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The development of hydrogel-based biomaterials represents a promising

approach to generating new strategies for tissue engineering and regenerative

medicine. In order to develop more sophisticated cell-seeded hydrogel con-

structs, it is important to understand how cells mechanically interact with

hydrogels. In this paper, we review the mechanisms by which cells remodel

hydrogels, the influence that the hydrogel mechanical and structural pro-

perties have on cell behaviour and the role of mechanical stimulation in

cell-seeded hydrogels. Cell-mediated remodelling of hydrogels is directed

by several cellular processes, including adhesion, migration, contraction,

degradation and extracellular matrix deposition. Variations in hydrogel stiff-

ness, density, composition, orientation and viscoelastic characteristics all

affect cell activity and phenotype. The application of mechanical force on

cells encapsulated in hydrogels can also instigate changes in cell behaviour.

By improving our understanding of cell–material mechano-interactions in

hydrogels, this should enable a new generation of regenerative medical

therapies to be developed.
1. Introduction
Over the past several decades, changes in population demographics within the

developed world have shown an increase in the percentage of elderly people. It

is believed these trends will continue into the future owing to increases in life

expectancy coupled with declining fertility [1]. Attempts at improving the well-

being of this ageing population have led to the investigation of new medical

therapies to improve people’s health and quality of life as they get older. The

advent of tissue engineering and regenerative medical therapies represents a

potentially exciting approach to tissue repair and regeneration [2–4]. Several

strategies have been adopted to promote these therapies. These strategies

tend to involve the isolation of cells from a patient or donor and the encapsula-

tion of these cells in a three-dimensional scaffold. The scaffold acts as a

temporary support matrix that can be remodelled by cells to generate a

tissue-like structure. There are several different approaches to designing and

manufacturing these scaffolds [5–8]. Ideally, the scaffold structure should

replicate the native tissue’s extracellular matrix composition and structure or

allow cells to remodel it so as to provide a suitable environment for the cells

to generate new tissue or repair existing tissue.

Among the most promising biomaterials under investigation for use as scaf-

folds in regenerative medicine are hydrogels. These consist of water-swollen

networks of cross-linked polymer chains. Cross-links may be established via

ionic, covalent or physical bonding of the polymer [9]. Hydrophilic functional

groups attached to the polymer enable the hydrogels to retain a high percentage

water content. The type of polymers and cross-linking used gives rise to a

potentially wide range of properties and applications. Hydrogels are particu-

larly attractive materials to be used as a structure for encapsulating cells for

regenerative medicine because of their biocompatibility [10–12], their per-

meability to oxygen, nutrient growth factors and metabolic waste [13,14],
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Figure 1. Examples of cell-seeded hydrogels that have been under investigation to engineer tissues and organs. (Online version in colour.)
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their ability to be remodelled by cells [15–17] and their

tissue-like viscoelastic characteristics [18,19].

Cells encapsulated in biomimetic hydrogels are capable of

remodelling their surrounding matrix and producing new

extracellular matrix molecules. This remodelling behaviour is

influenced by several factors, in particular, the type of hydrogel,

the type of cell and the absence or presence of biochemical

and mechanical stimuli. To date, cell-seeded hydrogels have

been under investigation to repair or replace several tissue

types, including cartilage [20–22], skin [23–27], cornea [28,29]

and vascular tissues [30–33] among other tissues [34–37]

(figure 1). As this field has grown, it has become evident that

a greater understanding of the cell–material interactions in

hydrogel systems is required to properly explain the mechanical

mechanism that cells use to remodel their surroundings and to

exploit this behaviour to develop functional tissues and tissue

repair strategies. The aim of this paper is to give an overview

of how cells interact and remodel hydrogels, the influence

that the physical properties of hydrogels have on cell behaviour

and how external mechanical stimuli affect the cell–hydrogel

mechano-relationship.
2. Cell-mediated remodelling of hydrogels
Cells have the ability to restructure and re-engineer their

surroundings through several mechanical and biochemical

mechanisms. This behaviour is vital for tissue growth and

development, maintenance and function of healthy tissues

and the repair of damaged tissues. The ability of cells to

mechanically interact with their surrounding matrix in this

manner can be exploited to allow cells embedded in hydrogels

to remodel those hydrogels into tissue-like structures.

