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ABSTRACT

Motivation: MicroRNA (miRNA) expression has been found to be

deregulated in human cancer, contributing, in part, to the interest of

the research community in using miRNAs as alternative therapeutic

targets. Although miRNAs could be potential targets, identifying which

miRNAs to target for a particular type of cancer has been difficult due

to the limited knowledge on their regulatory roles in cancer. We ad-

dress this challenge by integrating miRNA-target prediction, metabolic

modeling and context-specific gene expression data to predict thera-

peutic miRNAs that could reduce the growth of cancer.

Results: We developed a novel approach to simulate a condition-

specific metabolic system for human hepatocellular carcinoma

(HCC) wherein overexpression of each miRNA was simulated to pre-

dict their ability to reduce cancer cell growth. Our approach achieved

480% accuracy in predicting the miRNAs that could suppress metas-

tasis and progression of liver cancer based on various experimental

evidences in the literature. This condition-specific metabolic system

provides a framework to explore the mechanisms by which miRNAs

modulate metabolic functions to affect cancer growth. To the best of

our knowledge, this is the first computational approach implemented

to predict therapeutic miRNAs for human cancer based on their func-

tional role in cancer metabolism. Analyzing the metabolic functions

altered by the miRNA-identified metabolic genes essential for cell

growth and proliferation that are targeted by the miRNAs.

Availability and implementation: See supplementary protocols and

http://www.egr.msu.edu/changroup/Protocols%20Index.html.

Contact: krischan@egr.msu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

MicroRNA (miRNA) expression has been found to be deregu-

lated in human cancer (Sassen et al., 2008). Some of the first

miRNAs identified to be involved in cancer were miR-15 and

miR-16, which were found downregulated in most lymphocytic
leukemia patients (Calin et al., 2002). Others include oncogenic

miR-17-92, which promotes c-Myc-induced tumorigenesis in

mice (He et al., 2005), and a tumor suppressor miRNA let-7,

which inhibits expression of the oncogene RAS in lung cancer

cell lines (Johnson et al., 2005). Further, a global decrease in

miRNA levels was observed in human cancers (Gaur et al.,

2007; Lu et al., 2005). Knockout of the miRNA processing en-

zymes, Drosha and Dicer, enhances cancer cell growth in vitro
and their invasiveness in mice (Kumar et al., 2007), confirming

that widespread reduction in miRNA expression could promote
tumorigenesis. Therefore, miRNAs could have intrinsic func-

tions in tumor suppression and be potential therapeutic targets.

Synthetic miRNAs can be introduced into mammalian systems
(Tsuda et al., 2005), as was shown in a pioneering study on

therapeutic miRNA delivery of miR-26 s in a HCC mice model
that successfully inhibited tumor cell proliferation and induced

cancer-specific apoptosis (Kota et al., 2009).
Although miRNAs could be potential alternative targets for

cancer treatment, it has been difficult to identify which miRNAs
to target for a particular type of cancer, as the underlying mech-

anisms of how miRNAs are involved in cancer are largely un-

known. Experimental evidences of how miRNAs regulate their
targets in cancer cells have been limited. The expression of indi-

vidual targets, such as RAS (Johnson et al., 2005) and E2F1
(O’Donnell et al., 2005), has been shown to be regulated by

miRNAs and thereby used to explain the association of

miRNAs with cancer. However, each miRNA could regulate
many target genes, and the same miRNA could have oncogenic

or anti-tumorgenic activity depending on the context or cell type
in which the targets are expressed. Current computational studies

focus primarily on analyzing miRNA expression profiles to iden-

tify miRNAs that are differentially expressed or signatures that
can separate a particular cancer type from normal samples (Kuo

et al., 2012; Liang, 2008; Oulas et al., 2011). More advanced data
mining approaches integrate miRNA, gene expression data and

putative miRNA–gene interactions to identify regulatory mod-

ules in which the miRNA expression is found to be negatively
correlated with putative targets in the cancer samples (Xin et al.,

2009; Xionghui Zhou et al., 2011; Zhang et al., 2011).
Nevertheless, it remains unclear whether the altered miRNA ex-

pressions are the cause or consequence of the carcinogenesis

processes, and which miRNAs could be good targets for treat-
ment. Furthermore, as an miRNA could simultaneously target

many genes, it has been difficult with current approaches to sys-
tematically predict the effect on perturbation of an miRNA.

In this study, we propose an alternative approach to tackle this
problem and integrate putative miRNA–target-gene interactions,

metabolic modeling and context-specific gene expression data.

Our analysis focuses on the human metabolic system, as abnor-
mal metabolic functions are known to be involved in supporting

tumor growth and proliferation (Vander Heiden et al., 2012).*To whom correspondence should be addressed.
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For example, most cancer cells have higher glycolytic rates,

which is called ‘Warburg effect’ (DeBerardinis et al., 2008;

Vander Heiden et al., 2009). A recent study on breast cancer

further uncovered alterations in glucose metabolism mediated

by the phosphoglycerate dehydrogenase enzyme (Locasale

et al., 2011), whose expression was found to be associated with

poor prognosis (Pollari et al., 2011). Because metabolism plays

an essential role in cell growth and proliferation, genes regulating

metabolism have been used as drug targets in the treatment of

cancer (Galmarini et al., 2008; Serkova et al., 2007).
We hypothesize that miRNAs could be implicated in the meta-

bolic regulation of cancer, and study the targets of miRNAs in

the context of the human metabolic network for which detailed

mechanistic information is available for systems modeling. Our

approach takes advantage of current knowledge of the human

metabolic network to reconstruct a context-specific metabolic

system for human liver cancer (HCC). The model is used to

predict miRNAs whose overexpression or delivery could inhibit

cancer cell growth by downregulating its target metabolic genes.

