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Integrin signaling network is responsible for regulating a wide variety of fundamental biological
processes ranging from cell survival to cell death. While individual components of the network have
been studied through experimental and computational methods, the network robustness and the flow
of information through the network have not been characterized in a quantitative framework. Using
a probability based model implemented through GRID computing, we approach the reduced
signaling network and show that the network is highly robust and the final stable steady state is
independent of the initial configurations. However, the path from the initial and the final state is
intrinsically dependent on the state of the input nodes. Our results demonstrate a rugged funnel-like
landscape for the signaling network where the final state is unique, but the paths are dependent on
initial conditions. © 2009 American Institute of Physics. �DOI: 10.1063/1.3149857�

I. INTRODUCTION

Integrins are bidirectional signaling and adhesion recep-
tors that not only act as both antennas and receptors but also
influence fundamental cell biological processes ranging from
development to disease.1–7 The role of integrins in altered
adhesion, migration, and metastasis during cancer has been
well established through a variety of in vivo, in vitro, and in
silico models.8–12 The formation of integrin clusters and the
mechanical and biochemical consequences of forming focal
adhesions and focal contacts have also resulted in improved
understanding of cell-matrix interactions.13–19 Together the
biochemical characterization of integrins and the transduc-
tion of mechanical signals through these heterodimeric re-
ceptors have resulted in integrins becoming a key target for
regulation of fundamental biological processes.

The activity of integrins results from both mechanical
and chemical stimulations. In addition, their ability to con-
vert mechanical and chemical information from inside and
outside the cell to measurable responses rests on the function
of the complex signaling network.20 While a number of in-
dividual components of this network have been character-
ized, the complexity of the entire network has only been
appreciated recently.21 With the advent of high throughput
assays and systems biological approaches, quasithermody-
namics of large networks has been characterized to some
extent.22 However, a number of key questions regarding the
flow of information and the robustness of the integrin net-
work remain elusive. These aspects of the signaling pathway
are critical for two main reasons. First, they will provide
information on the organization and structure of the network
and its ability to transmit information as a function of its
nodes and links. Second, analyzing the network will allow
for identification of potential targets and bottlenecks that will

create opportunities for specific targeting, which are desir-
able for specific therapeutic, biotechnological, or interven-
tion purposes.

In this paper, we utilize a computational model rooted in
previous studies of robustness of other biological
networks,22–26 implemented via distributed computing �via
Berkeley Open Infrastructure for Network Computing or
BOINC� and executed over the internet to characterize the
robustness of the integrin signaling network. The main goal
of our study is to study the input output relationship between
various nodes to better characterize the flow of information
through the network. Our results quantitatively address how
the availability or unavailability of individual nodes affects
this flow and what information can be derived from analyz-
ing the flux through the network.

II. PROBABILITY MODEL

The integrin signaling network has been characterized in
various recent studies. In this paper, however, we focus on a
reduced network due to computational limitations. While our
focus is on a smaller core network, given sufficient compu-
tational resources, our method can be applied to a larger
network. In addition, our results are quite general and would
not be affected by the addition of additional nodes and links.

We considered a network graph with N=16 nodes, each
of which could has positive or negative influences on each
other. The network contains the nodes Abl, C3G, Cas, Crk,
DOCK180, Graf, MEK, MLCK, MLCP, P190RhoGAP,
PAK, RLC, ROCK, Rho, Src, and FAK, labeled in that order,
and the graph of this network is shown in Fig. 1. This net-
work is based on previously published networks of integrin
signaling.

The network graph consists of a set of directed connec-
tions, from one node to another, representing the influence of
each node on the others. We considered the possibility of this
influence being only either positive �+1�, negative ��1�, or
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none �0�. This network graph can then be described by an
N�N relationship matrix A, where each element Aij de-
scribes the influence on node i by node j and can have a
value of +1, �1, or 0.