This ability is primarily governed by the type of hydrogels

and type of cells in addition to biochemical signalling mol-

ecules and mechanical cues. The types of hydrogels used in

regenerative medicine can broadly be split into two categories:

natural polymer hydrogels and synthetic polymer hydrogels
[14]. Among the most extensively used natural hydrogels

that have been under examination for use in tissue engineering

and regenerative medicine are collagen [38–40], fibrin [41–43],

hyaluronic acid [44–46], alginate [47,48], chitosan [49,50] and

agarose [51–53]. These hydrogels differ in polymer structure

(figure 1), ability to retain water, availability of binding sites

and mechanical characteristics. For example, collagen consists

of long chains of amino acids that form triple helix tropocolla-

gens of approximately 300 nm in length [54,55]. The amino

acids include glycine, proline or hydroxyproline and one

other peptide such as alanine or arginine. These tropocollagens

form strong, stable collagen fibrils [56,57] that are found in

many load-bearing tissues and can form stable hydrogels

with high water contents. By contrast, alginate is a copolymer

consisting of b-D-mannuronic acid and a-L-guluronic acid

monomer units. The ratio of these acid blocks controls the

physical properties of the hydrogel. Unlike collagen which

forms long stable fibrils, alginate hydrogels consist of chains

of units that are ionically cross-linked by specific ions (such as

calcium or barium) to form a network of chains resulting in

hydrogel gelation [58,59]. This leads to a less stable and less

organized structure than that found in collagen. The most

extensively examined synthetic hydrogel material is poly(ethy-

lene glycol) and its derivatives (figure 2) that can be chemically

modified by attaching other polymer groups thus allowing a

wide range of physical characteristics that can affect how the

hydrogel interacts with cells [60–63].

In recent years, several peptide-based hydrogels have been

developed to create a three-dimensional environment in which

to study cell behaviour. Specific peptide chains can undergo a

self-assembly process to produce a hydrogel with a high water

content (over 99%). An alternating sequence of hydrophobic

and hydrophilic amino acid sequences and positively and

negatively charged peptides results in the formation of a

stable hydrogel under controlled pH and ionic conditions

[64–67]. These types of hydrogel are particularly useful in

examining cellular behaviour owing to their biocompatibility,

biodegradability and biofunctionality [68].



agarose
(a)

(b)

alginate

hyaluronic acidchitosan

poly(ethylene glycol) poly(ethylene glycol) diacrylate poly(ethylene glycol) dimethacrylate

Figure 2. Chemical structure of (a) the natural polymers agarose, alginate (showing one b-D-mannuronic acid and one a-L-guluronic acid unit), chitosan and
hyaluronic acid and (b) the synthetic polymer poly(ethylene glycol) and two of its derivatives ( poly(ethylene glycol) diacrylate and poly(ethylene glycol)
dimethacrylate).
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Figure 3. Images of fibroblasts in (a) collagen and (b) agarose hydrogels
stained using phalloidin-TRITC and recorded using a fluorescent microscope.
(Online version in colour.)
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A key factor when examining cell–material mechano-inter-

actions is the mechanisms of cell adhesion to the hydrogel. Cell

surface receptors such as integrins bind to ligands within the

hydrogel if such adhesion sites exist. Integrins, a collection of

transmembrane glycoproteins intracellularly connected to the

cell cytoskeleton, are among the most studied cell surface recep-

tors and are associated with cell attachment, cell migration and

extracellular matrix remodelling in addition to cell signalling

[69–72]. They consist of a- and b-subunits, each combination

of which forms a dimer with a specific function [73]. Other

receptors such as syndecans, a collection of membrane-interca-

lated proteoglycans, work in synergy with integrins to provide

cellular adhesion to their surrounding matrix [74]. Cadherin

molecules facilitate cell–cell adhesion that in addition to influ-

encing adhesion to the extracellular matrix can dictate cell

behaviour and extracellular matrix production [75,76].

