been found to cause disease in conjunction with

the minor allele, we found that that most of these mutations also

show poor activity with AGTma, and thus expect these would be

deleterious in patients even in the AGTma background. To

identify mutants that show synergistic interaction with AGTmi, we

compared the difference in activity and stability of each mutant in

the major allele, with the previously reported activities and

stabilities in the minor allele [16] (normalized to % of wild-type

AGTmi or AGTma). Two mutations, G47R and E274D, showed

significantly different (p,.05) activity in AGTma vs AGTmi,

indicating interaction with the P11L/I340M mutations. In

contrast to the Group II mutations that appear to interact with

AGTmi to affect stability, these mutations appear to act with the

P11L/I340M mutations to specifically affect activity. For example,

G47R showed near wild-type stability in both AGTma and

AGTmi, severely reduced activity in AGTmi [16], but retained

,25–30% wild-type activity in AGTma. In the dimeric structure

of AGT (PDB 3R9A) [25,26], Gly47 is located between the active

site loop and the N-terminal extension of the other monomer

(residues 1–24). The synergic effect could be ascribed to the

finding that the P11L mutation reduces the stability of the AGT

dimeric structure and that the G47R substitution may affect the

interaction between the two monomers [27], thus resulting in an

increased population of monomeric species. E274D was found,

together with R36C and S275R, to cluster together in the AGT

dimer at a region distal from the active site but near P11 (Pittman

et al., 2012). While molecular dynamics simulations of E274D, a

conservative substitution, did not reveal any defects, simulations of

the nearby S275R showed displacement of Leu211 and Ser207

that caused a partial distortion of active site loop 206–216 that is

covalently bound to PLP via Lys209 [16], indicating that this

region may be sensitive to perturbations that specifically affect PLP

binding in the active site. While S275R and R36C show poor

Figure 2. Group II: mutants defective in activity/stability, greater effects in AGTmi allele. Indicated mutations in AGTma (top) or AGTmi
(bottom) were tested for effects on activity (A) or stability (B). Growth of mutants was normalized to % growth of wild-type AGTma (top) or AGTmi
(bottom). Average and standard error of at least three independent assays is presented.
doi:10.1371/journal.pone.0094338.g002
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activity in both AGTma and AGTmi, E274D showed equal or

better than wild-type activity in AGTma but severely compro-

mised activity in AGTmi, suggesting that E274D may only affect

activity when combined with P11L of the other monomer.

To further examine the conservative E274D mutation, we

expressed and purified AGTmi E274D from bacteria. Specific

activity of AGTmi E274D (160 mmol/mg/hr) was significantly

lower than specific activity of AGTmi (753 mmol/mg/hr) (Fig. 5A).

In the presence of PLP, AGTmi E274D elutes as a dimer on size

exclusion chromatography, thus suggesting that dimerization is not

affected by the mutation (data not shown). We compared the

intrinsic fluorescent emission spectra of AGTmi with that of

AGTmiE274D in the presence of 100 mM PLP, finding that

AGTmiE274D has a higher emission intensity and a 2 nm red-

shifted emission maximum (Fig. 5B). This indicates that the

mutation could affect the tertiary structure of the enzyme by

altering the microenvironment of aromatic residues. Upon

reaction (at a concentration of 10 mM) with 100 mM PLP followed

by dialysis to remove unbound PLP, we found that AGTmi

Figure 4. Group IV: mutants defective in activity only. (A)
Indicated mutations in AGTma were tested for effects on activity (left)
or stability (right). Growth of mutants was normalized to % growth of
wild-type AGTma. Average and standard error of at least three
independent assays is presented. (B). Comparison of growth in activity
(left) or stability (right) assay of each mutant in AGTma or AGTmi. The
growth difference was obtained by normalizing growth of each mutant
to either AGTma or AGTmi, as appropriate, and subtracting the
difference. Mutants indicated with an asterik (**) indicate samples in
which normalized growth in AGTma vs AGTmi was significantly
different (p,.05).
doi:10.1371/journal.pone.0094338.g004

Figure 3. Group III: mutants that behave similar to wild-type.
Indicated mutations in AGTma (top) or AGTmi (bottom) were tested for
effects on activity (A) or stability (B). Growth of mutants was normalized
to % growth of wild-type. Average and standard error of at least three
independent assays is presented. (C) Localization of mutants (in AGTmi
background) during heterologous expression in COS-7 cells. All mutants
tested localized normally to the peroxisome (labeled with an anti-
PMP70 marker). (D) Western blotting of mutants expressed in COS-7
cells using an anti-AGT antibody.
doi:10.1371/journal.pone.0094338.g003
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E274D binds approximately half the amount of PLP as AGTmi

