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Abstract
Obtaining representative information from hidden and hard-to-reach populations is fundamental to
describing the epidemiology of many sexually transmitted diseases, including HIV. Unfortunately
simple random sampling is impractical in these settings, as no registry of names exists from which
to sample the population at random. However, complex sampling designs can be used as members
of these populations tend to congregate at known locations, which can be enumerated and sampled
at random. For example, female sex workers may be found at brothels and street corners, whereas
injection drug users often come together at shooting galleries. Despite the logistical appeal,
complex sampling schemes lead to unequal probabilities of selection, and failure to account for
this differential selection can result in biased estimates of population averages and relative risks.
However, standard techniques to account for selection can lead to substantial losses in efficiency.
Consequently, researchers implement a variety of strategies in an effort to balance validity and
efficiency. Some fully or partially account for the survey design, while others do nothing and treat
the sample as a realization of the population of interest. We use directed acyclic graphs to show
how certain survey sampling designs, combined with subject-matter considerations unique to
individual exposure-outcome associations, can induce selection bias. Finally, we present a novel
yet simple maximum likelihood approach for analyzing complex survey data, which optimizes
statistical efficiency at no cost to validity. We use simulated data to illustrate this method and
compare it with other analytic techniques.

Obtaining representative information from hidden and hard-to-reach populations is
fundamental to epidemiologic description of sexually transmitted diseases. Members of
these populations often contribute disproportionately to transmission. For example, female
sex workers often act as reservoirs of infection from which HIV spreads to the general
population through their male clients.1–4 Unfortunately, simple random sampling of such
persons is difficult and impractical. There are no lists of names from which to sample the
population at random. Even if such a registry existed, these groups are small proportions of
the population, making it unlikely that random sampling would capture enough people for
sub-group analyses. Finally, these populations often conceal themselves because their
activities are illegal or highly stigmatized. Persons who can be reliably identified by
traditional sampling approaches may differ in important ways from those who cannot.

Complex sampling has been used successfully to obtain representative samples of hidden
and hard-to-reach populations.5–8 This type of sampling differs from simple random
sampling in that the primary sampling unit is a group of persons, rather than a single person.
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Groups are first enumerated and then the specific groups to be sampled are selected at
random. Then, within the selected groups, individuals are sampled into the survey. Complex
sampling can be effective at capturing hard-to-reach populations because members tend to
congregate at known locations. For example, female sex workers may be found at brothels
and street corners, whereas drug users often come together at shooting galleries. The
gathering locations serve as “clusters” from which individuals can be selected for
participation.

Although complex sampling has logistical appeal, it presents analytic challenges. The
sampling framework leads to an unequal probability of selection across individuals and thus
to potentially biased estimates of population averages. Although it is standard practice to
weight each person by the inverse of the probability of selection in order to estimate
population averages, it is unclear what adjustment, if any, should be made in regression
analyses.9,10 Some complex surveys recommend incorporating the sampling weights in
every analysis, 11–13 while others explicitly instruct users to disregard sampling weights
when estimating regression coefficients.17 In practice, researchers accessing the same data
may implement a variety of adjustment strategies; some fully or partially account for the
unequal selection,14 while others treat the sample as the population of interest.15

We use directed acyclic graphs (DAGs) to demonstrate how certain sampling designs,
combined with subject-matter considerations unique to individual exposure-outcome
associations, can induce selection bias. DAGs provide an intuitive framework to formally
encode subject-matter knowledge about underlying relationships in the observed data.16,17

Simple graphical rules can be applied to DAGs to identify potential problems with different
analytic strategies. We present and explore the implications for bias for six structures
generated by the variables exposure A, outcome Y, confounder L, selection into the sample
S, and determinants of selection M, N, and O. Next we review the appropriateness of two
common techniques that adjust for the sampling design of complex surveys – unweighted
regression conditional on determinants of selection and weighted unconditional regression.
We also develop a maximum likelihood approach that appropriately accounts for the
sampling design and that resolves well-known limitations of existing analytic techniques.
Finally, we use simulation to illustrate and compare the likelihood approach with other
methods.