As a simplification, we considered that each node could
only be either fully on or off and considered a set of states
representing each possibility of each node being either on or
off. Thus, there are then 2N distinct states of the network,
where N is the number of the interacting nodes in the cell
signaling network. Then the bit pattern of the binary expan-
sion of the state index indicates the on/off status of each
node in that state.

We consider the probability of each possible state. These
can be represented by a 2N element vector P with the con-
straint of the normalized condition �iPi=1. In order to study
the evolution of this probability vector, we thus need to de-
scribe the probability of each state transitioning to each other
state. These probabilities are expressed as a 2N�2N matrix
T, where each element Tij represents the probability rate of
state i transitioning to state j. The evolution of the probabili-
ties can then be written as

dPi

dt
= − �

states j

TijPt + �
states j

TjtPj . �1�

The change in probability of being in state i is the sum of the
probabilities of all other states transitioning to state i minus
the sum of the probabilities of state i transitioning to all other
states. Equation �1� is discretized in time steps and rewritten
as the matrix equation

Pn+1 = MPn. �2�

Here the superscript n+1 and n denote the adjacent time
steps. The evolution matrix M reduced from general Eq. �1�
represents in the diagonal and off-diagonal elements

Mij =�1 − � j�i
�tTij , if i = j

�tTji, if i � j ,
� �3�

where �t is the discrete time step.

To determine the transition probabilities Tij, we make the
simplifying assumption that each node transitions indepen-
dently. As the bit patterns of the state indices correspond to
the on/off status of the nodes, we can then express Tij as a
product of N terms for the probability of the corresponding
change �or no change� in the node status implied by the
indices. Next, we consider the input for each node in the
source state to determine the probability for each individual
bit change �or not� based on the network diagram. We con-
sider two cases for evaluating the bit change probability: One
where there is some input for the node and one where there is
not.

To determine the input for each node, for each source
state, we considered the nodes that are on for the state based
on the bit pattern of the state index, and summed the network
influence for these nodes, so

node inputi = �
k nodes

aikbitk,

where bitk is the kth bit in the binary expansion of the state
index and aik is the element in the network relationship ma-
trix A. When there is input for the node, we use a transition
probability of 1

2 �
1
2 tanh���node inputi� for the bit i change

probability. The sign is determined by the bit of the final
state, + when the bit i is on and � when the bit i is off. This
results in positive inputs tending to turn the node on and
negative inputs tending to turn the node off. � is a parameter
that controls the width of the switching function, which mod-
els as the reaction rate. Some care is required in evaluating
this switching function, as the arguments to tanh may be so
large that to machine precision, it equals exactly 1.0, and the
subtraction can lose all precision. Therefore, this function is
expressed in terms of 1−tanh�x�, which can be computed
without precision problems as 2e−x / �1+e−x�.

When there is no input for the node, instead of using the
transition probability of 0.5 implied by the switching func-
tion, we take that the node will flip with probability c, where
c is a parameter. Depending on whether the i , j values im-
plied a change in the bit state, the transition probability could
be either c �for a change in bit state� or 1−c �for no change
in bit state�.

Before the numerical computation, some rigid math-
ematical notes need careful scrutiny based on this probability
model. In the following section, we will show that the itera-
tions are always convergent to one unique final steady state
no matter what initial conditions we take.

A. Gershgorin circle theorem

Let A be a complex n�n matrix with entries aij. For j
�1, . . . ,n write Rj =�i�j�aij�, where �aij� denotes the absolute
value of aij. Let D�aij ,Rj� be the closed disk centered at aij

with radius Rj. Every eigenvalue of A lies within at least one
of the Gershgorin disks D�ajj ,Rj�.

For evolution matrix in Eq. �3�, Rj =� j�i�tTij and ajj

=1−� j�i�tTij =1−Rj. So every eigenvalue � of M lies
within at least one of �z− �1−Rj���Rj, which is located

FIG. 1. �Color online� The 16 nodes integrin signaling network scheme.
The relationship between each pair shows either the positive activating
regulations �represented by arrow� or the negative suppressing regulations
�represented by inhibition symbol �. The 3D nodes FAK and Src are sig-
nificant nodes demonstrated by the experiments.
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within the unit disks. Then only a real eigenvalue one is on
the unit circle, and all other eigenvalues constrain inside the
circle.

