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(PK9-H), a fragment of Ypk9, the yeast homologue of the human Park9 protein, was studied for its coordination

abilities towards Ni(II) and Cu(II) ions through mono- and bi-dimensional NMR techniques. Both proteins are involved in the
transportation of metal ions, including manganese and nickel, from the cytosol to the lysosomal lumen. Ypk9 showed manganese
detoxification role, preventing aMn-inducedParkinsonism (PD) besidesmutations in Park9, linked to a juvenile formof the disease.
Here, we tested PK9-H with Cu(II) and Ni(II) ions, the former because it is an essential element ubiquitous in the human body, so
its trafficking should be strictly regulated and one cannot exclude that Ypk9 may play a role in it, and the latter because, besides
being a toxic element for many organisms and involved in different pathologies and inflammation states, it seems that the protein
confers protection against it. NMR experiments showed that both cations can bind PK9-H in an effective way, leading to complexes
whose coordination mode depends on the pH of the solution. NMR data have been used to build a model for the structure of the
major Cu(II) and Ni(II) complexes. Structural changes in the conformation of the peptide with organized side chain orientation
promoted by nickel coordination were detected.

1. Introduction

In a recent study Ypk9, the yeast orthologue to Park9 protein
(alias ATP13A2), a member of the P

5
-type ATPase family,

showed to be involved in yeast protection against the effects
of potentially toxic divalent cations [1]. Deletion of this gene
led to growth defects when cells were exposed to different
metal ions, but the effect was even more pronounced for
Mn(II), in whose presence cells did not grow at all. In this way
the role of the protein was connected to protection against
noxious metal ions, and in its human form, whenmutated, to
Mn-induced Parkinsonism [2, 3]. Deletion of Ypk9 in yeast
cells caused growth defects also in the presence of different
other metal ions, including Ni(II). The whole protein is rich
in coordinating residues, and the P

5
-type ATPase family has

been rubricated as a “cation transporter”, although its role
has not yet been fully clarified. It can thus be possible that

mutations on Ypk9 and/or Park9 may have a role in cell
sensitivity towards different cations. So, the effectiveness of
metal binding to proper sequences within the proteins should
be confirmed.

For this study, we chose a fragment, P
1
D
2
E
3
K
4
H
5
E
6
L
7

(PK9-H from now on, Figure 1s), containing a histidine
residue whose role is to act as an anchoring site for metal
ions. The same fragment had already been tested for Mn(II),
Cu(II), and Zn(II) binding, giving interesting results [4, 5]
and showing an effective interaction with these metals.

In the present paper, we complete the previous study on
Cu(II) coordination, extend the scope of our research also
to Ni(II) ions, and discuss the obtained results. Cu(II) was
chosen for this investigation because it is involved in many
biological processes within our organism, so its trafficking
is of vital importance for a good functioning of the body
[6–8]. Since Ypk9, as a P

5
-type ATPase, may be involved
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in divalent cations transportation, we cannot exclude that
copper may be one of the metals carried by this protein. On
the other hand, Ni(II) was also tested because it is implied in
a number of pathologies, including allergies and cancer [9–
11], and causes noxious effects on different other processes
[12, 13], but as a divalent cation, it may be too transported
by the same ATPase, noting that recently Park9 protein was
shown to exert protection properties against nickel toxicity
[14, 15].

From a chemical point of view, Ni(II) could work as a
diamagnetic probe at a relatively high pH value (pH above 8)
[16], and for this reason, it is utterly valuable in the study via
NMR techniques of metal binding sites, where Cu(II), being
paramagnetic, cannot always give enough information.

2. Experimental

2.1. Peptide Synthesis. The peptide PDEKHEL was chemi-
cally synthesized using solid-phase Fmoc (fluoren-9-ylme-
thoxycarbonyl) chemistry in an Applied Biosystems Synthe-
sizer [17]. PDEKHEL was N-terminally acetylated and C-
terminally amidated in order to mimic this region of Park9-
Ypk9within the full-length protein.The peptidewas removed
from the resin and deprotected before purification by reverse-
phase HPLC. Fractions were collected and analyzed by
MALDI-TOF MS. Fractions containing the peptide of the
expectedmolecular weight were then pooled and lyophilized.

