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Abstract
DNA copy number alterations (CNAs), including amplifications and deletions, can result in
significant changes in gene expression, and are closely related to the development and progression
of many diseases, especially cancer. For example, CNA-associated expression changes in certain
genes (called candidate tumor driver genes) can alter the expression levels of many downstream
genes through transcription regulation, and cause cancer. Identification of such candidate tumor
driver genes leads to discovery of novel therapeutic targets for personalized treatment of cancers.
Several approaches have been developed for this purpose by using both copy number and gene
expression data. In this study, we propose a Bayesian approach to identify candidate tumor driver
genes, in which the copy number and gene expression data are modeled together, and the
dependency between the two data types is modeled through conditional probabilities. The
proposed joint modeling approach can identify CNA and differentially expressed (DE) genes
simultaneously, leading to improved detection of candidate tumor driver genes and comprehensive
understanding of underlying biological processes. The proposed method was evaluated in
simulation studies, and then applied to a head and neck squamous cell carcinoma (HNSCC)
dataset. Both simulation studies and data application show that the joint modeling approach can
significantly improve the performance in identifying candidate tumor driver genes, when
compared to other existing approaches.
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1. Introduction
Copy number alteration (CNA) is a form of DNA structural change that leads to abnormal
numbers of copies in specific DNA regions. CNA is closely associated with the
development and progression of many human diseases, especially cancer [1, 2, 3]. CNA
could directly affect mRNA expression during transcription (the process of generating
mRNA from DNA). For example, genes in deletion regions have less or no copies of DNA,
and therefore tend to have lower or no expression. On the other hand, genes in amplification
regions have increased numbers of DNA copies, and may be over-expressed. As a result, the
expression level of a gene is, in general, positively correlated with its copy number. For
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example, studies have shown that, in prostate epithelial cell lines, 51% of over-expressed
genes were mapped to the chromosomal regions with DNA gain, and 42% of under-
expressed genes were mapped to the chromosomal regions with DNA loss [4]. In breast
tumor cell lines, 62% of highly amplified genes show moderately or highly elevated
expression [5]. Similar evidence was later found in several other tumor types [6, 7].

In cancer research, driver genes are defined as genes whose structural or sequence mutations
confer a selective advantage to the cancer cell [8]. Although they need not have CNAs or
associated changes in gene expression, many driver genes that have such changes lead to
oncogenesis. Studies have shown that the driver genes play essential roles in carcinogenesis,
and could be potential targets for cancer therapies [9]. Therefore, it is of great interest to
model the association between copy number and gene expression in order to identify
candidate tumor driver genes [10], besides identifying genes with CNAs or expression
changes alone. However, integrating these two types of data efficiently still remains a
challenging problem, because the DNA copy numbers gain or loss may not be directly
translated to the same quantity of expression changes in a complex genomic context. Simple
and direct correlation analysis of the signal levels may not be effective.

CNA can be measured by comparative genomic hybridization (CGH) array platforms and,
more recently, by genome-wide single-nucleotide polymorphism (SNP) array platforms.
Several methods have been proposed to analyze copy number data, including recursively
segmentation based methods, such as ‘Circular binary segmentation’ (CBS) [11], clustering
based methods, such as ‘Cluster along chromosomes’ (CLAC) [12], neighborhood
smoothing based methods, such as CGH-Explorer [13] and mixture model based methods
[14]. Hidden Markov models (HMMs) have been successfully applied to study CNA [15].
Recently, Guha et al. [16] have developed a Bayesian HMM framework that models copy
number data using a Bayesian hierarchical setup. The model draws statistical inference of
the CNA status based on posterior probabilities, and does not rely on any tuning parameters.
DeSantis et al. have further developed a latent class based HMM [17], which uses a
supervised approach to improve statistical efficiency for analyzing copy number data.

