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Abstract

Microsomal cytochrome b5 plays a key role in the oxidation of a variety of exogenous and

endogenous compounds, including drugs, fatty acids, cholesterol and steroid hormones. To better

understand its functional properties in a membrane mimic environment, we carried out high-

resolution solution NMR studies. Here we report resonance assignments for full-length rabbit

cytochrome b5 embedded in DPC (dodecylphosphocholine) micelles.
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Biological context

Cytochromes b5 (cytsb5) are ubiquitous electron transport proteins found in plants, animals,

fungi and prokaryotic organisms. In eukaryotes, cytsb5 exist as membrane-anchored proteins

found either in the endoplasmic reticulum (ER) or in the outer mitochondrial membrane

(Schenkman et al 2003). In animal erythrocytes and prokaryotes, cytsb5 are mostly found in

a water-soluble form that lacks the C-terminal transmembrane domain (Dürr et al 2007;

Vergeres et al, 1995). The isoform of the full-length cytb5, which resides on the cytoplasmic

side of the ER membrane (referred to as microsomal cytb5), is a ~16-kDa (134 amino acids),

predominantly an acidic membrane protein consisting of two separate domains: a large, N-

terminal, cytosolic heme-containing soluble domain (~94 amino acids) that includes the

binding site for its redox partners and a C-terminal hydrophobic transmembrane domain

(~23 amino acids). These two domains are connected by a proline containing hinge region of

~14 residues referred to as the linker (Clarke et al. 2004). Cytb5 contains a type B heme,

which is located in the hydrophobic core of the soluble cytosolic domain, with the highly

conserved His68 and His44 coordinating the heme iron as the 5th and 6th ligands (Lederer
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1994). Microsomal cytsb5 participate in a number of key reactions, including fatty acid

desaturation (Dürr et al. 2007), the biosynthesis of cholesterol (Schenkman et al. 2003) and

sex hormones (Kominami et al. 1992), and the hydroxylation of N-acetyl-neuraminic acid

(Takematsu et al. 1994).

High-resolution structures have been determined for the cytosolic, heme-binding domain of

truncated, microsomal cytb5 from solution NMR and X-ray crystallography (Banci et al,

2000; Nunez et al. 2010; Durley et al. 1996). Solution NMR studies have reported the

dynamics of the truncated cytb5 in solution (Arnesano et al, 2000; Banci et al, 2001). Solid-

state NMR studies on magnetically-aligned bicelles containing the full-length rabbit cytb5

reported the fast dynamics (microsecond dynamics) of the soluble domain, slow mobility

(millisecond time scale) of the transmembrane domain, and the topology of the

transmembrane domain (Dürr et al. 2007b; Xu et al. 2008; Soong et al. 2010; Xu et al.

2010). The tilt angle of the transmembrane helix of cytb5 and its membrane insertion process

has been investigated using solid-state NMR and sum frequency generation experiments in

phospholipid bilayers (Dürr et al. 2007b; Nguyen et al. 2010). However, the lack of any

high-resolution structural data for the full-length cytb5 makes it particularly difficult to

establish the molecular mechanism of electron transfer upon its interaction with the

monooxygenase, cytochrome P450 (cytP450) (Schenkman et al. 2003; Dürr et al. 2007).

Thus, to elucidate the structure of full-length microsomal cytb5 in a membrane mimetic two-

and three-dimensional heteronuclear (13C, 15N) NMR spectroscopy were performed (Ahuja

et al. 2013). Here we present the assignment of 1H, 13C, and 15N resonances for cytb5

protein embedded in DPC micelles.