The availability of binding sites for cells to attach largely

depends on the type of hydrogel. Collagen and fibrin hydro-

gels allow cells to bind directly to ligands on those proteins,

whereas other hydrogels such as agarose, alginate and

poly(ethylene glycol) lack binding sites thus preventing

direct cell adhesion. For those hydrogels, oligopeptides such

as arginine–glycine–aspartic acid (RGD) or various matrix

proteins may be incorporated into the hydrogel to facilitate

cell attachment [58,77] although incorporation of such peptides

would also affect the physical properties of the hydrogels [78].

The availability of binding sites has a significant impact on cell

behaviour and morphology within the hydrogel (figure 3).

Cells embedded in hydrogels that facilitate binding have a

different cytoskeletal structure compared with hydrogels lack-

ing available binding sites [79,80]. Cells that attach to the

hydrogel tend to have a spread morphology, high in actin

stress fibres that pass through the cell (figure 3a). The spacing

between binding sites can also influence the cell shape

and cytoskeletal configuration [81]. Different approaches to

quantifying the density of adhesion sites in hydrogels have pre-

viously been discussed [82]. By contrast, cells embedded in

hydrogels that do not facilitate binding tend to have a spherical
morphology and lack actin stress fibres (figure 3b). Hydrogels

without binding sites may still enable cell adhesion through the

production of extracellular matrix proteins by entrapped cells

that can form a pericellular matrix onto which the cells can

adhere over time [79].

Cell mobility through a hydrogel is dependent on several

factors, including the contractile and adhesive forces exer-

ted by the cell, the availability of binding sites within the

hydrogel, proteolysis of matrix constituents and the hydrogel

matrix stiffness [83,84]. Cell mobility is vital for several

physiological processes [85] and is important in enabling the

integration of a hydrogel construct with its surrounding host

tissue post-implantation. Several studies have examined the

mechanisms by which cells can migrate in both two-dimen-

sional culture [86–88] and in three-dimensional hydrogels

[83,85]. The actin cytoskeleton plays a vital role in allowing

cells to migrate through a hydrogel. Cellular protrusions such

as filopodia and lamellipodia, which consist of polymerized

actin networks at the front of the cell, extend and attach to

ligands within the hydrogel. Once adhered, myosin II gener-

ates sufficient force to translocate the cell. Adhesions

dissemble at the trailing edge, releasing the cell and allowing

it to move through the hydrogel.
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Figure 4. Schematic of the contraction process in a cell-seeded hydrogel: (a) cells are embedded in a hydrogel matrix, (b) cells elongate and adhere to fibres,
(c) cells pull fibres causing them to buckle, (d ) cells release and reattach to new fibres resulting in contraction of the hydrogel. (Online version in colour.)
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Several different approaches have been explored to control

cell migration in hydrogels. One such mechanism is chemo-

taxis where biochemical stimuli are incorporated into the

hydrogel to enhance cell migration in a particular direction

[89]. An alternative mechanism is durotaxis where substrate

rigidity regulates the direction of cell migration [90,91]. Loca-

lized variations in the stiffness of hydrogels can enable cells

to preferentially migrate from one region of a hydrogel to

another [92]. Most adherent cells will migrate from soft to stif-

fer regions within a hydrogel. One of the practical applications

of enhancing cell migration is that it allows cell-free hydrogels

to be implanted in a patient that can recruit host cells to infil-

trate them from neighbouring tissue. Another application is

the induction of angiogenesis where migrating endothelial

cells form blood vessels within hydrogels [93]. Angiogenesis

is important for maintaining the health and functionality of

many tissue types that require oxygen and nutrients via a

blood supply when implanted in vivo.