To integrate copy number and gene expression data, conventional approaches analyze each
type of data separately, and then take the overlapping genes. This is reasonable, but may
lead to many false negatives. Several studies [18, 19] have demonstrated the feasibility and
advantages of integrating genetic/epigenetic data with gene expression data. In addition,
rigorous statistical methods [20, 21, 22, 23] have been developed to integrate different types
of data sources. Specifically, to improve the detection of candidate tumor driver genes,
several methods were proposed, and most of them take a two-step approach in which copy
number and gene expression data are analyzed sequentially [24, 25, 26, 27, 28]. Recently,
Schafer et al. [29] have proposed an equally directed abnormalities (edira) method, which
uses a Wilcoxon test, combined with a modified correlation measure, to incorporate the
dependency between copy number and gene expression data. Menezes et al. [30] introduced
a gene set based integration method (SIM), which searches for associations between copy
number and gene expression data, not only using individual genes, but also using gene sets.
Wessel et al. [31] developed a nonparametric test (intCNGEan) to detect genes with copy
number induced differential expression using a two-step approach. Choi et al. [32] proposed
a double-layered mixture model (DLMM) to integrate copy number and gene expression
data. DLMM directly models segmental patterns in CNA, and simultaneously evaluates the
association between the two types of data. All of these approaches lead to improved
detection of genes with copy number alterations that are functional in terms of their effect on
gene expression, possibly enriching for tumor driver genes. In this study, we propose a novel
Bayesian joint modeling approach to analyze copy number and gene expression data
simultaneously, where the inherent biological connections between genetic and genomic
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changes are captured in one integrated model. For copy number data, we adapt an HMM in
the spirit of Guha et al. [16] to model spatial patterns existing in CNAs. We further set up a
conditional probability matrix to model the dependency of gene expression on CNA in an
intuitive way. The copy number and gene expression data are then analyzed in parallel, so
that they can borrow information from each other to improve the statistical efficiency. The
method assigns high posterior probabilities of being a driver gene when consistent changes
between tumor and normal samples in both gene expression and copy number are observed.
Thus, the impact of CNA on gene expression can be naturally quantified by our model,
which captures the probabilistic nature of the link between CNA and gene expression
change, while providing an intuitive measure for biologists to understand the results. Both
simulation studies and data application have shown that the proposed model can outperform
the edira, SIM, intCNGEan and DLMM methods in detecting candidate tumor driver genes.

The outline of this article is as follows: Section 2 describes the integrated Bayesian model
for copy number and gene expression data. Section 3 presents the results from simulation
studies in order to compare the proposed method with competing methods. Section 4
presents a data application to a head and neck squamous cell carcinoma (HNSCC) dataset.
Section 5 discusses some limitations and future extensions of this study.

2. Statistical Models
2.1. Modeling copy number data

For copy number data, we adapt the Bayesian HMM proposed by Guha et al. [16] to account
for the spatial dependence among neighboring genes in CNA status. Guha's model has four
CNA states: copy number loss, copy-neutral state, single copy gain, and amplification (i.e.,
multiple copy gain). In an ideal situation, the single copy gain in the log2 space is

. But, in real applications, the mean of CNAs could be greatly affected by the
fact that some patients have certain copy number gains, yet other patients do not. The
observed copy number gain at the population level is an average of the patients with copy
gain and those without, so it may be hard to clearly distinguish the single copy gain state
from the other states at the population level. Therefore, we merge this state with the
amplification state in our model.

Let Xij denote the copy number ratio of tumor vs. normal samples (in the log2 space) in the

i-th array for gene j, where Xij follows a normal distribution with mean aj and variance 
for i ∈ (1, . . . , I1) and j ∈ (1, . . . , J) (i.e., I1 arrays and J genes in total). For each gene j, Dj
represents its CNA status:

Furthermore, we assume that for gene j, given the CNA status Dj, the mean measurement aj
follows a normal distribution, namely
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where α− < 0 < α+. If gene j is in a normal region, its mean log-ratio should be close to 0
and so the mean of aj is fixed at 0 for these genes. Here we do not force the ajs to be exactly
zero because real data suggest that the mean log-ratios could vary from zero.