By explicitly modeling the cancer phenotype as a specific meta-

bolic state, we are able to predict not only the miRNAs

‘involved’ or ‘altered’ in cancer but also the potential miRNA

targets that could change the cancer metabolic phenotype if per-

turbed. These targets could be candidates in the treatment of the

disease. This is in contrast to previous studies of miRNA in

cancer where the ‘cancer phenotype’ is used as a label/annotation

of samples against another label of ‘normal’ (Kuo et al., 2012;

Liang, 2008; Oulas et al., 2011). Our approach provides a com-

putational platform to integrate knowledge from different

sources, to study in silico the global effect of miRNA perturb-

ations on the metabolic network and to generate hypotheses that

could provide insights into the mechanisms underlying the regu-

lation of miRNAs on cancer metabolism.

2 METHODS

2.1 Basic assumptions in network reconstruction

Our network reconstruction is based on two assumptions (see

Supplementary Methods for the comparisons with previous approaches):

(1) Information on the context-dependent gene expression, e.g. micro-

array data, tissue-specific gene database, studies of gene expression

in the literature, can provide the relative gene expression state

change between phenotypes, rather than the ‘expression level/

state’ of a gene. A single ‘expression value’ cannot indicate a

gene’s expression level (or its ON/OFF state) without a compari-

son with different phenotypes. This is because for different genes,

the amount of expression that is required to turn them ON should

be different. For example, signaling molecules could have large

impact when they are expressed at low levels, whereas housekeep-

ing genes would require a constitutively higher amount of expres-

sion to support cell survival (Paolella, 1997), so the expression level

of these two types of genes (i.e. signaling molecules: LOW, house-

keeping: HIGH) within the samples for a given phenotype would

not correlate with their ON/OFF states that is defined by a single

threshold or expression level. Therefore, we assume only those

genes whose expression levels are significantly changed (differen-

tially up- or downregulated) will have an impact on the metabolic

functions.

(2) The state change of the genes/enzymes as indicated by the context

information determines the state change of the reactions by mod-

ulating the maximum reaction rate. This is different from previous

approaches that associate gene expression with reaction states by

either removing a reaction when the corresponding gene expression

is low (Becker and Palsson, 2008) or correlating the flux through

the reaction with gene expression level (Shlomi et al., 2008). Our

assumption is based on the Michaelis–Menten enzyme kinetics

equation in which the maximum reaction rate (i.e. the maximum

capacity of a flux through a reaction tunnel) is positively correlated

or proportional to the concentration/activity of the gene/enzyme

that catalyzes the reaction, assuming that the environmental fac-

tors (e.g. temperature, medium) are constant, the system is at

thermodynamic equilibrium and all measurements are assumed

to be at pseudo-steady state:

Vmax / Kcat½E�

Where Kcat is a reaction constant and [E] is the concentration of

the enzyme.

2.2 Algorithm for the reconstruction of context-dependent

metabolic network

Step 1. Compute the states of the genes under the condition of interest:

the context information is used to determine the change of gene expres-

sion between the reference condition and the condition of interest. For

example, based on microarray data, the state of a gene changes only when

it is differentially expressed, and the amount of changes �ðSgÞ can be

computed based on the ‘log fold-change’ [‘Enew/Eref’ is modeled with

2log(expression level new)� log(expression level ref)] obtained from microarray ana-

lysis. Qualitative information from the literature or tissue-specific dataset

directly determines the state of a gene under a condition of interest, but

the amount of state change is computed by subtracting the reference state

from the state under the condition of interest, to determine the state of the

reactions in the next step. In these cases, the state of the genes is repre-

sented by discrete variables Sg ¼ f�1, 0, 1g (i.e. low, median, high), and

the state changes (‘Enew/Eref’ is modeled with 2(state of Enew)� (state of Eref))

depend on the context information. Starting from the generic human

metabolic network, the reference condition is defined by having all the

genes initially in state 1, and the initial bounds are computed with flux

variability analysis (FVA) (Mahadevan and Schilling, 2003; Shlomi et al.,

2011).

Step 2. Compute the states of reactions: based on the gene-protein-

reaction information in the network, genes that are components of

an enzyme complex have the ‘AND’ relationship, thus the change of

the activity of these complexes are defined by �ðScÞ ¼

minf�ðSg1Þ, �ðSg2Þ, . . . , �ðSgjÞg in which �ðSgjÞ are the state change of

gene component j in complex c. Complexes/genes that are different iso-

zymes for the same reaction have an ‘OR’ relationship, thus the amount

of state change on a reaction is then defined by the state changes of the

isozymes: �ðSrÞ ¼ maxf�ðSc1Þ, �ðSg2Þ, . . .g. Lastly, the upper bound of a

reaction is changed: Vnew ¼ Vold � 2
�ðSrÞ, as the state changes are defined

as the ‘log fold change’. The optimization function to determine the flux

(see Section 2.3) for each reaction in the reconstructed network is as

follows:

max
V

Z ¼ cTV,

s:t: SV ¼ 0, xj � Vj � yj

In which xj and yj are initiated with FVA when we begin with the

generic human metabolic network, and the upper bound yj ¼ Vnew is

determined by context-dependent gene expression level. FVA analysis

on the generic human model provides the initial bounds/maximum

fluxes of reactions, constrained by the uptake of glucose (whereas the
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uptake of oxygen, calcium, sodium, potassium and other irons and phos-

phate is not constrained).