DIRECTED ACYCLIC GRAPHS
For each structure presented in the figures, we provide examples based on a publically-
available, complex survey: Integrated Behavioral and Biological Assessment. In 2003, with
the support of the Indian government, the Bill and Melinda Gates Foundation provided
funding for the Avahan India AIDS Initiative. Avahan delivers HIV prevention services to
more than 80% of high-risk persons in the six states that account for the majority of all HIV
infections in the country.18 The survey was commissioned to evaluate Avahan’s impact on
pre-specified behavioral and biological indicators among its target populations. We have
chosen to focus on the survey carried out among female sex workers.

The Indian survey used a complex sampling strategy to identify and select respondents.5

Within each state, districts were selected to achieve the highest concentrations of high-risk
persons across a diverse range of cultural and ethnographic characteristics. Within each
chosen district, locations were selected with probability proportional to the expected number
of potentially eligible respondents. For female sex workers operating in brothels, home,
lodges and road-side eating establishments, individuals were enumerated at each chosen
location and then randomly selected for inclusion in the study. Street-based female sex
workers were enumerated based on location, day of the week or weekend, and hour(s) of the
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day (i.e. time-location sampling) and then randomly selected. As a result of this sampling
design, selection into the survey sample of female sex workers depends on location of
solicitation, day/time of solicitation, and district.

Before proceeding, we note that we ignore potential clustering of responses among survey
participants. Assumptions regarding intraclass correlation relate only to obtaining
appropriate standard errors, whereas not appropriately accounting for the survey’s design
may induce bias. Thus, we assume no intraclass correlation and instead focus on the impact
of the survey’s design characteristics on potential bias in the point estimates only.
Furthermore, we have drawn all DAGs under the null hypothesis of no effect of the
exposure on the outcome, conditional on a set of measured confounding factors; this
hypothesis may or may not hold in the given analysis. Finally, the target parameter is the
odds-ratio association between risk factors and an outcome in the underlying population.
Therefore, we do not require that the DAGs be causal DAGs.

Determinants of selection affect exposure and outcome
Figure 1 represents a cross-sectional analysis examining the relationship between the
number of clients entertained per day A and HIV infection Y, using survey data collected
among adult female sex workers. Recall that the variable S indicates whether a woman is
selected for participation in the survey. The square around the variable S indicates that the
analysis is restricted to women who participated in the survey (S=1). Likewise, the square
around the variable L indicates that all analyses are conducted within levels of confounders
L. The arrows from M, N, and O to S, and the lack of an arrow into S, indicate that the
survey’s complex sampling framework was determined by location of solicitation M, day/
time of solicitation N, and district O.

The arrow from M to Y in Figure 1 may be due to higher HIV prevalence among female sex
workers operating at brothels compared with other locations. Additionally, the arrow from N
to A is present because women who solicit sex on weekends or during the evening hours
may entertain larger numbers of clients per day compared with women who solicit sex on
weekdays or during daylight hours. Crude analyses will generally yield an association
between A and Y in the survey sample even if A and Y were conditionally independent
given a set of measured confounders L in the population. This type of bias, an instance of
so-called “collider bias”, can occur when one selects or conditions on a variable that is itself
affected (either directly or through intermediate factors) by exposure and outcome. In this
setting, exposure and outcome, even if marginally independent, will be associated within
levels of the selection or conditioning variable.19–22 Here, selection into the survey sample
is a collider for the variables M and N. Conditioning on selection (S=1) creates an
association between exposure (A) and outcome (Y) in the survey sample not present in the
population.

One determinant of selection affects exposure or outcome, but not both
Suppose another investigator examines the relationship between the number of clients
entertained daily A and sexual violence Y rather than HIV infection. Figure 2A. depicts the
structure for this new study. The investigator retains the arrow from N to A representing the
association between day/time of solicitation and client volume. However, she removes the
arrow from M to Y based on her subject-matter knowledge that location of solicitation has
no direct effect on sexual violence. Unlike the previous study, under the null hypothesis and
conditional on the set of measured confounders L, exposure and outcome remain marginally
independent in the survey sample. That is, contrasts of risks will be unbiased even if one
does not adjust for M or N.
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Alternatively, suppose the first investigator decided to examine the effect of lack of formal
education A (instead of number of clients entertained daily) on HIV infection Y. An
empirical assessment of the Indian survey data suggests no association between day/time of
solicitation and the new exposure. If that were indeed the case, the investigator would
remove the arrow from N to A to represent this additional information in the updated DAG
depicted by Figure 2B. Similar to the second investigator’s study (Figure 2A.), no additional
adjustment for selection would be required for unbiased contrasts in risks conditional on the
set of measured confounders L.