A hidden Markov chain is used to model the spatial dependence of Djs among adjacent
genes on chromosome. The CNA status Dj of gene j is a hidden state that can not be
observed directly, while the observed copy number ratio Xij depends on the unobserved Dj
that takes an integer value (−1, 0, 1), and Dj only depends on Dj–1. Let Λ be the transition
matrix of the HMM,

where the (s, t)th element in Λ is defined by λs,t ≡ P(Dj = t|Dj–1 = s).

For the s-th row of Λ:

with

Let (Dj–, Dj0, Dj+) be the corresponding indicator vector of Dj, where (Dj–, Dj0, Dj+)
=(1,0,0), (0,1,0) and (0,0,1) represent Dj = –1, 0, 1, respectively. Then

The row vector of stationary probabilities, , satisfies .

2.2. Modeling gene expression data
Let Yij denote the expression intensity ratio of tumor sample vs. normal sample (in log2
space) in the i-th array for gene j, where Yij follows a normal distribution with mean bj and

variance , for i ∈ (1, . . . , I2) and j ∈ (1, . . . , J) (i.e., I2 arrays and J genes in total). For
each gene j, the indicator variable Ej describes its gene expression status:

Furthermore, it is assumed that given the expression status Ej, the mean expression level of
gene j follows a normal distribution, namely,

Yang et al. Page 4

Stat Med. Author manuscript; available in PMC 2015 May 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where β– < 0 < β+.

We assume that genes in different CNA regions have different probabilities of being over-
expressed and under-expressed. Therefore, we set up a conditional probability matrix Φ to
link the copy number and gene expression data,

where the (s, t)th element in Φ is defined by φs|t ≡ P(Ej = t|Dj = s).

For the s-th row of Φ:

with

Let (Ej–, Ej0, Ej+) be the indicator vector of Ej, where (Ej–, Ej0, Ej+) =(1,0,0), (0,1,0) and
(0,0,1) represent Ej = –1, 0, 1, respectively. Then

2.3. The full probability model
Let Θ denote all the parameters involved, X denote the copy number data and Y denote the
gene expression data. We assume all the variance components are independent. Let ϕ(x|μ,
σ2) denote the probability density function (pdf) of a normal distribution with mean μ and
variance σ2, evaluated at x. Let π(·) denote a general (hyper)prior distribution. Then the full
probability model is given by
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Other details for full conditional posterior distributions are presented in the Appendix.

2.4. Prior specification
For the population-level means, we use independent noninformative flat priors; that is, α–
~U(–Lα , 0), α+ ~U(0, Lα), β– ~ U(–Lβ , 0) and β+ ~ U(0, Lβ). Independent conjugate inverse

gamma priors, IG(u, v), are assigned to all the variance components. For row vectors  of

the transition matrix Λ and  of the conditional probability matrix Φ(s = –1, 0, 1), we

consider a Dirichlet prior .

As to specification of the hyperparameters involved, we can specify the upper bounds

so that the corresponding flat priors provide a sufficient coverage to all possible values of
the means. Another way to specify Lα (or Lβ ) conservatively is to find the mean and
standard deviation of all Xijs (or Yijs), say X̄, sdx (or Ȳ, sdy), then set

The hyperparameters of the inverse gamma priors u and v are chosen to make the priors very

vague, for example, u = 0.01 and v = 0.01. For the Dirichlet prior, we choose  so
that they are noninformative.

2.5. Statistical inference and implementation
Since the full posterior conditionals are all known distributions (see the Appendix), a Gibbs
sampler can be used to draw posterior samples readily from the joint posterior distribution
f(Θ|X, Y). We ran 8,000 iterations for each dataset in our numerical experiments. The first
4,000 iterations were used as burn-in samples, and iterations 4,001-8,000 were used as
posterior samples for statistical inference. We also tried 20,000 iterations in our simulation
studies, and the results were similar.