The algorithm is implemented in MATLAB and can be used as an

add-on component to the COBRA toolbox version 2.0 (Becker et al.,

2007; Schellenberger et al., 2011) for network reconstruction.

2.3 Simulation based on a metabolic network model

We apply constraint-based modeling [e.g. flux balance analysis, FBA

(Stephanopoulos et al., 1998)] to simulate the state of the system without

detailed kinetic data, assuming that the flux distributions based on the

stoichiometric mass balance are at steady state or pseudo-steady state. A

reaction network is represented by the stoichiometric matrix: S [with m

compounds (rows) and n reactions (columns)], the flow vector v (n by 1

vector) for the reactions and the concentration vector: X (m by 1 vector)

for the compounds/metabolites. Thus we have dX=dt ¼ Sv.

Assuming pseudo-steady state, the time derivative is zero, therefore

Sv ¼ 0. Imposing mass balance and capacity constraints defines the

space of feasible steady state flux distributions of the network, and we

further apply an objective functionZ (for biomass production), which is a

linear function of fluxes:

Z ¼ cTV

in which c is a column vector to assign weights to each reaction, cT is

the transpose of the vector c and V is the flux vector through all

the reactions. The value of c for cancer cells is determined in the

literature (Shlomi et al., 2011). Optimization (maximization) of the ob-

jective function Z identifies a solution of V.. An FVA can further explore

the solution space to exam the maximum/minimum fluxes for each reac-

tion with respect to the objective function. The constrained linear opti-

mization problem for FBA and FVA can be solved by linear

programming (Orth et al., 2010; Toya et al., 2011). We use the

COBRA toolbox version 2.0 for the flux analysis (Becker et al., 2007;

Schellenberger et al., 2011), and GUROBI (http://www.gurobi.com/) for

the linear optimization.

2.4 Datasets and the working pipeline

2.4.1 Metabolic network and the reconstruction The generic

human metabolic network is obtained from Duarte et al. (2007). Liver-

specific gene expression is extracted from a curated dataset in the litera-

ture (Shlomi et al., 2008), which provides the metabolic genes that are

specific (differentially up- or downregulated) in human liver. The function

for biomass production was obtained from Shlomi et al. (2011), which is

based on experimentally measured compositions of DNA, RNA, amino

acids and lipids in cancer cells (grown in Roswell ParkMemorial Institute

(RPMI)-1640 medium) (Shlomi et al., 2011). Based on the information of

gene expression and the biomass function, we reconstructed a liver-spe-

cific metabolic network from the generic human metabolic network. The

rationale for optimizing biomass production is because we are focused on

the potential of miRNAs on affecting tumor growth, and we assume that

the miRNAs affect the maximal rate of cancer cell growth that can be

achieved. The doubling time estimated by the unperturbed and perturbed

models range from 10 to 30h, which we think is reasonable based on our

experiences in culturing liver cancer cells (e.g. HepG2).

2.4.2 Incorporation of miRNA regulation The metabolic gene tar-

gets of each miRNA are obtained from TargetScan, which is based on

sequence complementarity and conservation of the target sites within

vertebrates (Friedman et al., 2009). We are aware that there are many

miRNA target databases that could provide different sets of miRNA

targets. Given limitations in experimental approaches to systematically

verify miRNA–target relationships, a fair comparison between

these target databases is difficult. TargetScan has been shown to have

higher sensitivity and specificity compared with other approaches

(Zhang and Verbeek, 2010). We used only the results of the 153 conserved

miRNA family and only the targets with conserved binding sites (across

mammalians). Based on the gene targets of miRNAs in the human meta-

bolic system, we simulated the liver-specific metabolic network by opti-

mizing the biomass production (which assumes the primary objective of

cancer cells is to grow and proliferate) to predict whether an miRNA

could effectively inhibit cancer growth.

2.4.3 Test the accuracy of prediction To assess the accuracy of the

prediction, i.e. whether the predicted effect of an miRNA on biomass

production correlates with its ability to inhibit/promote cancer growth,

requires a test set. There is no comprehensive list available of miRNAs

that have been investigated experimentally for a cancer type. Therefore,

we manually searched in the published literature for evidence for each of

the 153 miRNA families. Through an exhaustive search we found 50

related papers in peer-reviewed journals, which involve experimental stu-

dies on HCC or related human liver cell lines with regards to 41 of the 153

miRNA families. We read the papers and curated a test set that includes

these 41 miRNAs that have been experimentally studied in liver cancer.

The in vivo or in vitro evidences show 23 of these 41 miRNAs inhibit liver

cancer growth/metastasis if overexpressed, whereas 18 have no effect or

have the opposite (i.e. enhancing) effect (Supplementary Table S1). We

established the accuracy of our approach by comparing the prediction

results with the test set.

