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Abstract
Epigenetic modifications which are defined by DNA methylation, histone modifications and
microRNA mediated gene regulation, have been found to be associated with cardiac dysfunction
and cardiac regeneration but the mechanisms are unclear. MicroRNA therapies have been
proposed for cardiac regeneration and proliferation of stem cells into cardiomyocytes.
Cardiovascular disorders are represented by abnormal methylation of CpG islands and drugs that
inhibit DNA methyl transferases such as 5-methyl Aza cytidine are under trials. Histone
modifications which include acetylation, methylation, phosphorylation, ADP ribosylation,
sumoylation and biotinylation are represented within abnormal phenotypes of cardiac hypertrophy,
cardiac development and contractility. MicroRNAs have been used efficiently to epigenetically
reprogram fibroblasts into cardiomyocytes. MicroRNAs represent themselves as potential
biomarkers for early detection of cardiac disorders which are difficult to diagnose and are captured
at later stages. Because microRNAs regulate circadian genes, for example a nocturnin gene of
circadian clockwork is regulated by mir122, they have profound role in regulating biological clock
and this may explain the high cardiovascular risk during the morning time. This review highlights
the role of epigenetics which can be helpful in disease management strategies.
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Introduction
Epigenetics has emerged as one of the important phenomena behind cardiac disorders and
includes small non coding RNAs like microRNAs, DNA methylation and histone
modifications (Fig 1). Epigenetics refers to changes in gene expression which are not due to
change in the DNA sequence but attributed to chromatin alteration or packaging which
changes the accessibility of DNA [1]. Epigenetic changes often are a result of gene
environment interactions or surrounding conditions [2] leading to enhanced/decreased
expression or silencing of genes e.g. in the case of diabetes, hypertension and obesity. DNA
methylation are the most studied epigenetic modifications and mainly involve methylation
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of CpG islands in the promoter of genes. Diseased states such as cardiovascular disorders
are represented by abnormal methylation of the CpG islands consequently leading to
modifications in gene expression [3]. Movassagh et al [4] have identified different patterns
of DNA methylation in heart failure patients. Recently, homocysteine which is a marker for
cardiovascular disease has been shown to play crucial role in epigenetics [5, 6].
Hyoperhomocysteinemia has been reported to be associated with alteration in the DNA
mthyltransferase activities involving methionine, folic acid and cystathione B synthase.
DNA methylations can be transferred mitoticaly to next generations through cell divisions as
they are quite stable. Histone modifications are another mechanisms to altered gene
expression via chromatin remodeling by histone acetyltransferases or deacetylases which
change the DNA accessibility. The role of histone regulatory proteins in heart disease have
been demonstrated by Backs et al [7]. Furthermore, RNA based mechanisms like
microRNAs and non-coding RNAs are also involved in altering gene expression of target
genes and are studied extensively in cardiac disorders [8–11]. MicroRNAs have also been
implicated in stem cell therapies e.g. miR133a has been reported to be involved in
differentiation of cardiogenic Mesenchymal stem cells by targeting epidermal growth factors
[12]. This review aims to elucidate epigenetic mechanisms underlying cardiac disorders and
how these epigenetic mechanisms can be beneficially introduced for cardiac therapies.

Role of epigenetics in Cardiac degeneration
Role of DNA methylation

The pathogenesis of cardiovascular disease is well studied but the role of epigenetics still
needs to be explored. The epigenetic modifications in cardimyopathy have been summarized
in Table 1. Many studies have demonstrated with help of animal models that DNA
methylation plays an important role in atherosclerosis and cardiovascular disease [13].
DNMTs (DNA methyltransferases) and MTHFR (Methylene tetrahydrofolate reductase)
represent two important genes in DNA methylation and mice deficient in these genes show
hypomethylation of their DNA [13, 14]. Chen et al have shown the formation of aortic fatty
streaks in MTHFR deficient mice. In leucocytes of DNMT deficient mice, there is increase
in the expression of inflammatory mediators which represent hypomethylation [15]. In
peripheral blood leukocytes, there are changes in DNA methylation in ApoE−/− mice, which
lead to atherosclerosis promotion and dysregulation of inflammation [14].

The DNA methylation status is also affected by dietary folate and vitamin levels and
providing these dietary supplements to female mice before conception causes higher
methylation of CpG islands in the offspring [13]. Due to this the offspring has a
characterstic phenotype of brown coat color, insulin resistance, cancers, lengthened life span
and reduced susceptibility to obesity. The aortas of ApoE knockout mice represent a
decrease in DNA methylation which can be detected at 4 weeks and any histological
changes associated with atherosclerosis can be determined [16]. The estrogen receptors α
and β show increased methylation at the promoter region in atherosclerotic tissues and the
methylation of estrogen receptor increases with age. There is hypermethylation of the
HSD11B2 gene, and loss of global methylation of genomic content in blood leukocytes of
hypertensive patients [17]. In another report it was shown that in patients with
atherosclerotic cardiovascular disease, there is lower DNA methylation in blood leukocytes
[18]. Baccarelli et al [19] have shown that incidence and mortality from ischemic heart
disease and stroke can be predicted by lower LINE-1 (Long Interspersed Nucleotide
Elements) methylation in peripheral blood leukocytes. LINE-1 have been evaluated as
surrogate markers for global methylation status [20].