The goal of the analysis is to identify the driver genes which have both abnormal
expressions and CNAs. We can use the posterior probabilities of Ejs and Djs to detect DE
genes and genes with CNAs, respectively. For driver genes, we used the posterior
probabilities Pr(Ej = 1&Dj = 1) and Pr(Ej = –1&Dj = –1). In the HNSCC data example, we
selected genes with Pr(Ej = 1&Dj = 1) > 0.8 or Pr(Ej = –1&Dj = –1) > 0.8 as the identified
driver genes.

For convergence detection, we used trace plots. We also ran several chains with different
initial values, and then used the Gelman and Rubin's statistics [33] to confirm the chains
were converged. To check the sensitivity of the Bayesian analysis, we tested different values
of hyper-parameters v, u, δ–, δ0, and δ+ and the results were similar, indicating the analysis is
robust against different values of hyper-parameters.

Our approach was implemented with C++ and the statistical part of GNU Scientific Library
(GSL). It would take about 5 minutes to get results when the proposed method is applied to
the simulated data with 1,000 genes, 15 copy number arrays and 15 gene expression arrays.
The time would increase to 1 hour for the real data application in HNSCC data, where we
have 10,844 genes with same number of arrays. We provide the integrative analysis software
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(FIBA: Fully Integrated Bayesian Approach) as a web-based service on our Galaxy server
(http://galaxy.qbrc.org/?tool_id=FIBA).

3. Simulation
We conducted eight simulation studies to examine the performance of the proposed method.
In Studies 1-3 we compared the performance of our joint modeling approach in detecting
driver genes with four existing methods, edira [29], SIM [30], intCNGEan [31], and DLMM
[32], all developed for integrative analysis of copy number and gene expression data. The
implementation details for different methods are summarized in Table A.1. Next, Studies 4
and 5 evaluated our model with data generated from underlying models that are different
from the assumed model. We found that, overall, our approach outperformed the other four
methods. Furthermore, to shed light on how our integrated Bayesian approach leads to
superior performance and to further understand its behavior, we conducted Studies 6-8, in
which we compared the proposed joint modeling approach with the analysis using one data
source only.

In all of the simulation studies, we simulated a chromosome with 1,000 genes which has two
amplification regions and two deletion regions. Each of the four regions contains 50 genes,
and the remaining 800 genes are in the normal regions. Fifteen arrays were simulated for
both copy number and gene expression data, following the HNSCC dataset in our
application.

3.1. Comparison in detecting candidate tumor driver genes
Here, we considered three different levels of association (strong, moderate and zero)
between the copy number and gene expression data. Then, we investigated how the
association level affects the relative performance of the five methods, edira, SIM,
intCNGEan, DLMM and our joint modeling approach.

Study 1 is a relatively ideal scenario, where the gene expression is strongly dependent on the
CNA status. Specifically, 80% of genes in amplification regions are over-expressed and
80% of genes in deletion regions are under-expressed, while among genes in normal regions,
10% of genes are over-expressed and 10% of genes are under-expressed. All other genes are
equally expressed. In Study 2, we assume a moderate level of association. Specifically, 50%
of genes in amplification regions are over-expressed, 50% of genes in deletion regions are
under-expressed, 10% over-expressed and 10% under-expressed genes in normal regions,
and all other genes are equally expressed. In Study 3, we assume there is no association
between copy number and gene expression data; that is, we randomly select 10% of genes as
over-expressed genes and another 10% of genes as under-expressed genes, so that the gene
expression status Ej is independent of the CNA status Dj. For a summary of the association
setups, see Table 1.

For copy number data, we generated Xij from N(aj, 1.02) for i = 1, . . . , 15, where aj ~ N(0,
0.42) for genes in the normal regions, aj ~ N(–0.6, 0.62) for genes in the deletion regions,
and aj ~ N(0.6, 0.62) for genes in the amplification regions. For gene expression data, we
generated Yij from N(bj, 1.02) for i = 1, . . . , 15, where bj ~ N(0, 0.42) for equally expressed
genes, bj ~ N(–1, 0.62) for under-expressed genes, and bj ~ N(1, 0.62) for over-expressed
genes. All of the parameter values used here were estimated from the HNSCC dataset in our
data application (distributions of the real and simulated datasets are presented in the Figure
A.1).