No determinant of selection affects exposure or outcome
Suppose a third investigator examines the association between lack of formal education A
and history of sexual violence Y. The resulting DAG (Figure 3) does not contain arrows
from M to Y or from N to A, reflecting his subject matter knowledge that neither
determinant of selection is associated with the exposure or outcome. Therefore, the unequal
probability of selection induced by the sampling design does not result in selection bias for
inferences about the joint distribution of A and Y conditional on L. Assuming no intraclass
correlation for subjects within the same cluster, these data can be treated as if obtained via
simple random sampling.

A determinant of selection is the exposure of interest
A determinant of selection may itself be of interest as an exposure under study. For example,
brothel-based sex workers in India may be more likely to join sex-worker collectives that
seek to empower and unite sex workers, which may in turn lead to increased condom use.
Therefore, an investigator may wish to examine the relationship between location of
solicitation M and condom use Y. As depicted in Figure 4A., the sampling scheme does not
induce bias, as location of solicitation and condom use remain independent under the null
hypothesis. However, if the investigator alternatively considered day/time of solicitation as
the exposure of interest, a crude analysis would yield biased effect estimates (Figure 4B.),
even after conditioning on the set of measured confounders L.

A determinant of selection is the outcome of interest
Alternatively, a determinant of selection itself may be of interest as the outcome under
study. Previous studies of female sex workers have reported that women who solicit sex
from brothels may be at higher risk for HIV.23 Identifying determinants of brothel-based sex
work or correlates of day/time of solicitation may inform local HIV prevention
programming. Thus, the investigator may also be interested in M (Figure 5A.) or N (Figure
5B.) as the outcome. In Figure 5A., failure to account for the complex sampling design will
result in biased estimates of the relationship between A and M conditional on L, because
survey participation (S=1) is a downstream consequence of exposure (A) and location of
solicitation (M). Restricting the analysis to those women who participated in the ssurvey,
would generally produce non-null findings, even under the null hypothesis,

A determinant of selection is both the exposure and outcome of interest
Finally, determinants of selection may be of interest as the exposure and outcome under
study. Figure 6 presents the corresponding DAG. In this setting, similar to Figure 5A., the
sampling design induces selection bias because survey participation is a direct downstream
consequence of both exposure (M) and outcome (N).

ADJUSTMENT FOR SELECTION BIAS INDUCED BY COMPLEX SAMPLING
In the DAGs depicted in Figures 1, 4B, 5A and 6, unadjusted contrasts of risk are not
expected to result in unbiased effect estimates. Multiple methods have been proposed to
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adjust for selection bias induced by complex survey sampling, including unweighted
regression conditional on determinants of selection and weighted unconditional
regression.9,24,25 We review the appropriateness of these approaches before introducing a
third technique based on the observed data likelihood function.

Unweighted conditional regression
In unweighted conditional regression, all determinants of selection are included as
covariates. This yields an unbiased conditional effect estimate assuming M, N, and O are
recorded and the regression model is correctly specified. In practice, meeting these two
requirements can be difficult. Correct model specification requires that all nonlinearities and
higher-order interactions involving M, N, and O, must be included in the model. Yet, as the
number of covariates needed to properly adjust for selection grows, the method becomes
increasingly challenging. Therefore, some recommend a compromise that includes some, but
not all, determinants of selection in the model.14 This approach may alleviate efficiency
concerns, but potentially at the cost of bias.

