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CONSPECTUS

NMR spectroscopy is one of the most powerful and versatile analytic tools available to chemists.
The discrete Fourier transform (DFT) played a seminal role in the development of modern NMR,
including the multidimensional methods that are essential for complex biomolecules, but it suffers
from well-known limitations. Chief among these is the difficulty of obtaining high-resolution
spectral estimates from short data records. For multidimensional NMR experiments, this imposes
a sampling burden, because the time required to perform an experiment is proportional to the
number of data samples. At high magnetic field, where spectral dispersion is greatest, the problem
becomes particularly acute. Consequently multidimensional NMR experiments that rely on the
DFT either must sacrifice resolution in order to be completed in reasonable time, or they must use
inordinate amounts of time to achieve the potential resolution afforded by high-field magnets.
Maximum entropy (MaxEnt) reconstruction is a non-Fourier method of spectrum analysis capable
of providing high-resolution spectral estimates from short data records. It can also be used with
nonuniformly sampled data sets. Since resolution is substantially determined by the largest
evolution time sampled, nonuniform sampling enables high resolution while avoiding the need to
uniformly sample at large numbers of evolution times. The Nyquist sampling theorem does not
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apply to nonuniformly sampled data, and artifacts that attend the use of nonuniform sampling can
be viewed as frequency-aliased signals. Strategies for suppressing nonuniform sampling artifacts
include careful design of the sampling scheme and special methods for computing the spectrum.

Time savings of a factor of three for each of the N-1 indirect dimensions of an N-dimensional
NMR experiment are now routinely reported, making practical high-resolution 3- and 4-
dimensional experiments that were previously prohibitively time consuming. Conversely, tailored
sampling in the indirect dimensions has been utilized to improve sensitivity. Improvements in
nonuniform sampling strategies appear poised to enable further reductions in sampling
requirements for high resolution NMR spectra, and the combination of these strategies with robust
non-Fourier methods of spectrum analysis (such as MaxEnt) represent a profound change in the
way multidimensional experiments are conducted. The potential benefits will enable more
advanced applications of multidimensional NMR spectroscopy to biological macromolecules,
metabolomics, natural products, dynamic systems, and other areas where resolution, sensitivity, or
experiment time are limiting. Just as the development of multidimensional NMR methods
presaged multidimensional methods in other areas of spectroscopy, we anticipate that nonuniform
sampling approaches will find application in other forms of spectroscopy.

Keywords
nonuniform sampling; sparse sampling; compressed sensing; multidimensional NMR; spectrum
analysis; non-Fourier methods; maximum entropy

Introduction
NMR spectroscopy can probe all states of matter and quantify the composition of mixtures,
structures of molecules, dynamics of rate processes, and thermodynamics of association.
This versatility comes at a price; useful sensitivity and high resolution requires expensive
magnets and lengthy experiments. The introduction of Fourier Transform (FT) NMR
enabled dramatic improvements in sensitivity and resolution1. In FT-NMR, the response of
spins to a strong RF pulse is recorded, and the discrete FT (DFT) is used to compute the
spectrum. In 2D NMR, for example, a delay between two RF pulses, representing an
“indirect” time dimension, is parametrically sampled by repeating the experiment using
different values for the time delay. Successive Fourier transformation along the rows and the
columns of the resulting data matrix yields a two-dimensional spectrum. FT-NMR readily
generalizes to arbitrary numbers of dimensions2, enabling the resolution of individual
nuclear resonances in complex systems.

The time required for a multidimensional NMR experiment is directly proportional to the
number of samples in the indirect dimensions. Together, the requirements of uniform
sampling (required by the DFT) with sufficiently small increments of the delay time to span
the width of the spectrum (the Nyquist condition3) and long evolution times (for high
resolution) mean that high-resolution spectra require lengthy experiments. Conversely,
shorter experiments result in lower resolution spectra. Conventional uniform sampling in a
high-resolution 3D experiment can require over a week of measuring time. While 3D
experiments have become routine, resolution along the indirect dimensions is usually
substantially less than the acquisition dimension. 4D experiments are far from routine,
because of the time required to collect data sufficient for even moderate resolution.