Figure 1 reports the Receiver Operating Characteristic (ROC) curves for the joint model,
edira, SIM, intCNGEan and DLMM in Simulation Studies 1-3. The joint model performs
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much better than all of the other approaches in detecting driver genes when there is a strong
association between the copy number and gene expression data (Study 1, Figure 1(a)).
Similarly, in Study 2, where there is a moderate association, the proposed joint model also
outperforms edira, SIM, intCNGEan and DLMM (Figure 1(b)). Finally, the joint model still
performs slightly better than the other four methods even when there is no association
between the two data sources (Figure 1(c)). In summary, the proposed joint modeling
approach improves the performance of detecting the candidate tumor driver genes, and the
improvement appears to increase as the association between the copy number and gene
expression data increases.

In order to evaluate the performance of our model with data generated from underlying
models different from our proposed model, we designed Studies 4 and 5. To better mimic
the real data scenario, Study 4 differs from the assumed model in the following ways:

1. For CNA data, we set different alteration levels. Particularly, we set the means of
the CNA log ratios in the first amplification region to be from N(0.9, 0.62) while
that of the second amplification region is from a N(0.6, 0.62). We did the same
thing to deletion regions, by simulating the means of CNA log ratios of the first
deletion region to be from N(–0.9, 0.62), while that from the second deletion region
is from N(–0.6, 0.62). In this way, we can test whether the proposed method has
flexibility to accommodate different levels of alterations.

2. We simulated the CNA from the individual patient level. For each amplified
region, it has 60% probability to be amplified in each individual sample, and the
same for the deleted region. This reflects the fact that the alteration occurs at the
individual level; i.e., some patients have the alterations, while others do not.

3. For a gene located in an amplified region for a specific patient, it has 60%
probability to be over-expressed in the patient. Similarly, for a gene located in a
deleted region for a specific patient, it has 60% probability to be under-expressed in
the patient. This modification reflects the fact that some driver genes may not lead
to changes in gene expression level.

In order to study the robustness of our proposed method against the normal assumption, we
used a t mixture distribution [34], instead of a normal mixture distribution, in Study 5 to
simulate the data, while keeping the other settings the same as in Study 4. Particularly, the
aj|Dj's in the CNA data were generated from a t distribution with degrees of freedom 5, and
location parameter equal to α–, 0, α+, respectively, for Dj equals to −1, 0, and 1. The
location parameters were chosen so that the sample mean of aj|Dj's was the same as the
previous settings. Similarly, bj|Ej's in the gene expression data were generated from a t
distribution with degrees of freedom 5, and location parameter equal to β–, 0, β+,
respectively, for Ej equals to −1, 0, and 1.

The ROC curves for all five methods in Simulation Studies 4 and 5 were reported in Figure
2, and the AUCs of different methods were summarized in Table 2 (the simulation for each
study were repeated ten times, the means and standard deviations of AUCs were reported
there). We can see that when data was not generated from the assumed model, the joint
modeling approach still outperformed the other methods in Studies 4 and 5.

3.2. Understanding the behavior of the joint modeling approach
We conjecture that the observed superior performance of the proposed method comes from
explicitly modeling the association between the two types of data sources through an
integrated Bayesian approach. To aid our intuition, in Simulation Studies 6-8, we examined
the performance of the proposed approach in detecting DE genes and genes with CNAs
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under different association levels, and compared them with those using either copy number
or gene expression data alone. To make a direct comparison, we used the HMM described in
Section 2.1 for copy number data alone (named CN alone). We also applied edira for CNA
detection to copy number data alone. (Note that the other software (SIM, intCNGEan and
DLMM) do not provide the CNA detection results from the single data source analysis.) For
gene expression data, we compared the proposed method with its Bayesian counterpart using
the hierarchical model described in Section 2.2 (named GE alone), as well as a popular
method SAM-t [35]. None of the edira, SIM, intCNGEan and DLMM methods can provide
results for differentially expressed gene detection. For the method GE alone, the conditional