Contraction is one of the key mechanisms used by cells

to remodel their surroundings. Cellular contraction of hydro-

gels follows a similar principle to cell migration. For example,

in collagen hydrogels, fibroblasts bind and release via the

a2b1 integrin using a ‘hand over hand’ cyclical motion to

pull themselves along the collagen fibres [94,95]. However,

if the fibres in the hydrogels have insufficient strength to

withstand the applied force, then these fibres would buckle

resulting in contractile remodelling of the hydrogel as

shown schematically in figure 4. This can be a problem when

trying to use hydrogels that have specific architectures incor-

porated into the structure to replicate a native tissue, because

contraction will disrupt these structures [40]. Originally, it

was envisioned that hydrogel contraction by cells could be

used to generate new tissue [96] although this would require

a comprehensive understanding of how the cells would remo-

del the hydrogel. Contraction also reduces the overall size of

the hydrogels with some hydrogels such as collagen having

been shown to contract to less than 20% of their original

volume [97]. The rate of contraction may be controlled by alter-

ing the degree and mechanism of cross-linking, altering the

number of binding sites and by changing the polymer
concentration [98]. Hydrogel contraction can also be used to

promote cell and tissue alignment in a particular direction by

tethering the hydrogels at opposite ends, limiting the cellular

contraction of the hydrogel in particular planes [99,100]. As

the hydrogel contracts, the cells align along the direction of

principal strain as they try to reach tensional homeostasis

[101,102].

There are several mechanisms by which hydrogels can

undergo degradation, including hydrolysis and enzymatic

proteolysis. The digestion of matrix by matrix metalloprotei-

nases (MMPs) and production of other extracellular matrix

proteins allow the cells to reorganize and restructure their

surroundings and form a new matrix. It is important that

degradation products do not have a negative effect on cell

viability or cell behaviour [9]. The precise degradation kin-

etics depends on several factors, including the type and

activity of the cells present, the type of hydrogel and the

degree of cross-linking. Ideally, the rate of degradation

of the hydrogel would be optimized to match the degree of

new tissue formation without any significant loss in mechan-

ical strength. Incorporation of degradable moieties such as

degradable polymer backbones, side groups or cross-link

chains can be used to tailor degradation rate of the hydrogel

[103]. The release of MMPs is common particularly among

fibroblastic cells and is vital for cell translocation [104]. The

cleavage of collagen by MMPs is dependent on the structure

of the collagen with some collagens more resistant to degra-

dation enzymatically than others [105]. It has been shown

that fibroblasts embedded in a collagen hydrogel matrix release

MMPs such as collagenase and gelatinase [106], resulting in the

degradation of collagen and other proteins. MMP-1 (collagen-

ase type 1) degrades collagen type 1 by attacking and cleaving

the collagen triple helix chain. Other MMPs such as MMP-2 are

also capable of cleaving the collagen 1 triple helix [107].

The sensitivity of proteins to MMPs has been used to develop

hydrogel constructs capable of undergoing controlled remodel-

ling by cells [108,109]. The release and activity of MMPs can

be controlled biochemically by the application of reagents such

as tissue inhibitors of metalloproteinases. An alternative appli-

cation for enzymatic proteolysis is to liberate chemically bound
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biochemical molecules in hydrogels, such as growth factors. The

degradation profile of the hydrogel or growth factor-loaded

microspheres within the hydrogel can be controlled, so that

there is a consistent release of growth factors over a particular

time period. The growth factors, in turn, can promote cell

activity or elicit a desired cell phenotype. This approach is par-

ticularly important when developing hydrogels for in vivo
implantation as many growth factors necessary for tissue devel-

opment or repair may not be present at the implant site. For

example, transforming growth factor beta 1 and 3 (TGF-b1,

TGF-b3) are known to elicit a chondrogenic phenotype from

mesenchymal and adipose-derived stem cells. Because TGF is

not present in sufficient quantities at cartilage defect sites,

these growth factors can be incorporated into enzymatically

degradable microspheres within a cell-seeded hydrogel to pro-

mote cartilage formation post-implantation [51,110,111]. The

degradation rate of the microspheres can be tailored to allow

growth factor release over a prolonged period of time to

enable cartilage formation.