Hypertension which is associated with cardiac degeneration is influenced by global genomic
methylation content in the peripheral blood leukocytes [17] of hypertensive patients. In
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Chinese individuals, elevated Alu methylation status in peripheral blood leucocytes have
been related to the prevalence of cardiovascular disease and obesity [21]. Friso et al [22]
have linked hypermethylation of the HSD11B2 gene with blood pressure control. Impaired
lipid and glucose metabolism which leads to increased cardiovascular risk and diabetes, are
represented by hypermethylation of MEG3, IL-10, GNASAS, ABCA1 and hypomethylation
of IGF2 and INSIGF genes [23].

Role of microRNAs
MicroRNAs have emerged recently as one of the epigenetic mechanisms underlying
cardiovascular diseases (Fig 2, Table 2). In patients with atherosclerotic plaque, the elevated
levels of mir127 leads to disruption of endothelium and subsequently, vascular senescence
via inhibiting SIRT1 [24]. In animal models and patients with myocardial infarction,
mir133b and miR499 have been shown to be upregulated and are potential candidates for
biomarkers [8, 25]. Additionally, in patients with coronary artery disease, the level of
mir126 and mir145 is decreased profoundly [26]. Downregulation of mir126 indicates
inflammation of vessel walls during the development of atherosclerosis by promoting the
expression of VCAM-1 [27, 28]. In unstable angina patients, the levels of mir134, mir370
and mir198, were found to be significantly increased which showed increased risk of
cardiovascular disease [29]. Sondermeijer et al [30] reported that mir340 and mir624 were
significantly increased in patients with cardiovascular diseases.

The role of miR21 in early phase MI is evident from an animal study, where acute MI
created by left vertricular coronary artery ligation leads to decrease in expression of mir21 in
the infracted area as compared to the surrounding area [31]. Wang et al [8] found elevated
levels of miR208a in CAD patients as compared to healthy subjects, where this microRNA
was undetectable. In another study by Corsten et al [32], the levels of miR208a were
increased to 90–100 fold. In CAD, miR1 is the most widely studied and plasma miR1 levels
are significantly increased in MI patients as compared to healthy controls. This increase was
independent of clinical parameters such as age and sex [33, 34]. After the MI event, in a
cohort of patients, miR1, miR21, miR133a and miR208 were found to be significantly
elevated [35]. Similarly, D’Allessandra et al [25] also showed increase in miR1, miR133a/b,
miR499-5p by upto 140 fold in MI patients as a consequence of cardiac injury. They also
confirmed these findings in mouse models of coronary artery ligation. In an attempt to
determine diagnostic potential of microRNA, Olivieri et al [10] have found increased levels
of miR423-5p in congestive heart failure than in MI, while miR499-5p is upregulated in
both MI and HF.

MicroRNAs extracted from whole blood have been assessed for diagnostic and prognostic
properties, so that even when troponin T and ischemic heart disease biomarkers are negative,
the microRNAs can predict MI [11]. miR30c and miR145 showed good correlation with
troponin T levels and their expression increased in MI patients. Additionally, mir1291 and
mir663b were able to distinguish case-control patients and were highly sensitive. The
correlation between indicators of cardiac necrosis (Troponin and cardiac kinase) and
circulating microRNA levels have been investigated to find out early biomarkers e.g. mir1
and mir133a/b were detected before troponin 1 increase in patients affected by ST
elebvation MI [25]. Similarly, creatine kinase and troponin T levels were significantly
correlated with circulating levels of mir208b and mir499 [9, 32, 36]. In elderly patients,
mir499-5p is more sensitive marker than troponin T and electrocardiogram and is able to
differentiate MI from acute congestive heart failure [10].