The subject of this Account is the use of nonuniform sampling (NUS) methods in
multidimensional NMR. NUS permits high-resolution spectra to be obtained from short data
records, drastically reducing experiment times. NUS can also be tailored to increase
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sensitivity. We focus on maximum entropy (MaxEnt) reconstruction, one of a number of
non-Fourier methods of spectrum analysis suitable for NUS data, because it is particularly
versatile and robust. Fast NMR methods are a burgeoning area of development4, and NUS
represents just one approach, but one of the most general.

The MaxEnt method
MaxEnt reconstruction finds the spectrum that maximizes the entropy while maintaining
consistency with the measured data. The use of entropy as a measure of missing information
originated with Shannon and is the foundation for information theory5. Consistency of the
computed spectrum f with the measured data d is defined by the condition

(1)

where C(f, d) is the unweighted χ-squared statistic,

(2)

and C0 is an estimate of the noise level; iDFT is the inverse DFT, and m is a “mock data”
vector given by iDFT(f). The constrained optimization problem is converted to an
unconstrained optimization through introduction of a new objective function

(3)

where S(f) is the entropy. The unconstrained problem is to find the f that minimizes Q(f, d),
where the value of the Lagrange multiplier λ is adjusted to obtain C = C0. C(f,d) and S(f),
and thus Q(f,d), readily generalize to multiple dimensions. The seminal development of the
“Cambridge” algorithm6, which is both robust and highly efficient, launched the modern
application of the maximum entropy principle in NMR. Extensions to the Cambridge
algorithm have provided additional performance gains and adapted it to the requirements of
phase-sensitive NMR data3.

A schematic diagram for MaxEnt reconstruction is shown in Figure 1. Details of the
algorithm have been given previously3, however there are a number of features that are
important for applications to NUS. At each iteration, m is computed from the current value
of f. The computation of C(f,d) can be limited to arbitrary subsets of m; this is the basis for
the application to nonuniform sampling methods. The value of λ is normally chosen so that
C(f,d) converges to a value (C0) that is comparable to the noise level in the data. For
multidimensional spectra that are reconstructed by computing sub-spectra, e.g. obtaining a
2D spectrum from a series of 1D spectra, using a fixed C0 value can result in variations in λ
that produce slight variations in the nonlinearity of the reconstruction. An alternative, called
the fixed-λ algorithm7, instead employs a fixed value of λ for all sub-spectra, with λ chosen
so that the average value of C(f,d) over all sub-spectra is comparable to the noise. Another
alternative is to constrain the reconstruction to match the empirical data very closely, i.e.
small C0 (or large λ). In this approach MaxEnt reconstruction becomes nearly linear8. While
the formal derivation of the MaxEnt algorithm specifies criteria for determining the value of
C0 and another parameter that appears in the complex entropy functional, applying those
criteria in practice can be challenging. Fortunately the results of MaxEnt reconstruction are
not terribly dependent on the precise values of the parameters, over a wide range. A heuristic
algorithm has been shown to automatically find useful values for the adjustable parameters.9
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While numerical solution is required in the general case, there is a special case where
MaxEnt reconstruction has an analytical solution that gives insights into how MaxEnt
reconstruction works. When N (the number of points in the reconstructed spectrum) is equal
to M (the number of experimental data points), Parseval’s theorem3 permits the constraint
statistic to be computed in the frequency domain. The MaxEnt solution10 corresponds to a
nonlinear transformation, applied point-by-point to the DFT of the time domain data. Figure