probability matrix becomes a vector , which is independent of the CNA
status. Again, for both CN alone and GE alone, we specified the same noninformative
priors, and used Gibbs samplers to draw samples from the posterior distributions, as in the
proposed method. In this way, the advantage of the Bayesian joint modeling, if any, can be
shown through this direct comparison.

As summarized in Table 1, Simulations 6-8 are for strong, moderate and no association
between copy number and gene expression data, respectively, which are the same as in
Simulations 1-3. We also kept the parameter settings unchanged, except for the noise level
in the copy number data, which increases from τa– = τa+ = 0.6 and τa0 = 0.4 in settings 1-3,
to τa– = τa+ = 1.0 and τa0 = 0.8 in settings 6-8, in order to further test the robustness of our
Bayesian method. (Note that in these new settings, DLMM did not perform properly,
because the noise level was too high for DLMM to converge.)

To examine the behavior of the proposed method under this elevated noise level, we report
the mean and standard deviation (SD) of the posterior samples for the joint model
parameters from Simulation Studies 6-8 in Figure A.3. Also, Table A.2 provides the
summary statistics of the posterior samples for the conditional probability matrix Φ in
Simulation Study 6 as an example. We find that all of the 95% credible intervals contain the
true values of the parameters, indicating the model and posterior sampling procedures
worked well.

Next, we compare the joint model with CN alone, edira, SAM-t and GE alone, using ROC
curves under the three different association levels. Figure A.2(a) shows the ROC curves for
detecting genes with CNAs, and Figure A.2(b) presents those for detecting DE genes (no
matter over- or under-expressed) in Study 6 (strong association). In this study, the joint
model performs much better than using either copy number or expression data alone.
Similarly, in Study 7 (moderate association), the joint model outperforms the analysis using
either copy number or gene expression data alone (Figure A.2(c) and (d)), but the
improvement is not as large as in Study 6. Finally, the joint model performs similarly to that
using either data source alone (Figure A.2(e) and (f)) in Study 8 (no association), which
indicates that even if there is no conditional dependency, the proposed method provides a
reliable performance. In summary, when there is a positive association between copy
number and gene expression data, the joint modeling approach can take advantage of this
feature, via an integrated Bayesian approach, to improve the performance in detecting both
DE genes and genes with CNAs, leading to the superior performance in identifying
candidate tumor driver genes.

4. Application to HNSCC Data
In cancer research, most tumor cells are characterized by CNAs, such as regional or focal
amplifications/deletions in chromosomes. Although some driver genes might not lead to
expression changes at the mRNA level, a gene is likely to be a tumor driver gene if its CNA-
associated expression change alters the transcriptional activities of many downstream genes
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and leads to cancer. The proposed method can integrate the information from both copy
number and gene expression data to better identify candidate tumor driver genes. In this
study, we applied our method to a head and neck squamous cell carcinoma (HNSCC) dataset
in order to demonstrate the potential advantages of the joint modeling method.

We downloaded the HNSCC dataset from Louhimo et al. 2012 [36], which contains the
gene expression (Affymetrix Human Exon 1.0 microarrays) and copy number (Agilent
Human 244A comparative genomic hybridization microarrays) data measured in 15 cancer
cell lines and one normal control line. We used the 10,844 genes measured in both copy
number and gene expression microarray platforms. All genes were aligned and sorted by
their chromosome locations. The log2 ratios between the tumor samples and the control
sample were used as input data for the proposed Bayesian joint model. We used the
posterior probability Pr(Ej = 1&Dj = 1) or Pr(Ej = –1&Dj = –1) as a criterion to identify
candidate tumor driver genes, and then applied Ingenuity Pathway Analysis (IPA) to study
the biological functions of identified genes. Interestingly, ‘Cancer’ was identified as the top
hit of diseases and disorders for both under-expressed (Table A.3) and over-expressed genes
(Table A.4), which indicates the proposed method could identify biologically meaningful
genes.