The appropriateness of the no-model-misspecification assumption depends on direct
knowledge of the survey’s sampling design in order to identify all determinants of selection.
Most complex surveys provide sampling probabilities, but the factors used to determine
these probabilities are not always recorded in the distributed files. For example, while
information on location of solicitation is available for all female sex workers participating in
the Indian survey, the data file distributed to external investigators does not include the day/
time of solicitation for women selected via time-location sampling. Adjustment using
unweighted conditional regression in this setting is unlikely to yield unbiased effect
measures.

Weighted unconditional regression
Weighted unconditional regression weights each subject by the inverse of the probability of
selection (i.e Horvitz-Thompson type estimator)26 in order to adjust for the selection bias
introduced by complex sampling. In the weighted population, selection does not depend on
any covariates. The data can be treated as if obtained by simple random sampling because,
for example in the case of the Indian survey, the joint distribution of M, N, A, L, and O in
the weighted population is identical to that observed in the population. Therefore, a crude
analysis in the weighted population will result in unbiased population averages and relative
risks.

Maximum likelihood
An important limitation of both methods is loss of efficiency. As the distribution of the
sampling weights becomes more variable, weighted regression may also become
increasingly inefficient. Conditioning on determinants of selection has the additional, and
perhaps more troublesome, limitation of model misspecification, resulting in biased effect
estimates. We present a third approach based on the observed data likelihood under selection
that optimizes statistical efficiency at no cost to validity.

eAppendix A provides the likelihood functions for each DAG. Here, we give the likelihood
for the canonical case depicted in Figure 6 in which two determinants of selection, M and N,
are the exposure and outcome of interest, respectively. We derive a person’s contribution to
the likelihood without necessarily assuming that the null hypothesis holds, as depicted in
Figure 6. Let
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(1)

denote the correctly-specified regression model in the population, where N is taken to be
binary. Therefore, β1 is interpreted as the log odds ratio of N comparing persons who were
and were not exposed to M conditional on L in the population.

To construct the likelihood, consider the conditional event probability of N given M, L, and
S=1, obtained via Bayes Theorem

(2)

We observe that P[S = 1 |M, N, L] is exactly equal to the final sampling probability, τ(M, N,
L), which is estimated using the survey’s sampling design. We assume access to the
individual-level information used to compute τ(M, N, L), but the approach may still be
implemented if only a coarsening of this information is available (e.g. based on advance
impressions, previous research, or expert opinion). Then, under the logistic regression model
(1), one obtains

(3)

Simplification of (3) leads to the expression

(4)

where β1 represents the effect of interest and, as we explain below, the offset term,

, quantifies the selection bias introduced by the survey’s complex

sampling strategy. Let  and, because M is binary, g(M) = g(0) +
[g(1) − g(0)]M. Suppose we ignore the offset term in (4) and instead fit the following model

(5)

Even though (5) is a correctly-specified logistic regression equation in the survey sample, it
follows from g(M) that β1

* = β1 + [g(1) − g(0)] and therefore β1
* does not generally equal β1.

The measures are guaranteed to coincide only if g(1) = g(0) or selection into the sample is
independent of M. Similarly, the model in (5) cannot be used for prediction because the
intercept α* does not equal α; rather, α* = α + g(0). This last expression is an immediate
consequence of the fact that selection into the sample depends on the outcome N.

SIMULATIONS
To illustrate the likelihood approach and compare it with existing analytic methods, we
simulated data based on the DAG depicted in Figure 6. We generated exposure M as a
uniformly distributed random variable (n=40,000). Next, we generated L by drawing from a
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standard normal distribution, before evenly dividing M into three non-overlapping groups,
and defining the following individual risk model:

(6)

We generated the binary variables N and O by drawing from a Bernoulli distribution under
(6) and 0.25 (respectively) before selecting a 1% sub-sample with unequal probability of
selection according to M, N, and O. Table 1 presents the selection probabilities used to
oversample individuals with {M = 3, N = 0, O = 0}, {M = 1, N = 0, O = 0}, or {M = 1, N =
1, O = 1}, thereby inducing an association between selection (S = 1), exposure (M), and
outcome (N).

We first fit a logistic regression model that accounts for confounding by the variable L but
ignores the sampling design. For the unweighted conditional regression models, we added
the determinant of selection O to the model, whereas in the weighted unconditional
approach we weighted each participant by the inverse of the probability of selection into the
survey sample.