2 illustrates the transformation  for various values of λ (panel A). The transformation
depends on the value of λ, and has the effect of scaling every point in the spectrum down,
but points closer to the baseline are scaled down more than points far above the baseline
(panel B). This explains why noise near the baseline is suppressed more effectively than
noise superimposed on top of broad features. This result implies an important distinction
between signal-to-noise-ratio (SNR) and sensitivity. Applying the same transformation to
both the signal and the noise cannot improve sensitivity, since peaks that are comparable in
height to the noise level will be reduced by the same amount as the noise. The SNR may
increase, but small peaks will be just as difficult to distinguish as before. In this special case,
gains in SNR in the MaxEnt reconstruction are purely cosmetic. In the more general case,
there may be real sensitivity gains11,12. However, a prudent investigator will always
question whether gains in SNR really correspond to gains in sensitivity.10

The nonlinearity of MaxEnt has important implications when quantification of peak
intensities or volumes is required, such as nuclear Overhauser effect measurements. One
approach is to tightly constrain the reconstruction to match the data, which forces the
reconstruction to be nearly linear (although at the expense of noise suppression)8,13. Another
is to inject synthetic signals into the time domain data prior to reconstruction. A calibration
curve can then be constructed by comparing measured intensities or volumes to the known
amplitudes of the injected signals14.

MaxEnt is just one of a host of methods that have been developed as alternatives to the DFT
for reconstructing spectra from NUS data. Some methods place restrictions on the way the
data are sampled, for example along radial vectors in time. Others support arbitrary
sampling schemes. Among the methods suitable for NUS data, MaxEnt is arguably the best
characterized and most versatile. Strengths and weaknesses of the various methods have
been compared recently4.

Sampling fundamentals
The Nyquist sampling theorem states that to unambiguously determine frequencies, the
sampling interval Δt must be at least as short as the reciprocal of the spectral width SW
spanned by frequency components in the signal. Frequencies higher than 1/Δt are aliased, or
mirrored about the spectral limits. The interval between frequency elements (the digital
resolution) of the DFT is 1/NΔt, where N is the number of samples collected; NΔt is the
maximum evolution time. The number of samples required to maintain a given maximum
evolution time increases with magnetic field strength, because increasing field increases SW.

NUS schemes that sample a subset of the evolution times normally sampled using uniform
sampling are called on-grid. In schemes such as radial, spiral or concentric ring, the samples
do not fall on this Cartesian grid15. Exponentially-biased random (on-grid) sampling was the
first general NUS approach applied to multidimensional NMR16. By analogy with matched
filter apodization17, biasing the sampling scheme toward shorter evolution times, using an
exponential weighting to match the decay rate of the signal envelope, improves sensitivity.
We refer to this as envelope-matched sampling (EMS). Generalizations to sine-modulated
signals, where the signal is small at the beginning, and constant-time experiments, where the
signal envelope does not decay, utilize the same rationale18,19. Distributions other than
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random have been employed; Poisson gap sampling20 avoids long gaps between samples
while ensuring the samples are approximately randomly distributed.

It bears emphasizing that Nyquist condition does not apply to NUS: NUS invariably
introduces sampling artifacts that are a form of aliasing21. To a good approximation, the
positions and amplitudes of the sampling artifacts relative to true signals can be derived a
priori from the sampling scheme. The point-spread function (PSF) is the spectrum of a real-
valued sampling function K consisting of the value 1 for samples included in the NUS
scheme and the value zero for samples not included in the scheme. For on-grid sampling, the
PSF can be computed using the DFT. K has the property that when it multiplies a uniformly
sampled data vector, element-wise, it results in a data vector in which the values not
sampled in the NUS scheme have the value zero. The DFT of this zero-augmented NUS data
(referred to as nonuniform DFT, nuDFT22) is equal to the convolution of the DFT spectrum
of the uniformly sampled data with the PSF. Thus estimating the spectrum of an NUS data
set is equivalent to deconvolving the PSF from the DFT spectrum of the zero-augmented
data. While nuDFT provides useful insights into the nature of NUS artifacts, it is not a DFT
of NUS data, nor is it a very good estimator of the spectrum of NUS data.