Figure 3 shows the copy number profile (a) and gene expression profile (b) along
Chromosome 9. Clearly, there is a copy number deletion region near 22MB. The joint
modeling approach identified two tumor driver genes, CDKN2A and CDKN2B, both
located in a copy number deletion region with under-expression in the tumor samples,
compared to the control sample. Studies [37, 38] have shown that under-expression of
CDKN2A through homozygous deletion or promoter hypermethylation leads to HNSCC.
CDKN2B is one of the strongest genetic susceptibility loci for HNSCC [39]. In addition,
both CDKN2A (p16) and CDKN2B are known to be important tumor suppressor genes in
other cancer types, so both genes are likely to be the true driver genes for HNSCC. Another
interesting gene, C9ORF53, has an even lower CNA level than both CDKN2A and
CDKN2B, but the expression of C9ORF53 gene is not under-expressed in tumor samples.
Therefore, it was not identified as a driver gene by the joint modeling approach, indicating
the advantage of integrating copy number and gene expression data in identification of
candidate tumor driver genes. The scatter plots of copy number and gene expression across
15 tumor cell lines for CDKN2A, CDKN2B and C9ORF53 are shown in Figure 4. We can
see from Figure 4 that both CDKN2A and CDKN2B have CNA-associated expression
changes, but C9ORF53 does not.

We also applied edira, SIM, intCNGEan and DLMM methods to this dataset. DLMM
identified C9ORF53 (score 0.124, rank 1) as the most likely potential gene associated with
copy number deletion on chromosome 9, followed by CDKN2A (score 0.108, rank 3) and
CNKN2B (score 0.032, rank 23). Similarly, both edira and SIM identified all three of the
genes CDKN2A, CDKN2B and C9ORF53 as driver genes. But intCNGEan did not identify
any of them with its default setting. These results suggest that our approach performs better
in identifying candidate tumor driver genes, compared with the other existing methods.

5. Discussion
Recently, several methods have been proposed to integrate copy number and gene
expression data, especially for identifying candidate tumor driver genes [24, 25, 26, 27, 28].
However, most of them focused on either the overlap between genes with CNAs and
expression changes, or the correlation between CNAs and expression changes, which might
not efficiently capture the wide-range and probabilistic relationships between CNAs and
gene expression changes in a complex genomic context. In this study, we propose to model
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the dependency of gene expression change on CNA status through conditional probabilities
under a fully integrated Bayesian framework. By modeling the two types of data
simultaneously and capturing the probabilistic relationship between them, we can borrow
strength across the different data types and improve the statistical inference for each type of
data, which leads to better identification of candidate tumor driver genes. Both simulation
studies and a data application have shown that the joint modeling approach compared very
favorably with other existing approaches, edira, SIM, intCNGEan, and DLMM; and, more
importantly, it may reveal novel tumor driver genes as potential therapeutic targets for
cancer treatments.