We compared the performance of each method in addition to no adjustment under eight
model specifications defined by β1, β2, and β3. Specifically, we simulated all eight
combinations between weak and strong exposure effects (β1 = 0.1, β2 = 0.4 and β1 = 0.4, β2
= 0.8, respectively); weak and strong confounding effects (β3 = 0.4 and β3 = 0.8,
respectively); and weak and strong exposure-confounder associations (ORE–C = 1.1 and
(ORE–C = 1.6, respectively). All scenarios assumed a marginal disease prevalence of 2%.
We calculated the absolute bias, Monte Carlo and empirical standard errors, and root mean
squared error across 1,000 simulations, each with a sample size of 400.

Simulation results
Table 2 summarizes the absolute bias and root mean squared error observed across the eight
simulation scenarios for unadjusted and adjusted models. Analyses that ignored the
sampling design completely or in part resulted in upwardly biased parameter estimates.
Compared with no adjustment, conditioning on the determinant of selection O decreased
bias in the intercept slightly, but had no impact in the amount of bias observed for the effects
of exposure (β1, β2).

In contrast, both approaches that fully incorporated the sampling design resulted in minimal
to no bias. For all parameters across all scenarios, maximum likelihood produced unbiased
effect estimates; the weighted approach resulted in a slight bias throughout. The magnitude
of the bias observed with weighting tended to increase with strong confounding, irrespective
of the strength of the exposure-confounder association. Conversely, the strength of the
exposure effect did not appear to influence the amount of bias produced by weighted
regression.

We found a similar pattern for the Monte Carlo and empirical standard errors across the four
approaches (Table 3). As predicted by theory (see Appendix), the likelihood approach was
more efficient than the weighted unconditional regression. The empirical standard errors
closely matched the Monte Carlo standard errors in all scenarios, except in the setting of
weak exposure and confounding effects coupled with a strong association between the
confounder and exposure. In all methods, the empirical standard errors underestimated the
Monte Carlo standard errors.
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DISCUSSION
It has been argued that, despite the unequal selection induced by the design of complex
surveys, analyses that treat the sampled data as the population of interest remain valid.
Using a DAG framework, we show that this will depend on knowledge about the
relationships among determinants of selection, exposure, and outcome. If the determinants
of selection are associated with exposure and outcome, failure to account for the sampling
design may result in biased effect estimates. This includes settings where determinants of
selection are the exposure or outcome under study.

Under these circumstances, there are multiple analytic options. Given our simulation
findings, partial adjustment for selection by conditioning on determinants may only
minimally improve bias compared with no adjustment; weighted regression will yield effect
estimates that are much less biased, especially in the setting of weak confounding effects.
Maximum likelihood naturally accounts for selection because it considers the sampling
design as part of the underlying data-generating mechanism. It also has the distinct
advantage of delineating the amount of bias introduced by the sampling design.
Furthermore, it can readily be implemented in standard software. In the canonical scenario
(Figure 6), the analyst needs to specify only the OFFSET option in PROC LOGISTIC in
SAS (see eAppendix B). For more complicated DAGs, the likelihood approach can still be
implemented using standard software packages, but may require the use of more
sophisticated procedures including PROC NLMIXED. Additional perspectives on this
problem – although not developed for use in complex survey samples – are provided by
Bareinboim and Pearl27 and Rose and Van der Laan.28

The structural considerations discussed here are analogous to nested, matched case-control
studies. As with complex surveys, the probability of selection for each participant in a
matched, nested case-control study can be estimated, given the design. In such studies, cases
are matched to controls according to one or more factors thought to be confounders. If the
matching factor truly confounds the exposure-outcome relationship, then failing to account
for matching will generally result in biased effect estimates.29 However, even if the
matching factor is not a common cause of exposure and outcome, bias can still result if the
factor is correlated with exposure. This phenomenon, known as “overmatching,” results
from conditioning on the common effect, selection into the study. In this situation, as in the
DAGs presented in Figures 1, 4B., 5A. and 6, collider bias transforms the matching factors
into confounders in the sample even if they are not confounders in the population.