We compared our approach with a previous method GIMME (gene

inactivity moderated by metabolism and expression), which also recon-

structs tissue-specific networks and simulates by optimizing an objective

function (Becker and Palsson, 2008; Chang et al., 2010). GIMME takes in

gene expression data and removes all the reactions associated with genes

that are expressed lowly. Because removing reactions from the network

may disconnect the fluxes, GIMME then adds back some reactions to

connect the network (so that the objective function is fulfilled). There

could be many ways to add reactions back into the system to make the

fluxes connected (e.g. one valid way is to add back all reactions that were

removed, which actually retain the original human recon 1, the non-spe-

cific model), and GIMME adds the least possible amount of reactions to

fulfill the objective function. In our reconstruction approach, we do not

remove reactions; instead, the flux bounds of the reactions are changed by

the differentially expressed genes. A new network flux scenario can be

determined by the updated reaction bounds, rather than by removing or

adding back reactions as in GIMME. The code of GIMME was down-

loaded from Becker et al. (2007) and Schellenberger et al. (2011), and our

online tutorials describe how we applied GIMME.

2.4.4 Exploring mechanisms of how miRNAs affect cancer
metabolism The data to support our ‘essential metabolic genes’ are

obtained from COLT-Cancer, a genome-wide pooled small hairpin RNA

(shRNA) screen dataset (Koh et al., 2011). Essential is defined by a sig-

nificant (P50.05) reduction in the survival and proliferation of the cells

on their knockdown by shRNA in more than one cancer cell lines. The

data of the liver cancer gene signatures are from the Liverome database

(Lee et al., 2011), which collects the genes that have been shown to be

differentially expressed in liver cancer tissues or in highly invasive liver

cancer cell lines. We further collected miRNA expression data for HCC

from Li et al. (2008), compared with our curated literature evidences, to

show that the expression change at the miRNA level may not necessarily

indicate whether it is a good target.

See Supplementary Methods for a comparison of approaches in the

reconstruction of a context-specific metabolic network. The network re-

construction and miRNA prediction pipeline is available, and a step-by-

step protocol is provided, see Supplementary Protocol file.
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3 RESULTS

In this study, we reconstruct a human context-dependent meta-

bolic network to associate gene expression changes with con-

straints on the reactions. Based on a reference metabolic

network [e.g. the generic human metabolic network (Duarte

et al., 2007)] and the context information obtained from gene

expression data of a particular phenotype of interest, our ap-

proach estimates the activity change of each reaction and adjusts

the upper bounds (i.e. the maximum capacity) of the reaction, to

provide a new metabolic network model that is specific to the

condition. The process is shown in Figure 1, and the algorithm is

described in Section 2.
Information on the human liver-specific gene expression is

obtained from a curated dataset in the literature (Shlomi et al.,

2008). Our approach is applied to reconstruct a liver cancer-

specific metabolic model from the human generic metabolic net-

work by setting the maximum capacity of the reactions based on

context information obtained from gene expression data of

cancer samples. The liver-specific metabolic network is used to

predict the growth and proliferation rate of cancer cells with

FBA (Section 2). Because cancer cells modulate metabolic func-

tions to help support their rapid growth and proliferation, bio-

mass production (Shlomi et al., 2011) was used as the objective

function to reflect the growth and proliferation rate of the cancer

cells. The rate of biomass production is based on experimentally

measured compositions of DNA, RNA, amino acids and lipids

in cancer cells (Shlomi et al., 2011) and reflects the maximum rate

of cell growth and proliferation that can be achieved.
To estimate the robustness of the network reconstruction

against potential noise from gene expression data, we applied

FVA (Delgado and Liao, 1997; Park et al., 2009) on the

reconstructed liver model. FVA performs a sensitivity analysis

of the fluxes with respect to changes in reaction bounds that are

determined by the gene expression data. The results of FVA

show that a 25% reduction of the upper bound in all the reac-

tions that carry fluxes would only reduce the output of the model

by no more than 10% (i.e. retain 90% of the biomass produc-

tion). On average, the bounds need to be changed 83% for any

reaction that carry fluxes to be able to change biomass produc-

tion by 10%. Nevertheless in our reconstruction, for a reaction

to have a 25% reduction in the bounds requires all the genes in a

particular enzyme complex that catalyze the reaction to have

42-fold downregulation in expression. Therefore, the FVA re-

sults suggest a robust system that is insensitive to potential noise

in the microarray data.

3.1 Prediction of the metabolic state of liver cancer

cells on perturbation of miRNA levels that regulate

metabolic genes

Collating the metabolic gene targets of each miRNA obtained

from TargetScan, which is based on sequence complementarity

and conservation of the target sites within vertebrates (Friedman

et al., 2009), results in 153 conserved miRNA family with con-

served binding sites (across mammalians). The model assumes

the gene targets are inhibited (50% knockdown) on overexpres-

sion of their miRNA regulator, as the miRNA binds to these

target mRNAs by base pairing and forms RNA-induced silen-

cing complex that then inhibits protein translation and/or

enhances degradation of the mRNAs (Bartel, 2004). A condi-

tion-specific metabolic system is constructed by overexpressing

each miRNA with their targets downregulated (i.e. 50% decrease

in gene expression) and simulated to obtain the maximum

achievable biomass production rate F on the perturbation of

the miRNA. This is compared with the rate F0 in the ‘wild-

type’ liver cancer metabolic network without upregulation of

the miRNAs. A score F0 � F is computed for each miRNA to

indicate their ability to reduce cancer growth. The miRNAs are

ranked by this score. The procedure is shown in Figure 2.