2.2. NMRMeasurements. NMRexperimentswere performed
on a Bruker Ascend 400MHz spectrometer equipped with
a 5mm automated tuning and matching broad band probe
(BBFO) with 𝑧-gradients.

Samples used for NMR experiments were in the range
2–2.5mM in concentration and dissolved in 90/10 (v/v)
H
2
O/D
2
O. All NMR experiments were performed at 298K in

5mmNMR tubes. 2D 1H-13Cheteronuclear correlation spec-
tra (HSQC) were acquired using a phase-sensitive sequence
employing Echo-Antiecho-TPPI gradient selection with a
heteronuclear coupling constant 𝐽XH = 145Hz and shaped
pulses for all 180∘ pulses on f2 channelwith decoupling during
acquisition; sensitivity improvement and gradients in back-
inept were also used [18–20].

Relaxation delays of 2 s and 90∘ pulses of about 10 𝜇s were
applied for all experiments. Solvent suppression for 1D and
TOCSY experiments was achieved using excitation sculpting
with gradients. The spin-lock mixing time of the TOCSY
experiment was obtained with MLEV17 [21].
1H-1H TOCSYs were performed using mixing times of

60ms. 1H-1H ROESY spectra were acquired with spin-lock
pulses duration in the range 200–250ms [22].

The assignments of the peptide resonances were made by
a combination ofmono- and bidimensional andmultinuclear
NMR techniques 1H-1H TOCSY, 1H-13C HSQC, and 1H-1H
ROESY at different pH values.

All NMR data were processed with TopSpin (Bruker
Instruments) software and analyzed by Sparky 3.11 [23] and
MestRe Nova 6.0.2 (Mestrelab Research S.L.) programs.

2.3. Structural Calculations. Structure calculations for the
peptide-copper complex were performed on the basis of the
experimental evidences obtained from UV-Vis and NMR
results. Cu(II) contact map and metal-to-donor atoms dis-
tance obtained from analogous systems [24, 25] were used
to model the Cu(II) complexes in a distorted tetragonal
geometry, with an in plane 4N {NIm, 3N

−
} chromophore,

according to our spectroscopic results (this work and [5]).
Structure calculations for the peptide-nickel complex

were performed on the basis of the experimental evidences
plus ROE cross-correlations observed in 2D 1H-1H ROESY
spectra. Due to the high pH value needed for the 4N1O
{NIm, 3N

−
,O−} complex formation (pH 10.5), no signals were

detected in the aromatic region for the labile amide HN

aromatic protons, except for the imidazole protons H𝜀
1
and

H𝛿
2
of the histidine ring. A structure determination has been

carried out for the residues directly involved in the complex
formation and in its close proximity (D

2
E
3
K
4
H
5
E
6
) for

which significant ROEs were clearly detected. ROESY results
were used as input data for structure calculations. The 2D
cross-peaks of 1H-1H ROESY spectra of the peptide-Ni(II)
system at 1 : 0.9 molar ratio were assigned and the intensities
transformed into the maximal distances using the following
method. Upper bounds 𝑢 on the distance between two corre-
lated hydrogen atoms were derived from the corresponding
ROESY cross peak volumes𝑉 according to calibration curves
𝑉 = 𝑘/𝑢

6, with a constant 𝑘 determined by using the cross-
peak intensity H𝛿

2
-H𝜀
1
of histidine imidazole aromatic pro-

tons as reference (𝑢 = 4.25 Å) [26].The geometric constraints
were set up, in agreement with the spectroscopic evidences,
for a pentacoordinated {NIm, 3N

−
,O−} species in a square

pyramidal arrangement (spy) by fixing the Ni(II) ion with the
four nitrogen donor atoms (NIm, 3N