In mouse models of cardiac hypertrophy and congestive heart failure, microRNA profiling
with microarray revealed five microRNAs (mir24, mir125b, mir195, mir199a, mir214) to be
upregulated (Table 2). These findings were also confirmed in patients with heart failure [37].
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The authors also showed that over-expression of mir195, correlated with cardiomyocyte
disorganization in transgenic mice model, which leads to heart failure. In HF patients with
different aetiologies (ischemic, aortic stenosis and dialated cardiomyopathy), the microRNA
expression profiling was performed in left ventricular tissue by Ikeda et al [38] and 43
microRNAs were found to be differentially expressed in cardiomyopathy while thirteen
microRNAs were specific to aortic stenosis [38]. In two groups of patients affected by
idiopathic dialated cardiomyopathy and ischemic cardiomyopathy, the microRNA
expression profile specific to each aetiology was determined by Sucharov et al [39]. Several
microRNAs common to all failing hearts were also found e.g. mir92 and mir133b were
downregulated, while mir195 and mir100 were upregulated [39], which are speculated to
prevent changes in β-adrenergic mediated gene expression- an important pathway in heart
failure. Matkovich et al [40] performed microarrays and mRNA profiling of myocardial
samples and found 28 microRNAs to be upregulated in heart failure. The study suggested
that in myocardial response to stress, microRNA can serve as more specific biomarkers [40].

Role of Histone modifications
Histone modifications together with DNA methylation and microRNAs are dynamic
processes that lead to chromatin remodeling and modulate gene expression. Histones (H2A,
H2B, H3 and H4) which form nucleosome- a basic unit of chromatin, are modified by post
translational modifications such as acetylation, methylation, phosphorylation, ADP
ribosylation, sumoylation and biotinylation [41, 42] (Fig 1, Table 1). Histone acetylation/
deacetylation represents central mechanisms that alter chromatin structure to control gene
expression [43–45]. Histone acetylation by histone acetyltransferases (HAT) loosens the
histone-DNA interactions, ‘relaxes’ chromatin structure and activates transcription, while
deacetylation by histone deacetylases (HDAC) increases histone-DNA interactions, results
in chromatin condensation and leads to shut down of transcription machinery. Acetylation of
histones by acetyltransferases- p300 or CREBP (cAMP responsive element binding protein),
are important in heart development and deletion of either of genes is lethal in the embryo
[46]. Ablation of the histone acetyltransferase (HAT) domains in both p300 and CREBP
leads to abnormality in the cardiovascular system [47]. P300 acetylates transcription factors
such as GATA4 and overexpression of p300 in mouse heart results in depressed cardiac
dialation [43, 48, 49].

The expression of eNOS (Nitric Oxide Synthase) in the endothelial cells is important in
vascular functioning and is controlled by cell-specific histone modifications [50]. The
authors demonstrate that the core promoter of eNOS gene is rich in acetylated H3K9 and
H4K12 in the endothelial cells and these histone modifications are functionally relevant for
the expression of the eNOS gene. Also the expression of the eNOS gene is remarkably
decreased in cardiovascular disease [50]. In a study by Hang et al [51] it was demonstrated
that cardiac hyopertrophy and failure is represented by chromatin remodeling and
transcriptional reprogramming following myocardial stress. In mouse model, the expression
of Brg 1 (Brahma related gene) is increased in hypertrophic cardiomyopathy and repression
of this gene decreases hypertrophy and reverses myosin isoform shifts [51].

Histone methylation takes place at arginine or lysine residues at H3K4, H3K9, H3K27,
H3K36 and H4K20, with mono-, di- or tri- methylated (H3Kme3) histones [52]. As
compared to acetylation, which leads only to active state of chromatin, methylation can lead
to active, repressed or ‘poised’ states of chromatin. Many studies have explored the role of
histone methylation in cardiac development as well as heart failure and cardiac
hyopertrophy [53–56] (Table 1). Stein et al [57], have shown that H3K4 methylation levels
are critical for physiological functions in adult murine cardiomyocytes and loss of H3K4
methylation, increases intracellular calcium resulting in increased contractility [57]. The
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promoter regions of β-MHC (Myosin Heavy Chain) is hypermethylated at H3K4me3 in
cardiac hypertrophy, while for α-MHC, the H3K4me3 methylation level is decreased
showing both activation and inactivation of genes under pathological stress [57]. Similarly,
in heart failure rodents and patients with end stage heart failure, the H3K4me3 and
H3K9me3 levels are disturbed [58, 59].

The eNOS (Nitric Oxide Synthase) gene which is important in endothelial function and
angiogenesis, is controlled by promoter methylation at H3K27me3 and H3K4me3. To
suppress angiogenesis triggered by hypoxia, the ratio of active H3K4me3 to H3K27me3
increases, which leads to increased expression of histone demethylase JMJD3, which
suppresses angiogenesis [60]. UTX gene which is a H3K27 demethylase, contains Jumonji C
domain and interacts with cardiac specific transcription factors such as GATA4, NKX2.5,
TBX5 and SRF [61]. The removal of H3K29me3 is important in heart development and
mice deficient in UTX gene suffer severe heart malformation [62]. JMJD2A is another
demethylase which belongs to Jumonji C domain- containing family and catalyzes
demethylation of H3K9me3 and H3K36me3. The level of methylation of H3K9 and H3K36
is increased in JMD2A deficient mice, however they are resistant to cardiac stress, though
they represent normal phenotype under normal conditions [63]. On the other hand
overexpression of JMD2 in transgenic mice increases cardiac hypertrophy after pressure
overload [63]. JMD2 enhances cardiac hypertrophy by binding of myocardin and SRF
transcription factors to FHL1 promoter (Full-and-a-half LIM domains) which leads to
reduced H3K9 methylation and thus, proper cardiac functioning after pathological insult
[63].