Metabolic Model 1 Metabolic Model 2

Changes in Gene Level
(Microarray; Perturbation…)

Corresponding gene level 1
(Literature…)

Corresponding gene level 2
(Literature; computed)

Gene 
1-1

Gene 
1-2

Complex 1 Gene 2 Gene 3

Reaction

and

or

Fig. 1. Reconstruct context-specific metabolic network. The context in-

formation provides the state change of the gene expression between two

phenotypes. The state change of each reaction is then determined by the

state change of the genes that regulate the reaction. In this example, a

reaction can be catalyzed (activated) by any of the three isozymes. The

first isozyme is a complex involving two genes: gene 1-1 and gene 1-2. The

other two isozymes are encoded by gene 2 and gene 3. Based on a gene

expression profile where gene 1-1 and gene 2 are upregulated, whereas

gene 1-2 and gene 3 are downregulated, although the isozyme complex 1

is not activated, as it relies on the activation of both gene 1-1 and gene

1-2, the reaction is activated, as the isozyme encoded by gene 2 is acti-

vated. The activities of the reactions then determine the change of fluxes

in the metabolic network. Thus the gene expression phenotype is asso-

ciated with a metabolic state

Cancer (HCC) specific 
gene expression Human Metabolic Network

microRNA 
targeting

context-specific metabolic network 

Tissue(cell-type) specific 
Metabolic Network

Tissue(cell-type) specific 
Metabolic Network upon
overexpression of a miRNA

Does the miRNA
reduce cell growth? 
(BioMass Production)

Assume targets gene 
are knocked-down

context-specific metabolic network 

Flux Balance Analysis

Flux Balance Analysis

TargetScan to predict miRNA targets

Fig. 2. A pipeline for predicting therapeutic miRNAs for human liver

cancer. The information of liver-specific gene expression is used to recon-

struct a liver-specific metabolic network from the generic human net-

work. Based on the liver-specific network, each miRNA is perturbed

(overexpressed thus the putative targets are partially knocked down) to

reconstruct a metabolic network on perturbation. FBA is applied on the

liver-specific network, and the perturbed network is used to estimate

whether the perturbation reduces cell growth/proliferation based on the

objective function for cancer cells (i.e. biomass production)
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To estimate the robustness of the prediction against potential

errors (e.g. false positives) in the miRNA target prediction, we

perturb the system by randomly removing a small fraction of the

targets predicted for each miRNA. Our simulations show that

with 10% of the predicted targets randomly removed for each

miRNA, the prediction results are stable, i.e. the predicted

changes in biomass production correlate to the unperturbed

model with an average Pearson correlation coefficient of 0.90

(standard deviation 0.05) in 100 simulations. Even with as

many as 20% or one-fifth of the predicted targets randomly

changed (removed) for each miRNA, the simulation results

remain correlated with the unperturbed model with an average

Pearson correlation coefficient of 0.80 (standard deviation 0.09)

in 100 random simulations. We further examine to what extent

our assumption of miRNA-induced knockdown rate (originally

set as 50% or 2-fold downregulation) affects the prediction. We

simulate the model with 25% (4-fold) and 12.5% (8-fold) knock-

down. These perturbed models predict biomass production

changes that still correlated well with the original model. The

Pearson correlation coefficients to the original model (with the

parameter set to 50%) are 0.91 and 0.86 (P¼ 0) in the 25 and

12.5% knockdown, respectively.

To assess the accuracy of the prediction, we search in the lit-

erature for information on the 153 miRNA families and collate a

test set including 41 miRNAs that have been experimentally

studied in liver cancer. The in vivo or in vitro evidences show

23 of these 41 miRNAs inhibit liver cancer growth/metastasis

if overexpressed, whereas 18 have no effect or have the opposite

(i.e. enhancing) effect (Supplementary Table S1). Based on our

scoring and ranking of the miRNAs, a Receiver-Operating

Characteristic curve is plotted for the predictions of these 41

miRNAs in the test set (the black line with circular markers in

Fig. 3), which shows a prediction accuracy (area under curve)

482% [the best cutoff based on the test set is at 0.2 in the unit of

milligram per gram dry weight per hour (mg/gDW/h)]. In the test

set, 5 of the top 5 (100%, hypergeometric test P50.05) or 12 of

the top 15 (80%, hypergeometric test P50.02) with the highest

scores predicted to inhibit HCC are supported experimentally by

the literature to be tumor suppressors in HCC (see

Supplementary Table S1). Comparison with a current approach

GIMME (Becker and Palsson, 2008; Chang et al., 2010) for

network reconstruction that was previously applied to human

metabolism (the green line with square markers in Fig. 3) gave

a prediction accuracy of 64%, only slightly better than random

(23=41 � 56%) and lower than the predictions based on our

approach. For example, with the same cutoff with a false-positive

rate of 0.33, our approach achieves 0.91 precision (true-positive

rate), a higher prediction accuracy than GIMME (0.57).
We apply the approach to the entire 153 miRNA families

(which includes the 41 miRNAs in the test set and the other

112 miRNAs that have no information on their impact on

liver cancer). Four of the top 10 miRNAs with the highest

scores are in the test set and all of them are supported experi-

mentally by the literature to be tumor suppressors in HCC (see

Supplementary Table S2). We predict the other 6 miRNAs of the

top 10 could be novel candidates of tumor suppressors of HCC

for further experimental studies. Although there is no experimen-

tal evidence currently for these six miRNAs in peer-reviewed

journals, we found in newly published conference abstracts

that 3 of the 6 miRNAs have been suggested to be tumor sup-

pressors, among which miR-149 and miR-491 have been tested in

liver cancer cell lines (see Supplementary Table S2).
Next, we further explored the reconstructed metabolic net-

work for liver cancer to identify potential mechanisms by

which the miRNAs inhibit cancer growth.