(0.95 mol PLP per mol of enzyme, compared with 2 mol PLP per

mol of enzyme for AGTmi). The spectrum of the PLP-bound form

of AGTmiE274D shows a band at ,410 nm, 13 nm blue-shifted

when compared with that of AGTmi and characterized by a

reduced absorbance, and a band at ,320 nm, with an higher

absorbance with respect to that of AGTmi (Fig. 5B). Moreover,

the intrinsic fluorescence emission spectrum of the variant in the

holo-form shows an about 3-fold reduced emission intensity with

respect to that of holo AGTmi (Fig. 5C). Altogether, these data

indicate that the E274D mutation not only affects the AGT

tertiary structure, but also alters the PLP microenvironment and

possibly reduces the PLP binding affinity of AGT, thus compro-

mising the enzymatic activity. Unfortunately, we were not able to

determine the equilibrium constant for the formation of the

apoE274D-PLP complex. In fact, when we depleted PLP from

purified AGTmi-E274D preparations, we found that apoE274D is

prone to a strong aggregation process that resulted in protein

precipitation on filters and prevented in vitro spectroscopic studies.

Results with the E274D variant are consistent with previous

molecular dynamics studies on S275R [16] and biochemical and

structural studies of the S187F variant [28], which suggest that

mutations within residues that do not directly interact with the

coenzyme may still result in a local change in active site structure

and PLP binding.

Discussion

Here, we undertook a systematic characterization of activity and

stability of 34 mutations in alanine: glyoxylate aminostransferase

associated with primary hyperoxaluria type I, using two yeast-

based assays. Of these 34 mutants, 18 were completely unchar-

acterized, and only a few had been analyzed for effects on stability.

While half of these mutants had been previously characterized for

effects on activity in AGTma or AGTmi (and some in both alleles),

these experiments were often carried out by different groups using

different approaches, often yielding quite different results, and only

for seven mutants had both alleles been analyzed. This study,

characterizing over 30 mutations in two polymorphic alleles side-

by-side in the same two assays, provides the largest systematic

comparison of PH1 associated mutations in AGT to date.

Interestingly, when we analyzed each mutant in the yeast

activity assay in the reported polymorphic background (AGTma

or AGTmi) in which it was found, we found very few intermediate

phenotypes. Mutant activity, based on growth, was either similar

to wild-type (in the case of Group III mutants) or it was below 20%

of wild-type (AGTma or AGTmi, as appropriate). In previous

studies using the yeast complementation assay [7], the only two

mutants to show intermediate phenotypes were AGTmi-G170R

and AGTmi-F152I (between 30–50% wild-type activity), both of

which are mistrafficking mutants. The fact that the disease variants

(excluding the mistrafficking variants) show severe, rather than

moderate activity phenotypes in the complementation assay

suggests that even significant reductions (e.g. 30% of wild-type)

in AGT enzymatic activity may not be disease-causing. As such,

rescue of destabilized variants by pharmacological agents that

improve enzymatic yield even a small amount could greatly

improve disease outcome.

Figure 5. Biochemical characterization of AGTmi E274D. (A) Enzymatic activity of bacterially-purified AGTmi-his compared with AGTmi E274D-
his. (B) Absorbance spectra of 10 mM AGTmi E274D or AGTmi in the presence of 100 mM PLP in 100 mM potassium phosphate buffer (pH 7.4). (C)
Fluorescence emission spectra (excitation at 280 nm) of AGTmi and AGTmi E274D at 1 mM enzyme concentration in the presence of 100 mM PLP in
100 mM potassium phosphate buffer (pH 7.4).
doi:10.1371/journal.pone.0094338.g005

Figure 6. Structure of AGT dimer showing mutations synergis-
tic with minor allele variant. P11L residue associated with AGTmi is
shown in green, disease mutations are shown in magenta.
doi:10.1371/journal.pone.0094338.g006
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We characterized five reported disease variants (D129H,

L153V, I279M, Q282R, and S287T) that had relatively little

discernable effect on activity or stability in our yeast model. We

examined four of these (all but I279M) for peroxisomal trafficking

defects in mammalian cells, and for differences in total protein

levels as visualized by western blotting, but did not observe any

defects. It is possible that these mutations may affect activity in

ways that we have not examined. For example, we did not

specifically examine protein stability or activity within the

peroxisome (a mutation such as I279M could be affected by

methionine oxidation in the oxidizing environment of the

peroxisome), or activity may be particularly susceptible to cofactor

(PLP) levels that may be different in the mammalian cell

peroxisome.

We identified 12 mutations that affect growth and/or stability

on the minor allele (AGTmi) to a greater degree than on the major

allele (AGTma). Of these, four mutations (G161C, G161S, L166P,

and C253R) were previously shown to have a greater effect on

AGTmi activity [24], and our studies confirm these prior results.