Majority of methylation takes place at the histone tail i.e. H3K9 position, though additional
residues such as H3K79, which are located in the globular domain are also subject to
methylation. The DOTIL (Disruption of Telomeric silencing protein) catalyzes the
methylation of H3K79 and deletion of DOTIL in mice causes dialation of cardiac chambers,
reduced contractility and increased lethality [64]. Deletion of DOTIL gene also reduces
H3K79 methylation at the dystrophin promoter and decreases the transcription of dystrophin
gene which is important for cardiac muscle functioning [59]. Additionally, in patients with
idiopathic dialated cardiomyopathy, DOTIL gene is downregulated and H3K9 methylation is
impaired which leads to reduced contractility [64].

The importance of histone modifications, have triggered exploration of whole genome
studies which includes co-immunioprecipitaiton (ChIP) and ChIP with microarray analysis
(ChIP-ChIP). The method of choice is ChIP-followed by massive sequencing which gives
information about global histone modifications and gene expression on large scale. Hence
studies have revealed that different regions in the gene are associated with different histone
modification patterns and different load of gene activity. The active genes clearly exhibit
histone acetylation, in the promoter regions while methylation can be detected in either
active or repressed genes, hence active and repressive states can co-exist within the same
inactive promoters [64–67]. Till date, there are two genome wide studies for hostone
modifications in failing heart [68, 69]. One study states that during development of heart
failure the genes of calcium signaling and cardiac contractility exhibit differential
methylation patterns at H3K4me3 and H3K9me3. The other study, demonstrates that
H3K36me3 is enriched in activity transcribed regions of the genome in patients with end
stage heart failure.

Apart from the role of epigenetics in cardiovascular diseases such as hypertension, acute MI
and congestive heart failure, the relation between these heart diseases and myocardial
degeneration remain elusive. Cardiac degeneration is underlined by cell death which is
primarily caused by apoptosis, necrosis or autophagic mechanisms. In models of MI, cell
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death takes place within the area of ischemia over the first 6–24 hrs [70]. In the ischemic
zone, cardiomyocytes die by both apoptosis and necrosis. Studies have also shown
autophagy associated cell death in myocardial infarction [71–74]. Although in failing hearts,
the cell death is defined by apoptosis, necrosis and autophagy, the percentage of these three
mechanisms in contributing to cell death varies and depends upon the pathology of the
disease [75–77]. The knowledge of cell death and its regulation may be helpful in
manipulating death pathways to therapeutic advantages.

Role of epigenetics in cardiac regeneration
Role of microRNAs

Heart development during embryonic stages involves increase in the number of
cardiomyocytes for heart enlargement, however, after a short time of birth, cardiomyocytes
stop proliferating [78–80]. In adults, cardiac proliferation occurs mainly through
hypertrophic enlargement of cardiomyocytes, though the proliferation capacity of
cardiomyocytes to proliferate is limited [81, 82] (Fig 2). Hence, the ability of heart to
regenerate and repair itself after injury such as myocardial infarction or heart failure is very
limited [83–87]. Mollova et al [88] have reported that cardiomyocyte proliferation occurs at
the rate of 900 million per year upto one year after birth and it decreases to 70 million per
year by the age of 20 [88]. Cardiomyocytes have been associated with altered expression of
microRNAs and microRNAs involved in cardiomyocyte proliferation have also been
identified [89] (Fig 2, Table 3). Eualalilo et al screened a library of 875 microRNA mimics
(http://mirbase.org) and identified 204 microRNAs that increased proliferation in neonatal
rat cardiomyocytes and 40 microRNAs that proliferated mouse cardiomyocytes (Table 3).
The authors found two microRNAs mir199a-3p and mir590-3p that most efficiently promote
cardiomyocyte proliferation in both mouse and rat. Porello et al [90] showed that the
regenerative capacity of neonatal heart is more than the adult in mammals and the
regenerative potential of neonatal mouse heart after resection of left ventricle is lost after
first postnatal week. There is upregulation in the expression of mir15 gene family members
with the loss of regeneration potential within first postnatal week.