The rate of collagen breakdown by MMPs can be regu-

lated by mechanical force applied to the collagen either by

adjoining cells or neighbouring tissues. Several studies have

found that mechanical force can either increase [112,113] or

decrease [114] the rate of collagen degradation. The structure

of the collagen appears to be vital in determining its sus-

ceptibility to enzymatic breakdown. Chang et al. [114] have

suggested that when a strain is applied to homotrimer col-

lagens, this resulted in unwinding of the collagen molecule

thus increasing its ability to be cleaved by MMPs, whereas

strain applied to heterotrimer collagen resulted in folding of

collagen triple helix reducing its ability to be cleaved by

MMPs [114]. In addition to affecting the susceptibility of col-

lagen to enzymatic digestion, mechanical force can also affect

the rate of release of MMPs by cells. Several studies using

different cell sources have found that inducing mechanical

stress on cells can regulate MMP production leading to

changes in matrix remodelling [115–117].

Several studies have linked extracellular matrix production

to changes in mechanical properties. Mineralization by cells

of tissues or constructs through the release of extracellular

products has led to an increase in stiffness of the surround-

ing matrix [118,119]. Mineralization is a key requirement for

bone tissue engineering and regeneration, and it may be

achieved in hydrogels by copolymerization with specific func-

tional groups via the addition of calcium and phosphate

solutions or alkaline phosphatase, combining with acid pep-

tides or though promotion of cellular osteogenic activity

by the addition of growth factors or adhesion molecules

[120–124]. In addition to mineralization, other extracellular

matrix products may also affect the mechanical characteristics

of the hydrogels. Hu & Athanasiou [125] found the production

of collagen and glycosaminoglycans (GAGs) by chondrocytes

led to a threefold increase in the aggregate modulus of agarose

constructs over an eight-week culture period. However, they

also found that synthesis of matrix products has little effect

on the modulus of poly(glycolic acid) constructs. This suggests

that in addition to increased matrix production, the interaction

of newly formed matrix proteins and the hydrogel affects the

bulk mechanical properties of the construct. Williams et al.
[126] found that increasing the chondrocyte density in an

alginate construct led to both increased matrix production and

increased mechanical strength [126]. Wan et al. [127] found that

varying the seeding concentration and culture time affected
the stiffness and viscoelastic characteristics of alginate hydrogels

owing to differences in matrix accumulation [127].
3. Influence of the hydrogel on cell behaviour
The mechanical interactions between cells and extracellular

matrix can be considered symbiotic. While cells have the abil-

ity to remodel their surrounding matrix, the mechanical,

structural and chemical composition of these surroundings

also regulates intracellular processes. This mutually depen-

dent relationship between cells and their surrounding

matrix is often referred to as dynamic reciprocity [128,129].

Cells respond to changes in their mechanical environment

in a number of ways [130]. Changes in the cell phenotype

[131], cytoskeleton [132], proliferation [16] and mobility

[132,133] have been associated with differing matrix stiff-

nesses or matrix structures. This influence is most notable

when examining the effect material stiffness has on the phe-

notypic behaviour of stem cells. Engler et al. [131] showed

that the ability of stem cells to differentiate towards specific

lineages was dependent on the substrate stiffness of the

materials on which the cells were cultured [131]. They noted

that neurogenic differentiation was optimal at a stiffness of

0.1–1 kPa, myogenic differentiation at 8–17 kPa and osteo-

genic differentiation at 25–40 kPa. Several subsequent studies

have shown how substrate stiffness affects several different

cell types, including neuronal cells [134,135], chondrocytes

[136], cardiomyocytes [137,138], dermal fibroblasts [139] and

limbal stem cells [140]. Recently, Trappmann et al. [141]

suggested that substrates of different stiffness have differing

protein anchorage densities and configurations that regulate

stem cell fate through the mechanical feedback of cells attached

to anchored proteins [141]. For this study, epidermal stem cells

and mesenchymal stem cells were cultured on hydrogels of

varying stiffness and protein anchorage densities. Because

the theory linking protein anchorage and stem cell behaviour

is relatively new, further studies are required to corroborate

these findings.