−) in equatorial position
and with the axial position occupied by the carboxylated
oxygen (O−) of Asp-2. Ni(II) binding to the nitrogen of the
Glu-3(N−)-Lys-4(N−)-His-5(NIm,N

−) sequence (square base
of the pyramid) was restrained to the geometry encountered
in the X-ray structure of the Ni(II)(Glycyl-Glycyl-Alpha-
Hydroxy-D,L-Histamine)⋅3H

2
O [27, 28] with a calculation

method already shown elsewhere [29].
Molecular mechanics geometry optimizations were

obtained by an AMBER force field implemented in
HyperChem(tm) 8.0.7 molecular modeling software. For
energy minimization, the Polak Ribiere (conjugate gradient)
algorithm was used to find the minimum within the
HyperChem package. Models of the most likely coordination
sphere for Cu(II) and Ni(II) species were generated with
Chimera (YASARA Biosciences).

3. Results and Discussion

3.1. Cu(II) Complexes. The interaction of PK9-H fragment
with Cu(II) ions had been partially studied in a previous
paper [5], by using potentiometric methods and spectro-
scopic techniques such as NMR and UV-Vis. From poten-
tiometric measurements, the species distribution diagram,
depending on the pH of the solution, had been obtained; it
was very useful for setting the NMR experiments at the pH
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Figure 1: Stacked image of 1H NMR spectra for the aromatic (a)
and aliphatic (b) regions for the PK9-H peptide, 2.5mM, and pH 7.6,
𝑇 298K, with increasing amounts of Cu(II) from 1 : 0.00 to 1 : 0.05
metal to ligand molar ratios.

values where the maximum formation of a given species was
reached. When a histidine residue is present in a terminally
blocked peptide, it normally acts as the primary binding site
for themetal ions, through its imidazole nitrogen, while other
ligands (usually water molecules or oxygen donors from the
peptide, if present) are stepwisely substituted by deprotonated
amide nitrogens from the backbone, giving rise to tetragonal
4N {NIm, 3N

−
} species, as the pH is raised.

With Cu(II) being a paramagnetic ion, 1D NMR spec-
tra of Cu(II)/PK9-H system detected only a paramagnetic
effect, giving a general broadening or disappearing for the
resonances from the residues directly involved in the complex
formation. In Figure 1, the titration of PK9-H peptide with
increasing amounts of Cu(II) at pH 7.6 is shown. As inferred
by potentiometric data [5], the species evidenced at this pH
is of a {NIm, 2N

−
,O} kind. In fact, in the aromatic region

(Figure 1(a)), the disappearance of histidine protons suggests
that coordination involves one of the imidazole nitrogens.
Furthermore, the H𝜀1 signal appears to be more affected in
comparison to H𝛿

2
, giving evidences of its closer distance

to the paramagnetic centre, thus suggesting coordination
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Figure 2: Superimposition of 1H NMR spectra for the PK9-H
peptide, 2.5mM, pH 11, and𝑇 298K, in the absence (blue) and in the
presence (red) of 0.05 equivalents of Cu(II). New resonances due to
Cu-binding have been indicated by green arrows.

to the metal ion through the N𝛿
1

donor atom, as already
found in other similar cases [30–32]. In the aliphatic region
(Figure 1(b)), even if a general broadening is visible, the
main residues affected by the metal ion are those related to
His-5 and Lys-4, for which the aliphatic protons underwent
the greatest effects. Clear evidence of the involvement of a
carboxylic group in the coordination is also visible, andmore-
over, from the 2D 1H-13CHSQCNMR spectrum (Figure 2s),
the complete vanishing of C𝛽-H𝛽2/3 from Asp-2 and the
disappearance of C𝛾-Q𝛾 signals from Glu-3 could confirm
the {NIm, 2N

−
,O} chromophore with the involvement of a

carboxylic group in the coordination sphere, either from
Asp-2 or Glu-3 residues, which could be in a dynamic
equilibrium between them. The monodimensional spectra
seem to indicate Glu3 as the residue most likely involved in
the coordination.