Every initial probability vector can be expressed as the
linear combination of the eigenvectors Xi of matrix M. After
n time iterations on the initial states, we derive the probabil-
ity vector on n�t,

Pn = MnP0 = �i
ai�i

nXi. �4�

Apparently, if the absolute value of the eigenvalues �i is
smaller than one, all the terms involved with �i

n will disap-
pear. So only the term with the eigenvalue one is left,

Pfinal = aiXi,

the normalized condition on P values �. Actually, we take all
the eigenvectors are normalized, then �=1. The final steady
state is always convergent to the eigenvector with the eigen-
value equal to one.

III. COMPUTATIONAL METHOD

We considered several sets of parameters, one set with
c=0.001 and various values of � and one with �=5.0 and
various values of c. In addition, we considered 17 different
initial conditions, one with all states having equal probability
and 16, one for each node, with the state with the node on
and all other nodes off having probability 1.0 and all other
states having probability 0.0.

Each parameter set and initial condition were an inde-
pendent calculation that could be run in parallel. However
the creation of the matrix M costs 16 Gbytes of memory for
our 16 nodes cell signaling network; thus it is a memory-
intensive computational task. To overcome this challenge, we
set up a volunteer distributed computing system to execute
the set of jobs using the open-source BOINC system. We
called the system “CELS@Home” or “cellular environment
in living systems at home.” Volunteers connected to our
server CELS@Home and downloaded an executable pro-
gram to run the job along with input data files. When the
program was complete, the resulting output file was up-
loaded back to the server, and the volunteer was assigned a
number of credits for the completed job.

As the entire computation was too large for a practical
job for volunteers, the full set of iterations was split into
pieces of 20 iterations, followed by a computation of the
entropy production rate. Each such set of iterations, for par-
ticular parameter values and initial condition, was assigned
to multiple volunteers, typically at least four. The duplication
allowed both the verification of results, which was necessary
as we could not control the environment on which each job
was run and so guarantee correctness, and also the enhanced
overall rate of the calculation, as the first two valid returned
results were sufficient to start the next set of iterations.

Periodically, the duplicate returned jobs were checked
for results that were equivalent. If multiple equivalent jobs
were found, one was randomly selected as the canonical re-
sult and used to spawn another set of iterations. To determine
equivalency, we required that the relative error between all
components of the state vector be 5.0�10−14 or less, and we

also required that the recorded execution time be different.
The execution time check was intended to stop any attempt
at fraudulently submitting the same result file twice.

Some specific issues presented themselves as a result of
the use of volunteer distributed computing. Since we could
not control the environment on which the program executed,
we could not absolutely trust the results. Besides the possi-
bility of simple errors, it was also possible that a volunteer
might intentionally submit false results. This necessitated the
redundancy and validation steps. Also, since we depended on
volunteers for computing power, it was important to maintain
interest in continuing to work on the project. Some important
aspects of this were equitable assignment of credits for jobs,
that the client program be able to save its state periodically
so that it could be suspended and restarted without a large
loss of work, that we provided a graphics program that
showed the status of the computation, and that the server
provided message boards that the volunteers could use to
communicate with the project developers and each other.

The client program to execute the iterations was written
in C		 for MICROSOFT WINDOWS, while programs to pro-
cess the result files on the server were written in Python and
used MATPLOTLIB to generate graphs of the results in order to
monitor the progress of the iteration. Random selection was
done with the MERSENNE TWISTER pseudorandom number
generator, seeded by default with the system clock.

Our data files were structured as text XML files com-
pressed with ZLIB. The bulk of the data was the representa-
tion of the state vector, but the file also included various
statistics about each completed iteration, the parameters and
network graph used, a history of the iterations performed,
and other comments. Both input and output files used the
same file format. The use of compressed files made it easy to
detect and reject corrupted files, as these usually could not be
uncompressed and so was clearly identifiable.