Methods and experiments

C41 cells were purchased from Lucigen (Middleton, MI). U-13C, 15N and 2H CELTONE

rich medium, 15N-CELTONE rich media, 13C, 15N-CELTONE rich media, 2H-

dodecylphosphocholine (DPC-D38), 13C-glucose, 15N-ammonium sulfate and D2O were

purchased from Cambridge Isotope Laboratories (Andover, MA). Resins and buffer

components were purchased from Sigma-Aldrich. Glycerol for NMR experiments was

purchased from Sigma-Aldrich and Roche Applied Science. The NMR samples were placed

into 5 mm symmetrical D2O-matched Shigemi NMR microtubes (Shigemi, Inc, Alison Park,

PA).

Wild-type rabbit, full-length cytochrome b5 was overexpressed and purified using the

protocols described previously (Xu et al. 2008). U-15N cytb5, U-15N, 13C cytb5 and

U-15N, 13C, 2H cytb5 were expressed using Celtone-N, Celtone-CN and Celtone-DCN

complete media, respectively, with additional supplements as described in reference (Nunez

et al. 2010 and Ahuja et al. 2013). Purification of cytb5 was performed as described

elsewhere (Mulrooney et al. 2000). Each purified protein exhibited a single band on an SDS

PAGE gel.

Vivekanandan et al. Page 2

Biomol NMR Assign. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



NMR Spectroscopy

All NMR experiments were performed on a Bruker Avance 900 MHz four-channel NMR

spectrometer equipped with an x,y,z axis PFG 5 mm TCI cryoprobe. NMR sample was

prepared by reconstituting 0.1 – 0.5 mM cytb5 in 100 mM potassium phosphate buffer

containing 5 % deuterated glycerol in the presence of 45 mM perdeuterated DPC (DPC-D38)

at pH 7.4.

Two-dimensional TROSY-based 1H-15N (Pervushin et al. 1997) and 1H-13C heteronuclear

single-quantum coherence (HSQC) spectra and three-dimensional TROSY based (3D)

HNCA, HNCO, HNCACB, HN(CA)CO, HN(CO)CA, 15N- edited TOCSY-HSQC (Sattler

et al. 1999) were collected for the backbone chemical shifts assignments. 15N, 13C and 2H

labeled protein was used for all the triple resonance backbone NMR experiments. For 15N-

HSQC-NOESY and 13C-HSQC-NOESY experiments, uniformly 15N and 13C labeled cytb5

embedded in DPC-D38 was used. The 3D-NOESY (with mixing times 80 and 100 ms)

experiments were used to confirm the chemical shift assignment in addition to obtaining

intra and inter-residue NOEs. All aromatic side chain protons and carbon atoms were

assigned using 2D-NOESY and 3D-NOESY experiments. Time to time, several 2D

TROSY 1H-15N HSQC spectra were recorded to monitor sample stability. The proton

chemical shifts were referenced to the methyl signal of 2,2-dimethyl-2-silapentane-sulfonic

acid (DSS, Cambridge Isotope Laboratories) as an internal chemical shift reference at 0.0

ppm. The 13C and 15N chemical shifts were referenced indirectly to DSS (Harris et al.

2001). All the above NMR experiments were performed at 25 C.

All NMR spectra were processed by either NMRPipe (Delaglio et al. 1995) or Topspin 2.0

(Bruker) and analyzed using Sparky (Kneller et al. 1993).

Assignment and Data Deposition

The assigned 1H-15N TROSY-HSQC spectrum for full-length cytb5 is shown in Fig. 1.

Using standard three-dimensional solution NMR experiments, NMR resonance assignment

was achieved for 88.5% of the backbone and side chain atoms of residues from the soluble

heme-binding domain of full-length cytb5 (2D spectral strips illustrating resonance

assignments are shown in Figures 2 and 3). Besides three prolines, the unassigned residues

in the heme-binding domain of cytb5 include M1-D6, S23, K33, K91, K94, I100, S105, due

to their flexibility and rapid solvent exchange with their amide protons. Ambiguous

assignments were made for the residues N106, A124, M126, Y127, R128, D133 and D134

due to broad and overlapped peaks in all 3D triple resonance and 15N/13C-edited 3D-