Senyo et al [91] have shown that mammalian heart regenerates by the division of pre-
existing cardiomyocytes after myocardial injury. These findings are in agreement with the
studies in zebra fish where cardiac regeneration has been shown to occur through pre-
existing cardiomyocytes [92, 93]. Jayawardena et al [94] have shown that fibroblasts can be
directly converted into cardiomyocyte lineage by using specific microRNAs (mir1, 133a,
208 and 499). The converted cardiomyocytes possess spontaneous Ca2+ oscillations,
mechanical contractions and proteins specific for cardiomyocytes. Several studies have
shown that the proliferation and differentiation of cardiomyocytes from human embryonic
stem cells [95] or from human progenitor cardiomyocytes [96] is regulated by microRNAs
(mir1, 133a and 499). Additionally, mir17-92 cluster has been identified as an important
regulator of cardiomyocyte proliferation by deletion/overexpression of this cluster in adult
cardiomyocytes [97]. The authors suggest that mir17-92 cluster can become a therapeutic
target for heart regeneration and cardiac repair. The delivery of microRNAs specific to
target cells is important in modulating cardiomyocyte proliferation as there may be off target
inhibition or activation of microRNAs in non-cardiomyocytes. New techniques are required
to deliver microRNAs to specific targets and to address potential safety concerns.

Role of stem cell epigenetics
Stem cells have been used efficiently in cardiac regeneration for the past few years;
however, the clinical trials with stem cell therapy have not been far successful and have
been modest or short lived. The limitations that need to be addressed in order to improve
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efficiency of stem cell therapy are 1) stem cell homing and survival; 2) tumorogenicity of
pleuripotent stem cells; 3) stem cell should be derived from appropriate cell source and; 4)
differentiation of stem cells towards cardiomyocyte lineage. Some of these problems have
been addressed by the use of microRNAs to modify stem cells and proliferate them into
cardiomyocytes [12]. The cardiomyocytes derived from embryonic stem cells (ECS) have
been found to have elevated expression of mir1, -208, -133 and -499 during differentiation
[95, 96, 98]. Micro RNA-1 overexpression induces cardiac differentiation in mouse and
human embryonic stem cells while mir133 opposes cardiomyocyte differentiation and
represses cardiac gene markers in ESC [96, 98]. Inhibition of mir499 blocks differentiation
of cardiomyocytes in vitro [95, 96, 99] and overexpression of mir499 in ECS and cardiac
progenitor cells induces cardiac gene markers. Mir499 has been proposed to act through the
repression of SOX6 transcription factor [96].

When embryonic stem cells expressing mir1 were transplanted to mouse heart with
infarction, it protected from ischemic injury in the infarction zone [100, 101]. Similarly, in
c-kit+ cardiac progenitor cells, overexpression of mir499, enhances cardiomyocyte
differentiation and restores myocardial zone after injecting it into rat heart with myocardial
infarction [102]. These studies demonstrate that stem cells can be differentiated effectively
into cardiomyocytes by using microRNAs in vivo and in vitro to improve stem cell
therapies. Apart from the exogenous transplantation of modulated stem cells, microRNAs
have been efficiently used to induce the endogenous cardiac progenitor stem cells. For
example, mir17 has been overexpressed in the adult c-kit+ progenitor cells in vivo and
resulted in the proliferation of cardiac progenitor cells [103]. Alternative to stem cell
approach, researchers have also used fibroblast reprogramming into cardiomyocytes (Fig 2),
which has an advantage that after myocardial infarction, the human heart provides rich
endogenous supply of fibroblasts. Leda et al [104] have demonstrated that by using the
transcription factors i.e. GATA4, MEF2c and TBX5, mouse fibroblasts can be programmed
into cardiomyocytes in vitro. The use of fibroblasts and their programming into
cardiomyocytes in the infracted heart have been demonstrated efficiently by Quian et al and
Song et al [105, 106]. Apart from this, viral vectors such as lentivirus have also been used to
carry microRNAs to the infacrted heart and the conversion of fibroblasts into
cardiomyocytes in situ [94].

Mesenchymal stem cells (MSC) derived from bone marrow have been used for
transplantation into infracted myocardium and resulted in enhanced myocardial
regeneration, reduced infarct size and improved cardiac function [107–111]. In patients with
acute MI and chronic ischemia, clinical studies using MSC have documented safety and
feasibility [112–116]. MSC mediate myocardial tissue repair by two processes: 1)
transdifferentiation into cardiomyocytes and endothelial cells and; 2) release of
cardioprotective factors which are biologically active, proangiogenic and termed as
paracrine factors [117–122]. The heart regeneration capacity of MSC can be enhanced by
modulating the expression of certain genes and microRNA. Yu et al [123] demonstrated that
cardiomyocyte protection is enhanced by the expression of GATA-4 gene in MSC, which
leads to improved left ventricular function and smaller infarct size. The MSC transfected
with GATA-4 released more growth factors and increased mir221 expression, which is
delivered to adjacent cells through microvesicles and helps in cardioprotection. In another
study by Cai et al [124] it was demonstrated that mir124 regulated cardiomyocyte
differentiation of bone marrow derived MSC by targeting STAT3 mRNA. Similarly, mir16
has been reported to enhance the differentiation of bone marrow derived mesenchymal stem
cells into cardiac phenotype [125]. Zhang et al [126] have reported the cardiac
differentiation of Bone marrow derived mesenchymal stem cells (BMSC) in rat by
overexpressing mir499 which increased the expression of cardiac specific genes such as
NKx2.5, GATA-4, MEF2C and cTnl, hence activating the wnt/β-catenin signaling pathway.
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Wen et al [127] have summarized the role of microRNAs in regulating BMSC for post-MI
cardiac repair.