At basic pH, a further proton, belonging to HN fromGlu-
3, is released, leading to the formation of a 4N {NIm, 3N

−
}

chromophore. In the NMR spectrum recorded at pH 11
(assignment for the free peptide at this pH is reported in
Figure 3s), we simultaneously assist to the classical broaden-
ing and disappearing of some signals, due to the paramag-
netic effects of themetal on the closest nuclei, plus a chemical
shift variation involving the side chain protons and carbons
of those residues taking part to metal coordination through
their deprotonated amide nitrogens (Lys-4 and Glu-3). Both
effects are clearly visible in the mono and bidimensional
spectra in Figures 2 and 3, and in the plots of the observed
proton and carbon chemical shift changes (Δ𝛿 = 𝛿holo −
𝛿apo) for PK9-H peptide/Cu(II) system at pH 11 (Figure 4 and
Table 1s).

In Figure 2, a superimposition of the free and bound
peptide spectra is reported. A complete vanishing of His-5
imidazole signals in the aromatic region upon the addition
of 0.05 equivalents of copper is seen, indicating that His-5 is
the primary site for metal anchorage. At the same time, in the
aliphatic region (Figures 2 and 3),His-5 side chain protons are
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Figure 3: Selection of aliphatic region in the 1H-1H TOCSY NMR
spectra for PK9-H peptide, 2.5mM, pH 11, and 𝑇 298K in the
absence (blue) and in the presence (orange) of 0.05 equivalents of
Cu(II). New resonances due to Cu-binding have been labelled.

still present, although slightly broadened and shifted upfield
as a result of its HN deprotonation (H𝛼Δ𝛿 = −0.873 ppm,
H𝛽2/3 Δ𝛿 = −0.157, and −0.138 ppm, resp.). On the other
hand, all the resonances from Glu-3 together with Q𝛽 from
Lys-4 disappeared.

The side chain of Glu-3 results repositioned over the
coordination plane, while that of Lys-4 appears to lie out, far
from the paramagnetic influence of the metal, as shown in
the calculated model for this species (Figure 5). In fact, the
latter residue shows a variable effect on its protons, with the
shielding of H𝛼 and the disappearing of Q𝛽 signals that can
be an indication of the closeness of this residue to the metal
ion. Also a slight deshielding of H𝛾2/3 and again a shielding
of Q𝛿 andQ𝜀 resonances can be observed.This findingmight
be due to the relative positioning of the side chain outside
the coordination plane, in the opposite direction respect to
themetal centre.The remaining residues, Pro-1, Asp-2, Glu-6,
and Leu-7, although not directly participating in the complex
formation, they are nevertheless influenced by its formation,
as shown by a moderate to light shift of all their resonances,
indicating that the conformational changes induced by metal
coordination are able to affect also the farthest residues.

A final remark should be dedicated to Lys-4, since the
differences in the chemical shifts of its aliphatic side chain
protons, together with the disappearance, at pH 10, of C𝛾-
H𝛾, while Q𝛿 signals are still present, suggest the possible
deprotonation of the terminal amino group of lysine residue
though excluding its participation to metal coordination,
as indicated also by the previous UV-Vis experiments [5].
No evidence of the involvement of Asp-2 carboxylic moiety
into the coordination sphere has been found from NMR
experiments at pH 10, given the poor effect of the metal on all
its resonances which can be reflected by the slight chemical
shift changes recorded for its protons.

3.2. Ni(II) Complex. We investigated the interaction of Ni(II)
ion with PK9-H peptide in order to verify the peptide ability
to bind this metal which, as a divalent cation, can be involved
in cellular trafficking lead by Ypk9 protein and to gathermore
information about the PK9-H coordination behaviour.
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Figure 4: Plot of the observed 1H proton (a) and 13C carbon (b)
chemical shift changes (Δ𝛿 = 𝛿holo − 𝛿apo) for PK9-H peptide
following copper coordination at pH 11. Disappeared peaks have
been labelled by asterisk∗.