3.2 Metabolic functions modulated by miRNAs to

inhibit cancer growth

To study the metabolic functions that the miRNAs modulate to

inhibit cancer growth, we compared the averaged flux changes

induced by the top 50 miRNAs (predicted to inhibit cancer

growth) with the bottom 50 (predicted not to inhibit cancer

growth) ranked based on their scores, to identify the subsystems

with the greatest change. We found that the largest flux changes

occurred for the production of nucleotides and amino acids, the

glycolysis/gluconeogenesis pathways, the tricarboxylic acid cycle

and pyruvate metabolism, as well as transport processes across

the cellular, mitochondrial and peroxisomal membranes. These

are essential metabolic functions that support the biosynthetic

processes and energy requirements of the cells. Tumor-specific

metabolic machinery regulates these processes to facilitate cell

growth and proliferation (Vander Heiden et al., 2009), and our

model indicates that these miRNAs could alter the metabolic

processes that support cancer growth.
One of the most well-known cancer biochemical phenotype is

the Warburg effect (WARBURG, 1956a, b). The Warburg effect

is known as a metabolic adaptive response in cancer cells to

satisfy the high demand of the molecular building blocks of the

cell, i.e. nucleotides, fatty acids, lipids and amino acids, and the

energy requirements through ATP, to facilitate proliferation

(Shlomi et al., 2011; Vander Heiden et al., 2009). Cancer cells

metabolize glucose at high rates and shift the flux downstream of

glucose from the mitochondrial tricarboxylic acid cycle to the

more rapid anerobic glycolysis, thereby producing vast amounts

of lactate that is secreted from the cancer cells (Vander Heiden

et al., 2009). Because an indicator of the Warburg effect is ex-

cessive lactate production, we analyzed the flux change (from the

FBA results) in response to miRNA perturbations on the reac-

tion catalyzed by lactate dehydrogenase (LDH), which converts
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pyruvate into lactate. The result (Fig. 4) shows that the flux is

decreased significantly (on average by 50%) on overexpressing

the miRNAs that scored higher (top 50), whereas the bottom 50

miRNA did not impact this flux (P50.001 t-test). We perform

FVA analysis on the models and the upper bounds of the LDH

reaction for the top 50 miRNAs also show on average a440%

decrease. These results suggest that the top miRNAs could

impact liver cancer growth by mitigating the Warburg effect to

alter the cancer metabolic phenotype.

3.3 miRNA target metabolic enzymes that are essential

for cancer growth

Each miRNA has multiple targets, but the correlation between

the number of targets in metabolism and their ability to inhibit

cancer growth is low (Pearson correlation coefficient¼ 0.26).

Permutation tests were performed on the top 10 predicted

miRNAs, by knocking down the same number of random

genes as the number of miRNA targets, for 1000 times. We

found that the number of target genes of the miRNAs is not

correlated with their ability to inhibit cancer growth. In contrast,

the top 10 miRNAs decrease the proliferation significantly

(P50.05). Thus, we hypothesize that there are important en-

zymes, on targeting, wherein the cell growth and proliferation

are reduced. We applied our reconstruction and simulation ap-

proach to estimate the change in biomass production on knock-

down of each metabolic gene individually. This identified the

essential genes (or genes that supports cancer growth) that

could reduce cell growth on knockdown of the metabolic gene

(i.e. reduce biomass production). In practice these are numerical

computations, there will be values having small fluctuation

around 0. Thus the threshold is set at 0.01mg/gDW/h to

obtain robust results. Essential is defined by a significant reduc-

tion in the survival and proliferation of the cells on their knock-

down by shRNA (where CULT database provides a

P-value50.05 on their scores of gene activity ranking profiles

on shRNA knockdown). Of the 48 genes (among41900 meta-

bolic genes) that are predicted to be essential for the growth and

proliferation of liver cancer cells (i.e. reduces biomass production

on knockdown), 24 can be targeted by miRNAs (Supplementary
Table S3). We search in a genome-wide pooled shRNA screen
dataset (Koh et al., 2011) containing breast cancer, pancreatic

and ovarian cancer cell lines and found that many of the genes in
the list, including phosphorylase, glycogen; brain (PYGB), glucan
(1,4-alpha-), branching enzyme 1 (GBE1), Stearoyl-CoA desatur-

ase-1 (SCD), enolase, pyruvate kinase and solute carrier family
proteins have been identified as essential genes in42 cancer cell
lines. Because there are no liver cell lines in these studies, we

further analyzed a collection of liver cancer gene signatures in
the Liverome database (Lee et al., 2011) to determine if these
genes are differentially expressed in liver cancer tissues or in

highly invasive liver cancer cell lines. We found a majority of
these genes (71%, or 17 of 24) have been identified as gene sig-
natures for liver cancer or for invasiveness/metastasis in liver

cancer based on their gene expression analysis (Supplementary
Table S3, the columns: signature of cancer/normal and signature
of invasiveness).
Although the evidence found suggests that these genes could