In three-dimensional hydrogels, material stiffness plays a

key role in influencing cell behaviour and mediating remodel-

ling. Hydrogel stiffness is dependent on the concentration and

arrangement of the polymer and the cross-linking density.

Mesenchymal stem cells have demonstrated an increase in pro-

liferation and cell spreading when cultured on stiff hydrogels

compared with softer hydrogels [142]. By contrast, the prolifer-

ation of neuronal stem cells has been shown to decrease as

hydrogel stiffness increases [143]. These findings suggest that

the stiffness of the hydrogel affects different cell types in differ-

ent manners. The hydrogel stiffness also affects the ability of

cells to remodel their surroundings. In collagen hydrogels

seeded with corneal fibroblasts the ability of the cells to con-

tract and alter the stiffness of the hydrogel was found to be

dependent on the hydrogel initial stiffness [15]. Even though

such findings demonstrate the importance of stiffness in deter-

mining the suitability of a particular hydrogel material for a

tissue engineering application, this cannot be considered in iso-

lation as stiffness is generally dependent on other factors such

as the hydrogel concentration and cross-linking. Changes to

the stiffness of a hydrogel can affect the oxygen and nutrient

permeability, availability of binding sites and overall water

content. These factors would have a significant influence on

cellular activities [144].
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Several approaches have been investigated to increase the

stiffness of hydrogels to improve their suitability for use in

regenerative medicine. Plastic compression is one method

that has been developed to produce collagen hydrogels with

superior mechanical properties [38,92,145,146]. In addition to

increasing the bulk stiffness of the hydrogel, this technique

also reduces the water content and increases the overall

material concentration without any adverse effect on cell

viability. This increase in concentration leads to an increase

in the number of available binding sites in close proximity to

each cell and influences the ability of molecules and other pro-

ducts to diffuse through the hydrogel. The compression

technique can be manipulated to allow fluid flow out of the

hydrogels in a particular direction resulting in a more aligned

fibre arrangement [147,148]. Plastic compression has several

applications including the development of hydrogels with

incremental increases in stiffness to study the effect of stiffness

on cell migration and proliferation [92,145] and it has been

under examination for cornea regeneration [146,149] and

dermal tissue engineering and repair [23,24]. To date, this tech-

nique has primarily been used on collagen hydrogels, because

most other hydrogels are incompressible under high strains, in

part, owing to their hydrophilic nature.

Cross-linking techniques may also be used to improve the

stiffness and mechanical strength of cell-seeded hydrogels.

The increase in cross-links stabilizes the hydrogel, reducing

its ability undergo enzymatic degradation. Ultraviolet cross-

linking in the presence of riboflavin has been demonstrated

to improve the stiffness of collagen hydrogels without

impairing cell viability [150]. Chemical cross-linking using

agents such as glutaraldehyde has also been used to cross-

link hydrogels, although glutaraldehyde is highly toxic and

needs to be completely removed from the hydrogel prior to

cells being implanted. Some alternative cross-linking agents

that are less toxic such as genepin [151] may represent a

more suitable approach to cross-linking hydrogels for use

in tissue engineering and regenerative medicine.

In addition to stiffness, the spatial arrangement within a

hydrogel can influence the cell behaviour. Photopolymeriza-

tion is a technique that can be used to chemically alter

specified regions of a hydrogel to induce a spatial organization

[52,152]. Ultraviolet light in the presence of cross-linking agents

can be used to create regions of varying stiffness. By using a

template, the light will only cross-link specified regions and

can be used to create complex patterns within the hydrogel.