The PSF typically consists of a main central component at zero frequency surrounded by
smaller non-zero frequency components. Because the PSF enters into the DFT of the zero-
augmented data through convolution, each non-zero frequency component of the PSF gives
rise to a sampling artifact for each signal component, with positions relative to the signal
components that are the same as the relationship of the satellite peaks to the central
component in the PSF. The amplitudes of the sampling artifacts are proportional to the
amplitude of the signal component and the relative height of the satellite peaks in the PSF.
Thus the largest sampling artifacts arise from the largest-amplitude components of the signal
spectrum. The useful dynamic range (ratio between the magnitude of the largest and
smallest detectable signal components) of the DFT spectrum of the zero-augmented data can
be directly estimated from the PSF as the ratio between the amplitudes of the zero-frequency
component and largest non-zero frequency component; this ratio is the peak-to-sidelobe
ratio (PSR). The ability of a method of spectrum analysis to suppress sampling artifacts is
ultimately limited by both the noise and the dynamic range of the signal.

In addition to the PSR, another useful metric for sampling schemes is the sensitivity relative
to uniform sampling. The relative sensitivity depends on the sampling scheme and the nature
of the signals, principally the decay rate (or ) of the signal envelope; in contrast the PSR
depends only on the sampling scheme. The relative sensitivity r(K) of a sampling scheme
with sampling function K for a hypothetical signal can be estimated from the signal
amplitude captured by a NUS scheme divided by that for uniform sampling having the same
maximum evolution times tmax. For an exponentially decaying signal, the relative sensitivity
of a scheme K spanning a two-dimensional grid with size n1 by n2 is approximately given
by23

(4)

where the elements of p are given by

(5)
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R2(1) and R2(2) are the signal envelope decay rates, and SW(1) and SW(2) are the spectral
widths in the two dimensions. A more accurate estimate would include the amount of noise
captured by the NUS scheme, compared to uniform sampling. Recently systematic efforts to
improve sensitivity using NUS have been reported8,24.

The magnitudes of artifacts in NUS spectra depend on the distribution of sampled evolution
times and the sampling coverage γ(K)=k/N, with k equal to the number of nonzero entries in
K and N the total number of elements in K, which is the fraction of the evolution times from

a uniform grid that are sampled by K. For the example above, . In general,
the PSR increases with increasing γ, with only the zero-frequency element of the PSF
having a non-zero value for γ=1. Because large values of the nonzero frequency components
result from correlations among the sampled evolution times, K composed of random
evolution times will have the smallest sampling artifacts, and highest PSR, for a given
coverage. For decaying sinusoids, a random sampling scheme will not have the highest
sensitivity. A compromise between sensitivity and small artifacts leads to biased random
sampling distributions, such as EMS17. PSFs, together with PSRs and relative sensitivity are
shown in Fig. 3 for some representative sampling schemes, for sampling coverages of 0.3,
0.1, and 0.05. The importance of randomness in sampling schemes for suppressing sampling
artifacts has been explored in depth21,25.

The resolution of any sampling scheme along a given dimension, whether uniform or
nonuniform, is largely determined by tmax. Using the DFT, resolving spectral features
separated by the natural linewidth requires sampling at evolution times of πT2 or longer, but
sampling beyond 1.26T2 results in diminishing returns on sensitivity26. (Without
apodization, SNR reaches it maximum at 1.26T2. Using matched filter apodization, SNR
does not reach a maximum, but reaches 96% of the limiting value at 1.26T2.) With MaxEnt,
sampling to 1.26T2 usually resolves spectral components separated by the natural linewidth,
and thus represents a reasonable compromise between sensitivity and resolution for
decaying signals. For experiments in which the evolution period is constant-time, the signal
decay is determined mainly by field inhomogeneity (RF and B0), and so practical limits on
tmax are imposed by the inhomogeneity or length of the constant time period, rather than T2.