Despite the use of probability-based sampling, members of the target population may be
missed by complex surveys. In the Indian survey, female sex workers who cannot be
associated with places and/or times of congregation (e.g. women who solicit sex via mobile
telephones) are unlikely to have been sampled. Such undercoverage of the target population
may lead to incorrect sampling probabilities and consequently may undermine efforts to
obtain a representative sample. Our likelihood approach is vulnerable to this uncertainty, as
it uses the sampling probabilities to construct the offset term. To our knowledge,
undercoverage would affect all existing methods that attempt to respect the sampling design
by incorporating the estimated sampling weights. It would be both interesting and important
to work out methods that address this problem, but this is beyond the scope of the current
paper. Briefly, a Bayesian framework that formally incorporated imperfect information
about the sampling weights by positing a prior for such parameters based on information
about the survey’s design could be used to produce a posterior for both the weights and
regression parameters. Such an approach would build on the parameterization proposed
here, and be a natural extension of our likelihood approach. Another appeal of working with
the likelihood function is that, while the offset term may be misspecified due to an incorrect
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sampling weight, the maximum likelihood estimation remains well-defined as the minimizer
of the Kullback-Leibler distance, a projection of the true model onto the specified model.30

In contrast, with incorrect sampling weights, it is unclear what any other procedure
(including inverse probability weighting) would estimate.

Finally, in discussing the DAGs and deriving the likelihood approach, we have assumed no
within-group clustering of responses. This assumption is unlikely to hold for many complex
surveys, including the one discussed here. In these settings, even if point estimates are
correctly estimated, the corresponding standard errors may be too small, confidence
intervals too narrow, and tests of significance overstated.24,31,32 We ignored intracluster
correlation for the purposes of simplicity, as our primary objective was understanding
selection bias in association studies using complex surveys. However, for both the weighted
unconditional regression and unweighted conditional regression approaches, robust standard
errors may be obtained using a generalized estimating equations framework. The likelihood
approach can also be extended to incorporate clustering through a mixed-effects model with
cluster-specific random intercepts.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Likelihood estimation as weighted logistic regression
Interestingly, as formally shown below, our likelihood approach can be rewritten as a
weighted logistic regression without an offset, but with weights equal to

 for subjects with N=1 (i.e. cases) and

 for subjects with N=0 (i.e. non-cases).

Note that the ratio  is present in the weights of both cases and non-
cases and therefore is not essential for reducing bias. In contrast, the ratio

 is present only in the weight for non-cases, making it essential for
accounting for selection bias. This latter term eliminates selection bias due to differential
selection probabilities because it standardizes the selection probability experienced by non-
cases to match that of cases. In principle, these weights will be less variable than the
standard inverse probability weights. To see why, consider a situation in which the outcome
does not predict selection, and therefore weights are unnecessary to adjust for selection bias.
In this scenario, the likelihood weights appropriately reduce to 1.0, whereas the standard
inverse probability weights reduce to 1/P[S = 1|M,L], thus generally leading to loss of
efficiency.

Proof of likelihood estimation of directed acyclic graph presented in Figure
6 as weighted logistic regression

We start by noting that individual contributions to the score equation for the likelihood
approach are of the form

 where h(M,L) =
(1,M,L′).

Let  and B* = expit(α + β1M + β2L).

Then, one observes that
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proving the result.
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Figure 1.
Directed acyclic graph in which the determinants of selection M and N are associated with
exposure A and outcome Y.
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Figure 2.
Directed acyclic graph in which one determinant of selection M or N, but not both, is
associated with (A.) exposure A or (B.) outcome Y, conditional on L.
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Figure 3.
Directed acyclic graph in which no determinant of selection M, N is associated with
exposure A or outcome Y.
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Figure 4.
Directed acyclic graph in which one determinant of selection, (A.) M or (B.) N, is the
exposure of interest.
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Figure 5.
Directed acyclic graph in which one determinant of selection, (A.) M or (B.), N is the
outcome of interest.

Wirth and Tchetgen Tchetgen Page 17

Epidemiology. Author manuscript; available in PMC 2015 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Directed acyclic graph in which the determinants of selection, M and N, are the exposure
and outcome of interest, respectively.
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