In the NMR spectra recorded around neutral pH, Ni(II)
results in a paramagnetic ion giving a general broadening
or disappearing of the resonances from the residues directly
involved in the complex formation andmore specifically Asp-
2, Glu-3/6 and His-5 (Figure 4s).

Usually, diamagnetic, low spin, square planar Ni(II)
complexes are obtained at sufficiently high pH values, where
the imidazole nitrogen of the histidine residue works as
the anchoring site (in terminally blocked peptides) and the
metal is able to deprotonate and bind three amide nitrogens
from the backbone, thus completing its coordination sphere
[29, 30, 32–35]. We recorded our spectra at pH 10.5, by
slowly adding increasing amounts of Ni(II) ions, up to a PK9-
H :Ni(II) 1 : 0.9molar ratio.This titration allowed us to follow
the changes undergone by the peptide upon nickel addition.

Coordination to His-5 is immediately recognized by the
gradual disappearing of the relative resonances in the free
peptide (H𝛿

2
and H𝜀

1
) and the concomitant appearing of a

new set of signals for the bound state (Figure 6). In particular,
it is possible to note that the appearance of two new signals
corresponding to the H𝜀

1
proton with the relative difference
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in Δ𝛿 of less than 0.1 ppm. The main species, identified
through the presence ofmore intense cross correlation signals
in the TOCSY spectrum and ROEs peaks in the ROESY
spectrum, is that with the chemical shift value for H𝜀

1
at

7.602 ppm and slightly overlapping with the free signal of H𝜀
1

which appears at 7.592 ppm.
The aromatic region reveals also the appearance of a new

resonance belonging to Asp-2 HN which becomes noticeable
as the amount of nickel in solution increases. This is a first
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clue of the involvement of Asp-2 residue in the coordination
sphere.

In the aliphatic region, on the other hand, we assist to
some chemical shift changes which are more pronounced for
the residues taking part tometal coordination, as expected for
His-5, Lys-4, and Glu-3 side chains (Figure 5s). The general
feature shownby their protons is a shielding effect forH𝛼, due
to the influence of an increased electron density upon amide
deprotonation, a fate which is also shared by all the remaining
protons in His-5 residue. Lys-4 resonances, instead, do not
show a regular trend, with H𝛽3 and H𝛾3 shifted upfield
(probably blocked in a position which brings them above a
shielding area of the complex, as shown also by the fact that
their degeneracy is not retained after coordination), whereas
the remaining part shifted down-field.

Glu-3 protons, on the other hand, are all deshielded with
the order 𝛽2 > 𝛽3 > 𝛾, probably due to a more rigid
conformation adopted also by Glu-3 side chain within the
complex. But the unexpected feature detected in the spectra
is the marked chemical shift variation undergone by the Asp-
2 protons, indicating that also this residue takes part in the
complex formation. Precisely, the Δ𝛿 trend indicates, at the
same time, that the Asp-2 residue is involved in the coordi-
nation through its carboxylic group COO− (Δ𝛿H𝛽2/3 >H𝛼)
and that the large difference between the chemical shifts of
two geminal beta proton (Δ𝛿H𝛽2≫H𝛽3) is a symptom of a
more rigid spatial conformation of the side chain. All these
conclusions were clearly confirmed by the bidimensional
spectra recorded and reported in Figures 7 and 8. In Figure 9,
the plots of the observed proton and carbon chemical shift
changes (Table 2s) for PK9-H peptide/Ni(II) system at pH
10.5 are shown.