The degree to which reducing sampling coverage via NUS can reduce experiment time,
compared to uniform sampling, depends on a number of factors in addition to the
randomness of the sampling scheme. Dynamic range of the signals and their amplitude
relative to noise are key determinants. Because sampling artifacts enter through convolution,
high dynamic range signals present challenges. Instead of being additive, the amplitudes of
the largest sampling artifacts are determined by the amplitude of the strongest signal
component. When the dynamic range is large, these artifacts may exceed the amplitude of
weak signal components. Thus more aggressive reductions in sampling coverage are feasible
for high sensitivity experiments that have low dynamic range, and are more challenging for
experiments with low sensitivity or high dynamic range. Dimensionality and sparsity (the
fraction of values with amplitudes close to zero) of the spectrum have also been shown to
play a role27,28. Increasing dimensionality helps in two ways, by decreasing the coherence
of sampling and by increasing the sparsity of the spectrum. Sparsity helps because non-
Fourier methods of spectrum analysis such as MaxEnt and l1-norm reconstruction work best
for recovering sparse spectra28. As we show below, sampling coverage can conservatively
be around 1/3 for each NUS dimension (e.g. roughly an order of magnitude reduction
relative to uniform sampling for two indirect dimensions), even for challenging signals with
high dynamic range, while more aggressive reductions have been used successfully for low
dynamic range signals.
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Optimal sampling
As noted above in the discussion of sensitivity, optimizing sampling schemes can be
challenging. Additional optimization can be realized by adjusting the sampling grid.
Nonuniform sampling on an oversampled grid has been shown to shift artifacts to the edges
of the spectrum, outside the desired spectral window, although the magnitude of sampling
artifacts is not affected29. Because a sampling scheme that is optimal for one signal will not
necessarily be optimal for a signal containing different frequency components, the design of
efficient sampling schemes involves tradeoffs. Simply put, no single NUS scheme will be
best suited for all experiments. Despite these challenges, prior knowledge about the signal
can successfully inform the design of efficient sampling schemes. One approach is to use
“greedy” or adaptive sampling, in which a sampling scheme is iteratively generated by
asking what sample (corresponding to a specific combination of indirect evolution times),
added to samples already measured, will most improve some metric of performance.
Suitable metrics can be derived from the PSF (to minimize sampling artifacts), the relative
sensitivity, the ability to resolve expected resonances based on statistical knowledge of
chemical shift distributions30, or from characteristics of the spectrum reconstruction prior to
the next sample31,32. A caveat is that while prior knowledge can greatly improve sampling
efficiency when it is accurate, highly-tailored sampling schemes can be less robust than
more general sampling schemes when there are deviations from the underlying
assumptions23 or high levels of experiment noise.

NUS in action
One compelling reason for adopting NUS in multidimensional NMR experiments is
dramatic savings in data collection time, without loss of resolution. The potential savings
increase with magnetic field strength and with dimensionality. The time required for a
multidimensional experiment is directly proportional to the number of evolution times
sampled in the indirect dimensions,

(6)

where tacq is the time required to sample one FID, trc is the recycle time between transients,
nt is the number of FIDs co-averaged, k is the number of samples in the indirect dimensions

(for uniform sampling  with nj the number of samples in dimension j and the
product is over the d-1 indirect dimensions of a d-dimensional experiment), and the factor of
2 per indirect dimension reflects quadrature detection. For a fairly typical uniformly sampled
3D experiment averaging two FIDs with 64 evolution times sampled in each of two indirect
time dimensions, a tacq of 0.6 s, trc of 1.2 s, texp is 16.4 hr. Contrast this time to an
experiment in which the maximum evolution time in the indirect dimensions correspond to
the Rovnyak limit26 of 1.26T2 for optimizing sensitivity, or πT2 for resolving components
separated by the natural linewidth. Typical 13C and 15N linewidths for a 20 kDa protein at
14.1 T (600 MHz for 1H) are 17.5 and 5.8 Hz, respectively. The chemical shift dispersion
for 13C and 15N is 10,500 and 2,100 Hz, respectively. With sampling intervals of 0.0952 ms
and 0.476 ms required by the Nyquist condition, 241 samples in the 13C dimension and 145
samples in the 15N dimension would be required to sample uniformly to 1.26T2; 573 and
345 samples are needed to reach πT2. texp for 1.26T2 is 140 hr, or 795 hr for πT2. The total
number of samples required for uniform sampling to either limit greatly exceeds the number
typically acquired or the time devoted to data collection33. This means that higher
dimensionality experiments that employ uniform sampling are usually sub-optimal both in
sensitivity per unit time and in resolution.
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In their seminal application of NUS and MaxEnt, Barna et al.34 demonstrated rather
conservative coverage ranging from 0.25 to 0.125. More substantial reductions in sampling
coverage have subsequently been reported for 3D and 4D experiments, with coverages well
below 0.01 common35, and reaching 0.001636. NUS is not the only means for reducing the
time required for multidimensional NMR experiments; in the SOFAST approach, the time
between FIDs is reduced37. As SOFAST (and related methods) and NUS are
complementary, they can be combined, achieving greater speedup than either approach
alone29,38.