Among the five methods (edira, SIM, DLMM, intCNGEan and the proposed), all developed
for integrative analysis of copy number and gene expression data, we note that the proposed
method and DLMM share several common characteristics: (1) both of them rely on model-
based Bayesian approaches for coherent inference; (2) both adopt formal Bayesian
hierarchical setups for modeling gene expression and copy number data, respectively; and
(3) both explicitly model spatial patterns to account for spatial dependence existing in copy
number data. All of these features are attractive, leading to improved detection of candidate
tumor driver genes, as opposed to purely algorithm-based ad hoc approaches. However,
there exist major differences between the two, which may explain their performance
difference, especially for data with high noise levels. First, DLMM takes a segmentation-
based approach to model spatial dependence in the copy number data, and the breakpoint
arrangement is updated by reversible jump Markov Chain Monte Carlo, which needs a
build-in Metropolis-Hastings algorithm. In contrast, we adapted an HMM to model spatial
dependence, which has led to a much simpler Gibbs sampler with known distributions for all
full posterior conditionals. The algorithm is easy to implement through direct sampling,
converges quickly, and appears to be robust to high noise levels. DLMM, due to its
complexity, tends to be more sensitive, and usually converges more slowly. Second, DLMM
does not directly distinguish the direction of changes; that is, its status variables (Z and W )
for aberrant copy number and differential gene expression are binary (0 or 1) instead of three
states (−1, 0, +1). Therefore, it takes complicated extra steps that rely not only on Z and W ,
but also several other continuous variables, in order to calculate the over-expression and
under-expression scores. Also, due to the binary setup of Z or W , DLMM has to use a
common distribution for genes with any changes for each type of data, without explicitly
distinguishing genes with positive changes from those with negative changes. This might
cause loss of efficiency, besides the extra effort in inference, when compared to our
proposed method.

While CNAs in some genes are constitutively altered in some cancers, those in other genes
are only altered in some individual patients. Currently, most computational methods for
copy number data are focused on detecting CNA at the individual level. In this study, we
attempt to identify the CNA at a population level. Therefore, in our model, the CNA status
only depends on genes, not individual subjects. By doing so, the model is more robust and
can converge quickly, as we have better statistical power to detect the candidate tumor
driver genes at the population level. On the other hand, our model cannot detect the CNA
and candidate tumor driver genes for each individual. With some relatively simple
modifications, our model can be extended to detect the candidate tumor driver genes for
individuals, but the statistical power might be an issue. As we found in the simulation
studies, the DLMM method, which models the CNA status at the individual level, only
converges when the noise level in copy number data is relatively low.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Comparison of ROC curves for the proposed joint model, edira, SIM, intCNGEan and
DLMM under three different levels of association (strong, moderate and zero) between the
copy number and gene expression data. The ROC curves were calculated by ranking the
genes according to the measurement scores summarized in Table A.1, and comparing the
gene rankings with the simulation truth.
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Figure 2.
Comparison of ROC curves for the proposed joint model, edira, SIM, intCNGEan and
DLMM in Studies 4 and 5.
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Figure 3.
The position and mean of copy number and gene expression data for CDKN2A (red),
CDKN2B (green), and C9ORF53 (blue).
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Figure 4.
Scatter plots for CDKN2A, CDKN2B, and C9ORF53. The X-axis represents CNAs and the
Y-axis represents gene expression changes throughout 15 tumor cell lines (in log2 space).
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Table 1

The conditional probability matrix Ψ for simulation studies 1 to 3 and 6 to 8.

Study 1&6 Study 2&7 Study 3&8

Dj = –1 Dj = 0 Dj = 1 Dj = –1 Dj = 0 Dj = 1 Dj = –1, 0, 1

Ej = –1 0.8 0.1 0 0.5 0.1 0 0.1

Ej = 0 0.2 0.8 0.2 0.5 0.8 0.5 0.8

Ej = 1 0 0.1 0.8 0 0.1 0.5 0.1
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Table 2

AUC summary for different methods.

joint model DLMM edira SIM intCNGEan

Study 1 0.96(0.02) 0.92(0.03) 0.90(0.04) 0.80(0.04) 0.78(0.07)

Study 2 0.95(0.02) 0.90(0.02) 0.88(0.04) 0.76(0.03) 0.73(0.10)

Study 3 0.93(0.03) 0.89(0.03) 0.87(0.05) 0.74(0.05) 0.69(0.11)

Study 4 0.89(0.04) 0.75(0.07) 0.76(0.07) 0.63(0.06) 0.68(0.12)

Study 5 0.79(0.05) 0.71(0.07) 0.67(0.03) 0.57(0.05) 0.65(0.06)
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