The regeneration potential of BMSC decreases with increasing age due to changes in
cellular functions. Ayala-Lugo et al [128] demonstrated that the availability and
functionality of bone marrow stem cells depends upon age, by using experimental model of
acute and chronic myocardial infarction. The study explained that the age and the time of
treatment post-MI, act synergistically to determine the efficacy of bone marrow stem cell
treatment of the infracted heart. In another study by Yu et al [129], the regeneration potential
of BMSC isolated from different age groups of rhesus monkeys (<5; 8–10; >12yrs) was
tested and it was found that BMSC showed significant changes in the microRNA
expressions and heat shock proteins, but non-significant changes in histone modifications.
Although aging is associated with poor response of BMSC, the angiogenesis in ischemic
tissues can be improved by exercise [130, 131]. Cheng et al [132] have shown that in mice
of advanced age exercise training can activate ischemia induced neovascularization by
reactivating Akt-dependent hypoxia induced factor (HIF)-1α. In an attempt to explain, why
vascular regeneration declines with aging, Di Q et al [133] used deferoxamine which is a
stabilizer of HIF-1α and demonstrated that age related decline is due to impairment of cross
activation between β3 and VEGFR-2 in EPCs which is partially associated with decreased
HIF-1α stability.

We have shown that ablation of MMP9 leads to the profound conversion of cardiac stem
cells into cardiomyocytes [134, 135]. On the basis of our observation and available literature
we postulate that microRNAs can lead to the conversion of stem cells to cardiomyocytes
through regulating the expression of MMP and DNA methyltransferases (Fig 3). The
upregulation of MMP9 gene expression leads to the stiffness of extracellular matrix and
consequently fibrosis and affect the differentiation of stem cells into cardiomyocytes.

Epigenetic biomarkers
Micro RNAs have been proposed as biomarkers for the diagnosis of various cardiac
diseases, as there is an altered expression of genes and micro RNAs in diseased states and
they not only reside in the cells but are abundant in circulating fluids. Disease specific
signatures of microRNAs have been identified for coronary artery disease (CAD)[29], heart
failure [136] and atherosclerosis [137, 138]. microRNAs can be detected by using
conventional techniques such as Nothern Blotting, qRTPCR and advanced techniques such
as deep sequencing and genome wide microRNA profiling techniques [139, 140]. Chen et al
[141] have shown that circulating microRNAs are quite stable at low and high pH, freeze
thaw cycles and boiling which makes them suitable candidates as biomarkers [141]. The
stability of microRNAs has been attributed to 1) the formation of protein-microRNA
complexes [142, 143]; 2) binding with high density lipoproteins (HDL) and; 3)
encapsulation in microvesicles [144, 145] and exosomes [146–148]

Mir423-5p has been shown to be a promising potential candidate in blood samples and
cardiomyocytes of patients with heart failure [136] along with mir145, -155, -92a, -17 and
-126, in CAD patients [26]. Kuwabara et al [149] have showed that in patients with
cardiovascular disease, there is an increased level of mir1 and mir133a in the serum [149].
The altered expression of microRNAs is due to 1) changes in the microRNA production 2)
post-transcriptional processing and 3) release of microRNAs from cells. To potentiate the
use of microRNA as biomarkers, 20 clinical studies have been performed for circulating
microRNAs for MI [36, 96, 150]. The studies show that mir1, -133a/b, -208, -499 [151–153]
can be used as potential candidates for biomarker studies in myocardial damage. For
vascular wall damage, mir126 [154] mir92a [155] and mir145 [156] have been found to be
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suitable biomarkers. Mir146, mir155 and mir223 have been found to be associated with
leukocytes and platelets and can also be monitored for early stress and myocardial damage
[29, 36, 157]. Although microRNAs appear to be very promising as biomarkers still their
clinical applications have been delayed due to 1) their laborious isolation and detection
procedures as compared to other biomarkers and 2) the time of detection i.e. the time for
which they appear in the circulation. However, the combined selection of traditional
detection kits and circulating mi-RNAs together, can be used for increasing the specificity
and sensitivity of the cardiac diagnostic procedures.