Rovnyak et al. exploited NUS to resolve separate resonances reflecting magnetically
inequivalent 17O nuclei in the unit cell of hydroxyapatite crystals39. NUS has also been used
to obtain high-resolution spectra for disordered proteins, which exhibit narrow spectral
dispersion and hence crowded spectra38,40,41. The higher resolution afforded by NUS has
also enabled novel assignment strategies for protein spectra that are not practical with
uniform sampling35,42. For example 4D HCC(CO)NH-TOCSY spectra obtained using NUS
for the three indirect dimensions can be obtained in 1.5 days, a rather dramatic speedup,
rendering high-resolution 4D experiments practical. The resulting resolution in the indirect
dimensions is sufficient to capture unique carbon-proton connectivities, enabling a novel
and efficient scheme for assigning protein side-chain resonances. Similar approaches have
also been reported for backbone resonance assignment employing 3D experiments 42,43.

Examples illustrating important characteristics of NUS are shown in Figs. 4 and 5. Fig. 4
depicts 2D cross-sections through the HNCO spectrum of ubiquitin; 1D cross-sections at the
frequency indicated by the dashed line are shown above each contour plot. Panel A shows
the spectrum obtained using conventional uniform sampling and DFT processing, requiring
34 hours to complete the experiment. Panel B shows the results using uniform sampling with
a truncated data set requiring 25 minutes to collect; the reduction in resolution is severe.
Panels C and D show the results from an experiment also using 25 minutes of measuring
time, but using NUS instead of uniform sampling. In Panel C MaxEnt is used to compute the
spectrum; in panel D, nuDFT was employed. Fig. 5 depicts contour plots for 2D projections
of the HNCO spectrum for ubiquitin onto the 1H-13C plane. Panel A shows the projection
obtained using the uniformly-sampled data set of Fig 4a. Panels B and C show the
projections obtained from the truncated uniform and NUS data sets (corresponding to Figs
4B and 4C, respectively). Panel D shows the projection obtained nuDFT instead of MaxEnt
(4C); 4D dramatically reveals the poverty of nuDFT, because the coherent sampling artifacts
are accumulated by the projection. The nearly 90-fold reduction in experiment time, with no
loss of sensitivity or resolution, makes a convincing case for NUS and MaxEnt.