This approach can affect cell migration, alignment and pheno-

type. Magnetic field alignment is an alternative method of

introducing spatial organization into collagen-based hydrogels.

Under a high magnetic field, collagen fibrils will assemble

along the direction of the magnetic field and this results in

hydrogels with aligned collagen fibres [153,154]. These tech-

niques are particularly useful in replicating tissues with

highly organized fibre orientations such as tendon or cornea.

As stated previously, hydrophilic polymer networks enable

hydrogels to retain a large volume of water. This high water con-

tent gives hydrogels their viscoelastic characteristics. These

characteristics are dependent on the percentage water content,

porosity of the hydrogel and the polymer arrangement. Several

studies have examined the viscoelastic properties of hydrogels

[19,155–158], although few have examined in detail the influence

these properties have on cell behaviour. The viscoelastic charac-

teristic of cell-seeded hydrogels can change over time owing to a

combination of contraction [97], enzyme-associated degradation
and extracellular matrix deposition [53,127]. This, in turn, can

lead to reciprocal change in the cell behaviour. Increased

matrix deposition can lead to a reduction in percentage water

content in hydrogels and alter the diffusion kinetics. The diffu-

sion of oxygen and nutrients is vital for maintaining cell

viability in the centre of hydrogel constructs [159].

An alternative approach to manipulating the structure of

hydrogels and thus the cell behaviour within those hydrogels

is to incorporate nanomaterials such as nanofibres, nanoparti-

cles or nanotubes. Cells may be influenced by these materials

either through contact or ingestion. The incorporation of elec-

trospun nanofibres into hydrogels should increase the bulk

elastic modulus and strength of these hydrogels [160,161]

and can be used to dictate cell orientation and matrix pro-

duction [160,162]. Nanofibres can be spun into aligned sheets

that are then encapsulated by the cell-seeded hydrogels form-

ing a nanofibre–cell–hydrogel composite. The embedded

cells bind to the nanofibres and align themselves according

to the fibre orientation. This phenomenon is particularly

useful for engineering certain tissues such as cornea [160,163]

that in situ have a high degree of cell alignment and distinct

fibre orientations. Nanoparticles may also be incorporated

into hydrogels as a drug release mechanism or for growth

factor delivery [164,165]. Nanoparticles can also be used to

alter the mechanical characteristics of hydrogels [166].

Carbon nanotubes have become popular in recent years as a

method of reinforcing the mechanical properties of materials.

They can be functionalized with side groups to enhance

tissue regeneration [167]. For example, poly(aminobenzene

sulfonic acid) has been bound to carbon nanotubes to promote

bone formation [168]. The inclusion of carbon nanotubes has

been shown to improve the overall mechanical strength of

hydrogels [169,170]. In addition, it has been shown that nano-

tubes can affect cell behaviour by altering the cell morphology

and increasing global stiffness [171].
4. Mechano-stimulation of cell-seeded hydrogels
Mechanical stimulation of cells in hydrogels is an area of

increasing interest for those developing new tissue engineering

and regenerative medicine therapies and those who want to

understand the mechanotransduction pathways that control

cell activity. In the body, cells are constantly being subjected

to mechanical forces that are believed to play a vital role in con-

trolling their behaviour. These forces can be replicated and

applied to cell-seeded hydrogels in vitro using a bioreactor

system [172–174]. Depending on the type of bioreactor used,

there are several mechanisms by which force can be imposed

onto the hydrogel (as shown in figure 5) including by direct

contact such as those found in compressive [175,176] or tensile

bioreactor systems [177,178] or by indirect forces such as

hydrostatic pressure [179,180] or via fluid flow [181,182].