be important for liver cancer, they have not been fully explored.
According to text mining studies of the abstracts in the pubmed
literature (Lee et al., 2011), there is only one enzyme (enolase)

that has been experimentally studied and associated with liver
cancer. However, some of the others have been studied in other
types of cancers to demonstrate their functional role in tumor

growth. The glycolytic pathway is directly responsive to the
Warburg effect in cancer, thus the key glycolytic enzymes, eno-
lases and pyruvate kinases, both in the list, have been shown to

promote cancer invasion and proliferation (Capello et al., 2011;
Christofk et al., 2008; Tu et al., 2010). Knockdown of pyruvate
kinase PKM2 reverses the Warburg effect and suppresses

tumorigenesis in mice model (Christofk et al., 2008). The high
expression of enolase correlates with poor prognosis in breast
cancer and a decrease in its expression in tamoxifen-resistant

breast cancer cells significantly augments the effectiveness of
tamoxifen treatment (Tu et al., 2010). The pentose phosphate
pathway uses glucose to generate ribose rings that are essential

for the synthesis of DNA and RNA. Both of these key enzymes
that catalyze the production of ribose-5-phosphate are on the list
of essential genes: ribulose-5-phosphate-3-epimerase (RPE) and

ribose 5-phosphate isomerase A (RPIA). Our simulation predicts
that downregulation of either of these two metabolic genes re-
duces DNA/RNA synthesis, which is consistent with a recent

study in pancreatic cancer (Ying et al., 2012) that showed knock-
down of either of the two enzymes (or both) reduced glucose flux
into nucleotide production and suppressed tumor growth. Fatty

acid metabolism and lipid synthesis are also important in cell
proliferation as they are primary components of cellular mem-
brane. SCD activity is involved in the synthesis of unsaturated

fatty acids and could promote the oncogenic process and was
suggested as a therapeutic target for prostate cancer (Fritz et al.,
2010; Hess et al., 2010; Igal, 2010, 2011). In addition, phospho-

glucomutase 1 (PGM1) (Singh et al., 2011), hydroxyacyl-CoA
dehydrogenase alpha/beta (HADHA/B) family (Zhou et al.,
2012) and the solute carrier family 25 genes (Sotgia et al.,

2012) have been shown to be upregulated in cancer. glycogenin
1 (GYG1) and glycogen synthase 1 (GYS1) are involved in gly-
cogenolysis/glycogenesis and are listed as signatures of metastasis

in the Liverome database. Upregulation of GYS1 has been
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shown to provide nutritional support to renal cancer cells

(Tsavachidou et al., 2010). The expressions of two other genes,

DLD and PYGB, are unclear but are listed as liver cancer signa-
tures in the Liverome database. The phospholipase A2, group IVA

(PLA2G4A), GBE1 and galactose-1-phosphate uridylyltransferase
(GALT) genes have not been explored in cancer thus far accord-

ing to the literature and could be potential targets for further
study experimentally. Figure 5 summarizes the metabolic path-

ways and processes that could be affected by these essential en-
zymes identified to be targeted by miRNAs in the analysis.

We analyzed the miRNAs that target these enzymes that could
be essential for liver cancer and found a strong association be-

tween targeting these enzymes and the ability of the miRNAs to
inhibit liver cancer growth. For example, 90% of the miRNAs

ranked in the top 50 based on their score target at least one of
these essential enzymes, whereas none of the miRNAs at the

bottom 50 target these enzymes (P50.01 in Fisher exact test).
These observations suggest that miRNAs could modulate meta-

bolic function by targeting metabolic enzymes that are essential
for cell growth and proliferation. Supplementary Table S4 lists

the five miRNAs in the test set that have the highest score and
their essential metabolic gene targets predicted by the analysis, as

well as previous studies showing their signaling targets and in-
volvement in liver cancer. Overall the model predictions and

analysis suggest that miRNAs could directly modulate cancer

metabolism, in addition to signaling pathways.

4 DISCUSSION

4.1 Predicting targets for the treatment of cancer

Many computational approaches rely on statistics and data

mining/machine learning techniques to predict cancer-related
genes (Kuo et al., 2012; Liang, 2008; Oulas et al., 2011). The

prediction is usually based on whether there are significant dif-
ferences in the gene expression of the cancer as compared with

normal samples. These approaches might identify genes that
could distinguish/separate cancer and normal phenotype, but

may not necessarily be the ‘targets’ that change the phenotype

and thus not ideal for treatment of cancer. The expression

change in an miRNA level may not necessarily indicate whether

it is a good target. To show this, we collected miRNA expression

data on HCC from Li et al. (2008) and provide this information

of the miRNAs in our study in the Supplementary Table S5.

Given the propensity to identify targets by searching for differ-

entially expressed genes, we found that, in our test set, 43% (10

of 23) of the miRNAs whose overexpression/delivery are able to

inhibit the growth, invasion or metastasis of HCC are not dif-

ferentially expressed [e.g. including miR-124, which was identi-

fied by researchers at Dana-Farber Cancer Institute who are

planning to begin a clinical trial (Hatziapostolou et al.,

2011, 4)], whereas some of them are even highly expressed in

HCC. This suggests that the gene targets for the treatment of

cancer may not necessary be identified by mining/learning from

gene expression changes alone. This is because in these mining/

learning methods the cancer phenotype is only a ‘label’ or ‘an-

notation’ on the samples that are unable to capture the informa-

tion contained in a ‘cancer phenotype’ (i.e. other than the specific

gene expression pattern, the specific cellular behavior or the spe-

cific metabolic states). Our approach differs from previous

approaches to predict miRNAs involved in cancer by predicting

miRNA targets whose overexpression or delivery could inhibit

HCC through explicitly modeling the cancer phenotype as a spe-

cific metabolic state. We compare our prediction against a test

set and show that we could fairly accurately identify the miRNA

targets. We believe that only when one is able to clearly model a

phenotype can one predict the targets to modulate the

phenotype.