ROESY experiments allowed us to collect a number of
ROE contacts between the protons close in space, used to
calculate a structural model for Ni(II)/PK9-H complex. In
particular, some contacts were evidenced between H𝛽2/3
and Q𝛾 side chain protons from Glu-3 and H𝜀

1
from His-

5, showing that the Glu-3 residue is positioned towards the
imidazole ring. Furthermore, also H𝛽 and H𝛼 from Asp-2
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Figure 8: Selection of aliphatic regions in the 13C-1H HSQC NMR
spectra for PK9-H peptide, 2.5mM, pH 10.5, and 𝑇 298K, in the
absence (blue) and in the presence (red) of 0.9 equivalents of Ni(II).
New resonances due to Ni-binding have been labelled.

residue interact with the His-5 aromatic protons, suggesting
the close proximity of Asp-2 residue to the coordination site.

It is thus clear that we are not simply facing a square
planar species, as it could be expected, but as pointed out by
the NMR data and the calculated model shown in Figure 10,
we are able to state that also Asp-2 residue, through its
carboxylate oxygen, is involved in the coordination to Ni(II)
ion, thus forming a pentacoordinated {NIm, 3N

−
,O−} species

in a square pyramidal arrangement (spy). The energy levels
distribution for the orbitals in a spy configuration should be
qualitatively very similar to the square planar case (𝑑

𝑦𝑧
=

𝑑
𝑥𝑧
< 𝑑
𝑧2
< 𝑑
𝑥𝑦
≪ 𝑑
𝑥2−𝑦2

), since the removal of only
one ligand along the 𝑧 axis of the octahedron introduces a
perturbation qualitatively very similar to that caused by the
removal, total or partial, of both ligands. A spy complex, with
a fifth donor on the apical position (the COO− group from
Asp-2), can thus be compatible with the experimental data
collected for this diamagnetic species.

This aspect clearly differentiates copper complexation,
under the same pH conditions, from nickel, for which the
presence in the coordination sphere of an additional donor
was evidenced.

4. Conclusions

In this paper, we have completed the information about
Cu(II) interaction with a possible divalent cations trans-
porter, Ypk9 protein, through the study of one of its model
peptides, P

1
D
2
E
3
K
4
H
5
E
6
L
7
(PK9-H), a histidine-containing

sequence. We have also studied the behaviour of Ni(II) ions,
which are able to interact with the same sequence by forming
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Figure 9: Plot of the observed 1H proton (a) and 13C carbon (b)
chemical shift changes (Δ𝛿 = 𝛿holo − 𝛿apo) for PK9-H peptide
following nickel coordination.

a complex whose structural model has been build up on
the basis of NMR data collected from the bidimensional
experiments.

The results obtained in this study clearly show that each
metal ion behaves according to its unique and peculiar
features in binding to the same peptide; this fact is reflected
in the formation of the different main species for the two
ions. In fact, nickel is able to add to its coordination sphere
an extra donor atom from the peptide, the oxygen from the
carboxylate moiety of a nearby aspartate residue, yielding a
square pyramidal coordination with a {NIm, 2N

−
,O} instead

of a tetragonal coordination with a {NIm, 3N
−
} chromophore

detected for copper. This occurrence must be held into
consideration when dealing with metal-specificity of a given
protein, as the one here examined.

Gathering the results we have collected for different
divalent cations, such as Mn(II), Zn(II), Cu(II), and Ni(II)
with a selected sequence of Ypk9 protein in which a possible
effective site for metal binding, the histidine residue, is
hosted, we are able to say that this member of the P

5
-type

ATPases shows a remarkable attitude towards the studied
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Glu3
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N𝛿1
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Figure 10: 3D structural model, derived from NMR structural
constraints (ROEs), for the Ni(II) ion complexed with PK9-H
peptide in a pentacoordinated geometry, with the involvement of the
N𝛿
1
imidazole nitrogen of the histidine residue, three deprotonated

amidic nitrogens from the peptide backbone (belonging to His-5,
Lys-4, andGlu-3 residues), and the carboxylatemoiety from aspartyl
(Asp-2) residue in the apical position, giving a {NIm, 3N

−
,O−}

species.

cations, reinforcing the hypothesis of its role as a metal
transporter agent.
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