When mechanical force is applied directly to the hydrogel,

the resulting strain can be translated onto the cells either

through focal adhesions for cells attached to their surrounding

hydrogel matrix or through the cell membrane for encapsulated

cells. Once strain is applied to the cell, it leads to changes in the

cell’s cytoskeletal configuration, disruption of the cell’s nucleus,

activation of ion channels and phosphorylation [183]. Forces

generated on the cytoskeleton are transferred to the cell nucleus

across the nuclear envelope through molecular tethers referred

to as linkers of the nucleoskeleton to the cytoskeleton complex
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Figure 5. Schematic of different methods of applying force to cells in hydrogels: (a) no force, (b) tensile, (c) compression, (d ) hydrostatic pressure and (e) fluid flow.
(Online version in colour.)
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consisting of Sad1, UNC-84 and Klarsicht, ANC-1 and Syne

homology proteins [184–187]. Mechanically induced activation

of ion channels results in the release of signalling molecules

that, in turn, influence the behaviour of neighbouring cells

[188]. Phosphorylation involves the covalent binding of phos-

phate groups to proteins that leads to the activation of

the protein and can induce other cellular processes. Mechani-

cal stimulation of cells in hydrogels via compression has been

investigated for regenerating several types of tissue, most

prominently cartilage because it mimics the in vivo situation.

Compressive force has been shown to promote or inhibit the

chondrogenic capacity of chondrocytes and mesenchymal stem

cells depending on the loading regime used [175,176,189].

Tensile loading of hydrogels has been shown to exhibit a wide

range of effects on cells in hydrogels, including to promote fibro-

blastic differentiation of mesenchymal stem cells [177], induce

matrix alignment in engineered ligaments [17], enhance cell

organization in engineered cardiac tissue [190] and regulate

mesenchymal stem cell gene expression [191]. The combination

of these changes to cell behaviour after force has been applied

demonstrates the importance of mechanical cues and mechanical

stimulation for cell-seeded hydrogels.

An alternative to physically applying force directly onto the

hydrogel is to use hydrostatic pressure to increase the pressure

surrounding the hydrogel. Unlike the application of direct con-

tact forces, hydrostatic pressure does not result in deformation

of the hydrogel in a particular geometry. The force applied to

the cells in the hydrogel should be more uniformly distributed

around the cell body. Like direct force, exposure to increased

hydrostatic pressure led to changes in cytoskeleton [79] and

ion-channel activation [192]. Hydrostatic pressure appears to

be particularly useful in initiating cartilage formation in hydro-

gels [193]. Hydrostatic pressure has been shown to up-regulate

aggrecan and collagen II gene expression and increase sulfated

GAG production in chondrocytes cultured in agarose hydro-

gels [194,195]. The dynamic modulus of mesenchymal stem
cell-seeded hydrogels has also been shown to increase when

cultured under hydrostatic pressure in a chemically defined

chondrogenic differentiation media [180]. This increase was

the result of increased extracellular deposition in the core of

the hydrogel. Steward et al. [79] have suggested that vimentan

may play a role in the chondrogenic differentiation of mesen-

chymal stem cells under hydrostatic pressure as part of a

mechanotransduction pathway [79].

Fluid flow is another mechanism by which force can be

applied to cells in hydrogels. The porous, water-swollen

nature of hydrogels allows liquid to penetrate and pass

through them. As this liquid passes through the hydrogels,

cells attached to the matrix components of the hydrogel

may experience shear stress from the fluid flow. The forces

applied to the cell body have a similar effect on the cell be-

haviour as cells subjected to compressive or tensile force.

Interestingly, Malone et al. [196] showed that cells subjected

to a constant flow produced an increase in stress fibre for-

mation while this was not present under interstitial flow

conditions [196]. This suggests that the nature of the fluidic

force applied has an impact on the cell response.
5. Conclusion
Understanding the interaction between cells and their sur-

rounding matrix in hydrogels is vital in the development of

new tissue engineering and regenerative medicine therapies.

The main challenges to be overcome in using hydrogels are

improving the control of cell behaviour; determining appro-

priate mechanical cues to initiate specific cell activities and

developing hydrogels with properties similar to native

tissue and that promote tissue formation. Success in complet-

ing these challenges will enable clinicians, scientists and

engineers to develop new tissue engineering and regenerative

medicine treatments.
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