HSQC-NOESY spectra. No backbone assignments were made for the transmembrane

domain residues S107-V123, L125, L129, Y130, M131 and A132 as no resonance peaks

were identified for these residues in the 1H-15N TROSY-HSQC spectrum of cytb5. The

restricted slow (millisecond or slower) motion of the transmembrane domain of cytb5

incorporated in DPC micelles causes significant broadening of the transmembrane domain

resonances due to fast spin-spin relaxation. As described in our previous work, a 1H-15N-

HMQC spectrum recorded under magic angle spinning (2.5 kHz) on a selectively 15N-

alanine labeled sample of cytb5 incorporated in DPC micelles displayed broad resonances

for the backbone amide-NHs of the four alanines present in the transmembrane domain of
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cytb5, along with narrow resonances for the alanines in the soluble domain (Dürr et al.

2007b; Ahuja et al. 2013, Fig. 4). Hence, static solid-state NMR experiments were

performed on uniformly 15N-labeled full-length cytb5 incorporated in magnetically-aligned

bicelles - composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-

dihexanoyl-sn-glycero-3-phosphocholine (DHPC) lipids in a 3.5:1 molar ratio - to obtain the

structure of the transmembrane domain of cytb5 (Ahuja et al. 2013).

An inspection of the 1H-15N-TROSY-HSQC spectrum (Fig 1) of cytb5 revealed two or more

NMR resonances (marked as *) for many of the residues. These two sets of NMR

resonances originate from the two isomers (major and minor) of cytb5 that differ by a 180°

rotation of the heme plane about the axis that cuts through the meso-carbon atoms α and γ

(Banci et al. 2000; Zhang et al. 2004). The ratio of the populations of the two isomers can be

calculated by determining the peak intensity ratio (here in the 1H-15N-TROSY-HSQC

spectrum of cytb5) for identical residues in the two isomeric forms. The major/minor isomer

ratio in our study for the full-length rabbit cytb5 was determined to be about 6.6:1 which is

similar to the previously obtained 5:1 ratio for truncated rabbit cytb5 (Banci et al. 2000) and

nearly identical to the isomer ratio of 6.5:1 for truncated bovine cytb5 (Zhang et al. 2004).

The analysis of 15N-HSQC-NOESY and 13C-HSQC-NOESY reveals that the soluble, heme-

binding domain (M1-D89) of cytb5 consists of six α-helices, five β-strands. The linker

region (S90-D104) was found to be completely unstructured.

A list of the 1H, 13C and 15N chemical shift values has been deposited into the

BioMagResBank (http://www.bmrb.wisc.edu) under accession number BMRB - 18919.

Although backbone assignments were done for the resonance peaks of both the major and

minor isomers, all the reported assignments in BMRB are only for the major isomer of the

ferric full-length microsomal cytb5.
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Figure 1. High-resolution solution NMR spectrum of full-length cytb5
(A) 900 MHz 2D 1H-15N-TROSY-HSQC spectrum of a uniformly 15N, 13C and 2H- labeled

full-length mammalian cytb5 in NMR buffer at pH 7.4 and 45 mM DPC micelles. The

assignments for resolved backbone residues are labeled with one letter amino acid code and

residue number. The peaks marked by an asterisk (*) indicate the amino acid residue

assignment from the minor population of cytb5 isomer. An expansion of the crowded region

of the 2D 1H-15N-TROSY-HSQC spectrum is inserted in the figure for clarity. The low

intensity peaks are marked as ‘x’ with residue assignment.
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Figure 2.
1H-1H planes of eight different residues extracted from a 3D 15N-edited HSQC-NOESY

(mixing time 100 ms)recorded on a fully protonated uniformly 13C and 15N labeled cytb5 in

DPC micelles.
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Figure 3.
Strips from HNCA spectrum used to make backbone assignments. Each strip is labeled on

top by the amino acid whose NH was detected and at the bottom with the 1HN chemical

shift.
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