We identified eight new mutations (G47R, I56N, E95K, M195L,

D243H, E274D, P319L, A368T) that also synergize with AGTmi,

six of which appear to have stability defects. These mutations can

thus be included with other mutations known to synergize with the

AGTmi allele, which include I244T, G170R, F152I, R233C, and

R233H [6,24]. While it is possible that some of these new variants

could be candidates for mitochondrial mistrafficking, as is seen

with variants AGTmiG170R and AGTmiF152I [6,9], they show a

very different phenotype from these mistrafficking mutants. In the

same assay, AGTmiG170R and AGTmiF152I showed 30–50%

wild-type activity when compared with AGTmi [7], while all

tested mutants here showed ,20% activity (and generally, ,10%

activity).

When we mapped all 12 mutations that were found to interact

with AGTmi on the dimeric structure (PDB 3R9A), we find they

are localized throughout the protein sequence (Fig. 6). With the

exception of E274D, they are not located near the P11L and

I340M residues associated with AGTmi on either monomer of the

dimer. Several of the residues interacting with AGTmi are

clustered, including Arg233 and Glu95 (separated by 3 Å);

Gly170, Leu166, and Met195 (4–6 Å apart); and Asp243, Ile244,

and Cys253 (7–8 Å apart). Some of the mutations in these clusters

are localized at or near to the dimer interface and may thus

destabilize the dimeric structure. In general, these perturbations

are far enough from P11L that they would not be expected to

interact directly with this substitution, but together the changes

may synergistically influence stability more globally or indirectly.

Intriguingly, we observed significant differences in interaction

with AGTma vs AGTmi for several variants that had mutations at

the same site. Gly161 has been found mutated to Arg, Cys, or Ser

in different patients, where G161R was found in a patient in

conjunction with AGTma, while G161C and G161S were found

in conjunction with AGTmi. In agreement with the patient

genotypes, we found G161R to be most severe, significantly

reducing stability and activity in both AGTma and AGTmi.

Gly161 is located in a loop that also contains active site residue

Ser158, and substitution to the bulkier, charged Arg does not

appear to be tolerated for either activity or stability. In contrast,

Cys and Ser are more conservative substitutions, and the G161C

and G161S phenotypes were milder, retaining over 50% activity

in AGTma, but poor activity and stability in AGTmi. These

activity results are consistent with previous measurements of

G161S and G161C in AGTma and AGTmi backgrounds [24].

The stability results are in agreement with studies of Gly161

mutant variants expressed in CHO cells, which found the soluble

fraction of extracts contained less than 10% of AGTmi levels for

all three Gly161 variants [18]. Gly161 is located near Gly170,

Leu166, and Pro319, three other regions affected by AGTmi, and

this region appears to be particularly sensitive to AGTmi changes.

A second set of mutations with differing severity also in this region

were M195R and M195L, located on an adjacent active site loop

close to Gly170. These mutations were both found associated with

AGTmi in patients. While M195L showed a deleterious pheno-

type only in AGTmi, M195R, the more severe mutation, showed

,1% activity and stability in AGTma as well (Fig. 1).

Most of the Group II mutants showing differential effects in

AGTma vs AGTmi were identified in patients in association with

AGTmi. One exception to this was I56N, which was identified in

both AGTma and AGTmi, suggesting this mutation is likely

deleterious in AGTma. Our studies showed nearly full activity of

I56N in AGTmi, but poor (,5%) growth in the stability assay,

confirming that this variant does not show wild-type behavior in

AGTma. For two mutants identified in Group II, D243H and

P319L, the associated allele was not reported, however our results

would suggest these mutations are likely associated with AGTmi.

With several previously characterized mutations in Group II, we

observed differences between in vitro activity measurements and

our in vivo activity determinations. Previous activity determination

of AGTmi G161S and G161C in the purified form had revealed

relative activities of ,60% and ,30% compared with AGTmi

[19]. In contrast, our yeast cell based activity assay showed these

mutants to have ,5% AGTmi activity. These different results

likely reflect differences between in vitro measurements using

purified protein and the cellular assay, which reflects a combina-

tion of activity and stability, and is affected by aggregation and

degradation of mutant proteins [16].

Finally, we carried out a detailed characterization of the E274D

variant. This variant contains a conservative substitution at a site

that appears to be particularly sensitive to perturbation in the

context of the AGTmi allele, but not in the context of the AGTma

allele. In the dimeric structure of AGT (Fig. 6), this mutation is

located near P11L of the opposing subunit, raising the possibility

that a heterodimer formed by AGTmi-E274D and AGTma would

have normal activity. While many of the other mutations that

cause disease in combination with AGTmi act by decreasing

protein stability, E274D appears to act through a different

mechanism, specifically affecting activity. The spectral properties

of the variant in the purified form indicate that the mutation

affects both holoAGTmi tertiary structure and PLP binding, thus

possibly explaining why the variant displays a reduced specific

activity.
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