Effect of environment on epigenetics of cardiac disorders
Heart function is affected by environmental factors such as life style, dietary habits,
exercise, smoking, alcohol intake and depression. The adverse phenotype faced in later
stages of life are due to epigenetic changes, induced by the exposure to harsh conditions in
early stages of life [158, 159]. The maternal diet during pregnancy, can dramatically affect
the DNA methylation pattern of specific genes which lead to permanent phenotypic changes
such as body weight, blood pressure and coat color [160, 161]. The humans who were
exposed to Dutch Hunger [23, 162] famine in utero had different DNA methylation patterns
as compared to those who were not affected. The risk of cardiac disease is much more in
individuals who have prenatal exposure to tobacco smoke. Breton et al [163] have showed
altered DNA methylation in LINE-1 (Long Interspersed Elements) and Alu elements in
children exposed to smoke in prenatal conditions [163]. The study shows that in utero
exposure to tobacco smoke for a long time results in altered DNA methylation. Monozygotic
twins gradually become different in their behavior due to epigenetic drift with advancing age
caused by different life styles [164]. The pollution created by traffic is associated with
increased CVD risk and DNA methylation of LINE-1 and Alu elements [165, 166]. It has
been suggested that microRNAs are important regulators of circadian rhythm which can
help in the understanding of biological clock [167] and the fact that risk of CVD is more in
the early morning than in the late afternoon or late evening further speculates the role of
epigenetics.

Future prospects and challenges
In the past few years, microRNAs have emerged as one of the important epigenetic
mechanisms behind cardiac dysfunction (myocardial infarction, heart failure, cardiovascular
disease and hypertrophy) and regeneration (cardiomyocyte progenitor cells and stem cell
proliferation to caridiomyocytes). MicroRNAs have the potential to become
pharmacological targets, as dysregulation of a single microRNA can lead to cardiac
disorders and their expression can be modulated for stem cell proliferation. This perpetuates
the development of therapeutic and diagnostic strategies by regulating the expression of
target genes through microRNAs and their detection in body fluids much before the onset of
the disease. Understanding the role of histone modifications in differential regulation of
genes under diseased conditions can help in mechanistic and disease therapeutics. DNA
methylation underlying developmental processes and progression of disease are important
phenomena in disease pathologies. However, the translational means of this research are still
in their infancy and less efficient. Though, keeping in mind their immense potential,
ongoing exploration and refinement of experimental approaches is the need of the hour and
good reason to be optimistic.
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CAD Coronary Artery Disease

CREBP cAMP (Adenosine 3′5′ Cyclic Monophosphate) Response Element-Binding
Protein

CVD Cardiovascular Disease

DNMT DNA methyltransferase

DOTIL Disruption of Telomeric silencing protein

FHL1 Four and a Half LIM domains 1

GNASAS Guanine Nucleotide Binding Protein (G Protein), Alpha Stimulating Activity
Polypeptide

HAT Histone Acetyl transferase

HDAC Histone Deacetylase

HF Heart Failure

HSD11B2 Hydroxysteroid (11-beta) dehydrogenase 2

IL-10 Interleukin 10

INSIGF Insulin Induced Gene

JMJD Jumonji Domain

LIM1 Lin11/Isl1/Mec3 transcription factors

LINE-1 Long Interspersed Neucleotide Elements

MEG3 Maternally expressed Gene 3

MI Myocardial Infarction

MTHFR Methylene tetrahydrofolate reductase

SRF Serum Response Factor

TBX5 T Box 5

UTX Ubiquitously transcribed tetratricopeptide repeat, X chromosome

VCAM-1 Vascular Cell Adhesion Molecule 1
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Figure 1.
Epigenetic mechanisms and role of DNA methylation, histone modification by acetylation
and methylation and post-transcriptional control by microRNA. Mthyl trasferase is involved
in gene methylation. HAT and HDAC are involved in histone acetylation and chromatin
remodeling. microRNAs are involved in post-transcriptional control of the genes.

Chaturvedi and Tyagi Page 22

Int J Cardiol. Author manuscript; available in PMC 2015 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The role of microRNAs in cardiac regeneration. mir15 family suppresses the proliferation of
cardiomyocytes and angiogenesis while mir1, -133 and -499 induces fibroblast/adipocyte
reprogramming into cardiomyocytes. Mir1 and -499 also promote the conversion of cardiac
stem progenitor cells into cardiomyocytes and they can be injected for cardiac regeneration.
hPSC or human pleuripotent stem cells can be converted to cardiomyocytes by the induction
of mir1, mir133 and mir499.
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Figure 3.
Proposed hypothesis for the conversion of stem cells into cardiomyocytes. Based on our
previous reports we postulate that microRNAs alter the expression of MMP/TIMP genes
which are responsible for matrix degradation and the expression of DNA methyltransferases
which consequently lead to altered DNA methylation status. This helps in the conversion of
embryonic stem cells to cardiomyocytes.
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Table 2

miRNAs involved in cardiac degeneration:

micro-RNA Fold expression Site of expression Methodology Reference

Acute myocardial infarction

mir-1
mir-133a
mir-208b
mir-4993p

Upregulated 300 times
Upregulated 70 times
Upregulated 3000 times
Upregulated 250 times