4.2 Future studies on the role of miRNAs in cancer

metabolism

Current studies on the role of miRNAs in liver cancer [reviewed

in (Huang and He, 2011)] have been focused on targets in sig-

naling processes, involving the apoptosis pathway (e.g. Bcl-w,

Ras), cell cycle progression and migration/invasion signaling

(e.g. CDK, cyclins, PI3K signaling PTEN, c-Met, FOS). There

are a few studies that explore the regulation of cancer metabolic

functions by miRNAs [see review (Singh et al., 2011)], but cur-

rently they focus only on glycolysis, in which essential enzymes

PGM1 and ENO1 are shown to be regulated by miRNA-29 a

and miR-17-92. Nevertheless, in these studies it is unclear

whether the miRNAs directly target these enzymes.

Alternatively, we provide a modeling approach that focuses on

direct metabolic targets of miRNAs and enables predictions

based on the metabolic system. The results of this modeling ap-

proach suggest that miRNAs could regulate cancer growth by

directly modulating metabolic functions.
Given that miRNAs could target metabolic functions to regu-

late cancer growth, one could inspect the list of metabolic en-

zymes reported in the literature (resulting either from

experimental studies of network-based theoretical work) that

are capable of preventing or delaying cancer growth and then

predict the appropriate miRNAs that target at least one of these

enzymes. In contrast to this simple method, we applied a system-

atic study to model the metabolic systems that are perturbed by

miRNAs. Thus our model has the advantage of not only pre-

dicting and prioritizing miRNAs for further experimental study
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but also could provide a systematic view of the combinatorial
effect of multiple targets of an miRNA on human metabolism,
which could facilitate exploration of the mechanisms of how

miRNAs regulate metabolic functions. The proposed approach
can be easily applied to other cancer types to predict specific
miRNAs for the cancer type.

There are many other approaches developed to constrain re-
action fluxes in metabolic models based on gene expression to
build context-specific models (Wu and Chan, 2012), including
GIMME (Becker and Palsson, 2008; Chang et al., 2010),

iMAT (Shlomi et al., 2008), Model Building Algorithm (Folger
et al., 2011; Gille et al., 2010; Jerby et al., 2010), E-flux (Colijn
et al., 2009), tFBA (Van Berlo et al. 2011), MADE (Jensen and

Papin, 2011) and mCADRE (Wang et al., 2012). Our reconstruc-
tion is based on significant changes of gene expression rather
than direct association of ON/OFF in gene expression with pres-

ence/absence of fluxes, which is similar to tFBA and MADE.
Nevertheless, our approach differs from theirs in the sense that
we apply rules to constrain the fluxes and optimize cell growth

like GIMME, rather than optimizing consistencies between ex-
pression and fluxes. Our unique contribution is in the incorpor-
ation of miRNA regulation to the system. Although there has

not been an unbiased comparison between different reconstruc-
tion approaches, it could be valuable to adopt or incorporate
these alternative approaches, and to take the advantage of the

accumulation of metabolomic data (Chan et al. 2003; Caspi et al.
2008; Srivastava and Chan, 2008; Patti et al. 2012) in future work
to improve our reconstruction specific for miRNA predictions.

The limitation of the study is that there could be indirect ef-
fects potentially responsive to signaling and transcriptional regu-
lations that are mediated by the miRNAs. The possible

interactions between miRNA, signaling processes, transcription
factors and the expression of metabolic genes complicated the
study in exploring the functional roles of miRNAs in cancer

(Huang and He, 2011). We have thus considered only the
direct targets of miRNAs in the metabolic system, but there
could be indirect targets whose expression is altered by transcrip-

tion factors that are regulated by miRNAs. For example, miR-26
is known to inhibit HCC by directly targeting the signaling pro-
cess (mediated by cyclin D and cyclin E) that regulates cell cycle,

thereby affecting cancer metabolism (Kota et al., 2009). Only
accounting for its direct targets among the metabolic genes
cannot capture such information in the signaling process, there-

fore one should further incorporate the transcriptional regula-
tory network to describe regulation at this level. Paired miRNA
and gene expression profiles on perturbation of the miRNAs, if

available, could be integrated to build a more comprehensive
model of target genes’ expressions. This model would predict
the response of the gene targets to overexpression of a particular

miRNA, instead of assuming that all the predicted gene targets
are inhibited on overexpression or therapeutic delivery of their
miRNA regulators. It was recently found that some miRNAs

might also increase gene expression (Place et al., 2008), but cur-
rently few of these have been observed in human. As more in-
formation is known for this type of regulation, they could be

further included in the model to provide a more accurate predic-
tion of the miRNA targets. Future studies with miRNAs will aim
to incorporate more complex gene networks in regulating the

expression of metabolic genes and account for potential

interactions between miRNA, signaling, transcription and meta-
bolic systems to achieve a systematic understanding of cancer

metabolism.
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