Concluding remarks
The debate over optimal sampling schemes and the best reconstruction method is far from
settled. A comprehensive critical comparison remains elusive, in part because metrics of
spectral quality (sensitivity, resolution) that are valid for linear methods, such as DFT, are
frequently not suitable for non-Fourier methods. In addition to a lack of consensus on
appropriate metrics, critical comparison is made difficult by the absence of a “shared task”
comprised of a standard set of data. Nevertheless, a number of basic tenets of NUS have
achieved broad consensus. It is abundantly clear that NUS approaches are essential for fully
realizing the potential resolution afforded by modern high field magnets in the indirect
dimensions of multidimensional experiments. Also widely appreciated is the importance of
randomness in the design of sampling schemes in order to minimize sampling artifacts.
Although the design of efficient sampling schemes remains an active area of investigation, it
is understood that sampling more frequently when the signal envelope has greater amplitude
improves sensitivity. The flexibility of NUS approaches for reducing measuring time,
increasing resolution, or enhancing sensitivity, and in some cases two or more of these
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simultaneously, make NUS an indispensable tool for enhancing the utility and power of
multidimensional NMR. These improvements will enable new and challenging applications
of multidimensional NMR to larger, more complex, less abundant, and fleetingly stable
systems.
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Figure 1. Schematic diagram for MaxEnt
MaxEnt reconstruction begins with empirical data and a preliminary trial spectrum f
(typically a blank spectrum). f is inverted (DFT−1) to create “mock” data (m) that is
compared with the empirical data (d). An update to the trial spectrum is computed by
searching along the gradients of the entropy and the constraint (the agreement between the
empirical and mock data). The algorithm converges to the unique MaxEnt solution when the
gradient of the objective function O = S-λC is zero and the gradients of S and C are
antiparallel.
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Figure 2. Nonlinear transformation for analytic MaxEnt
In the special case that MaxEnt is used to compute the n-element spectrum from an n-
element FID, the MaxEnt spectrum is equivalent to applying a monotonic nonlinear
transformation to the DFT of the FID. The nonlinear transformation (A) depends on the
value of λ ; in the limit of large λ (the constraint weighted more heavily than the entropy),
the transformation becomes nearly linear. For small λ, the transformation scales down small
amplitude signals more than large amplitude signals (B).

HOCH et al. Page 13

Acc Chem Res. Author manuscript; available in PMC 2015 February 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Examples of NUS schemes and PSFs
Examples of NUS sampling functions and PSFs in two nonuniformly sampled dimensions.
Purely random sampling (third row) yields the smallest sampling artifacts for a given level
of coverage (the central zero-frequency component is extremely narrow, making it hard to
discern the red dot). Values for the relative sensitivity and PSR (both unitless) are displayed
in the upper left and lower right, respectively, for each PSF.
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Figure 4. 3D HNCO spectra for Ubiquitin at 14.1 T (600 MHz for 1H)
13C/1H planar cross-sections at a 1H frequency of 8.14 ppm. The one-dimensional cross-
sections through the plots are of the 13C row at the weakest peak (15N frequency of 120.5
ppm), scaled so that the highest and lowest amplitudes are aligned. A) Using a full dataset,
6656 data samples, processed using LP extrapolation in each indirect dimension, shifted
sine-bell apodization, and DFT; this data set required 36 hours of data collection B) using
100 uniformly-sampled data points (10 increments in each indirect dimension); this data
requires 25 minutes of data collection. The spectrum was computed by LP extrapolation in
each indirect dimension, apodization using a shifted sine-bell, and DFT. C) using NUS, with
100 random samples selected according to an exponentially weighted distribution,
reconstructed using MaxEnt; this data also requires 25 minutes of data collection. D) Same
as C), except using nuDFT instead of MaxEnt. The weak peak near the center of the 13C
trace in A is the “tail” of a peak at a nearby 1H frequency; this disappears because of the
narrower peaks in C.
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Figure 5. 3D HNCO spectra for Ubiquitin at 14.1 T (600 MHz for 1H)
Projections of the full spectrum onto the 13C/1H plane. The one-dimensional cross-sections
through the plots are expansions depicted by the rectangular boxes, scaled to align the
maxima and minima. A) Using the full 6656 sample data set, processed using LP
extrapolation in the indirect dimensions, shifted sine-bell apodization, and DFT (36 hours of
data collection) B) using 400 uniformly-sampled data points (20 increments in each indirect
dimension, 25 minutes of data collection). The spectrum was computed by LP extrapolation
in each indirect dimension, apodization using a shifted sine-bell, and DFT. C) using NUS,
with 400 random samples selected according to an exponentially weighted distribution,
reconstructed using MaxEnt; this data also requires 25 minutes of data collection. D) Same
as C), except using nuDFT instead of MaxEnt.
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