Human Plasma qRT-PCR [37]

mir-223 Downregulated Human Plasma qRT-PCR [33]

mir-21 Downregulated in infarcted cells
Upregulated in border cells

Rat
Myocytes qRT-PCR [32]

mir-122
mir-375

Downregulated Human Plasma qRT-PCR [26]

mir-423-5p Upregulated 3–10 fold Human Plasma qRT-PCR [11]

mir-663-b, -1291, mir-306, -145 Downregulated
Upregulated

Human PBMCs Array [12]

mir-328 Upregulated in plasma Human plasma qRT-PCR [144]

Coronary Artery Disease

mir-17-92 cluster, -126, -145, -155,
mir-133, -208a

Downregulated
Upregulated Human Plasma Array [27]

mir-92a, -126, - 133a, -208a, -499 Upregulated 2–20 fold, ACS vs CAD Human Plasma qRT-PCR [116]

mir-134, -135a, - 147, -198, -370
mir-147

Upregulated 3.1–12 fold
Downregulated 4 fold Human PBMCs qRT-PCR [30]

mir-340, mir-624 Upregulated >1.5 fold Human Platelets Array [31]

Heart failure

mir-24, -125b, - 195, -199a, -214 Upregulated 1.3–3 fold Human left ventricle Northern blots [38]

mir-214
mir-19a/b

Upregulated 2–2.8 fold
Downregulated 2–2.7 fold

Human left ventricle Bead based hybridization [39]

mir-29b, -142-3p mir-107, -125b, -
139, -142-5p, -497

Upregulated >2 fold
Down regulated >2 fold

Human PBMCs qRT-PCR [145]

mir-125, -181b, - 214, -342 Upregulated Human left ventricle Array [146]

mir-100, -195, Upregulated Human heart tissue Array [40]

mir-92, -133b
mir-21, -129, -212

Downregulated
Upregulated >1.5 fold Human heart tissue Array [147]
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Table 3

mi-RNAs involved in cardiac regeneration

micro-RNA Functions Reference

miR-1 Increases differentiation of hPSCs into cardiomyocytes and enhances direct reprogramming of
human fibroblasts into cardiomyocytes

[89, 91, 92, 148]

miR-499 Overexpression enhances hPSC cardiac differentiation and CPC cardiac differentiation [89, 92]

miR-199a Expression in cardiomyocytes induces proliferation and facilitates cardiac regeration following
myocardial infarction in adult mice

[82]

miR-15 family Inhibition of this microRNA enhances cardiomyocyte survival following ischemia-reperfusion injury
in vitro and in vivo, as well as in response to palmitate in vitro; inhibition also facilitates cardiac
regeration following myocardial infarction in adult mice

[83, 149–152]

miR-199b In vivo inhibition of miR-199b normalized significantly attenuated cardiac functional impairment,
fibrosis and NFAT activity; the target of miR-199b is Dyrk1

[153]

mir-29 miR-29 downregulation prenvents aortic dialation [154]

miR-21 Antagomir-21 decreased the development of cardiac fibrosis and improved cardiac function [155–157]

miR-98 Overexpression of miR-98 reduced AngII mediated fibrosis and amount of apoptotic myocytes [158]

miR-17-92 cluster Overexpression enhances cardiac progenitor cell proliferation and facilitates cardiac regeneration
following myocardial MI in adult mice

[90]

miR-23, miR-24 Overexpression Enhances cardiomyocyte survival following MI n in adult mice and enhances
angiogenesis

[159, 160]

mir-27 Enhances angiogenesis [160]

miR-34a Expression levels gradually increase with age in mice and humans and inihibition enhances
cardiomyocyte survival following MI in adult mice

[154]

miR-92a, miR-133 Enhances mesodermal differentiation of hPSCs and enhances direct reprogramming of human
fibroblasts into cardiomyocytes;

[91, 121, 148]

miR-143/145 Knockdown prevents cardiogenesis in murine embryonic stem cell differentiation [161]

miR-378 Inhibition of this microRNA improves cardiomyocyte survival in an in vitro model of hypoxia-
reperfusion

[162]

miR-590 Expression of this microRNA in cardiomyocytes induces proliferation and facilitates cardiac
regeration following MI in adult mice

[82]
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