IV. RESULTS AND DISCUSSION

Because the BOINC infrastructure bases on diversified
computers, the convergence check is important to guarantee
the algorithm and computational results reasonable. The ma-
trix Eq. �2� iterates for large c values �0.1, 0.01� until con-
vergence to machine precision and for smaller c values for
1900 iterations at which point had not yet converged to ma-
chine precision. Figure 2 illustrates the convergence of the
algorithm running over the bundles of different parameters �
and c. It shows that the convergence rate depends highly on
c; the calculation converges quickly for large c and slowly
for small c, while the convergence depends weakly on �
with faster convergence for small �, but the effect is not
nearly as strong as with c. The strong dependence on param-
eter c reflects the states without input determine the conver-
gent rate. The probability on these states is reluctant to
change when c is small, so it spends a longer time to convert
these states to the final steady states.

The ability of the model to understand the typical pattern
in the final states in response to the model-specific param-
eters � and c is a key point in this paper. The � in the
formula of transition probability represents the transition rate
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from on�off� to off�on�, which is the function of the rate
constants. Because the limited information for the model-
specific parameter �, we focus on the relative effects of dif-
ferent values on kinetics and magnitude so that the conclu-
sions drawn are valid regardless of the specific
phenomenological constants used. Here the parameter c
models the effect of self-degradation, which normally is a
very small positive number. All other states transit into the
nondegradation states and are stable in these states in the
final states without the self-degradation effect, which makes
the iteration really slow as we demonstrated in Fig. 2�b�. The
parameter dependent behavior of the most likely probabili-
ties �top ten� in the final steady states is concluded in Fig. 3.
The nodes in cell signaling network flip-flops in order to
evolve the whole network into the optimal performance. Too

frequent switching nodes from 1�0� to 0�1� zeros the transi-
tions for 1�0� to 1�0�, while the slow switching nodes do the
opposite way. So we expect there are peak probabilities. Be-
fore that, the probabilities exponentially grow due to the
large transition time �1 /��. After that the probabilities ap-
proach the optimal values. Comparing to � saturation and
accumulation effect, there is no obvious evidence that c will
approach to the saturation or accumulation in our simulation.
Our work demonstrated that adjusting � can control the
activation/deactivation dynamics for different nodes. How-
ever, we also notice that pattern of nodes in likely states
exists for c variation under the following scenarios:

�1� Abl, C3G, Cas, Graf, MEK P190RhoGap, Src, FAK—
all “on;”

FIG. 2. �Color online� The error norm between two adjacent iterations gradually decays into zero when it comes close to the final steady state. �a� The smaller
switching speed � increases the convergent rate a little. �b� The value of c greatly changes the convergent behavior.

FIG. 3. �Color online� The most likely probability states demonstrate their characteristics under the exogenous conditions c and �. In �a� and �b� � peaks the
probability curve at an intermediary value, then decays into the stable states. The � accumulation and saturation affect the parameter dependent behavior of
the cell signaling greatly. �c� and �d� show the parameter c dependent. Unlike dependence on �, the probabilities monotonously decrease or increase a bit.
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�2� Rho—“off;” and
�3� Crk, Dock180, MLCK, MLCP, PAK, RLC, ROCK—

“indeterminate.”

The robust pattern survives the cell signaling network
against self-degradation, which is important property under
certain physiology environments. In addition to the probabil-
ity evolution, we calculated the entropy of each state in the
Shannon entropy formulation, which can show underlying
complexity information for the whole states,

S = − kB�i
Pi ln�Pi� . �5�

Here kB is the Boltzmann constant. The simulation initially
starts from the equally distributed probabilities and then
maximizes the degree of the complexity in the initial time.
Therefore, the system entropy decreases from initial values
to approach the final states dependent on and � and c; the
corresponding free energy consumes in this process simulta-
neously. Too frequent switching nodes from 1�0� to 0�1� zero
the transitions from 1�0� to 1�0� but lower the entropy further
�Fig. 4�. However, any transition from 1�0� to 1�0� contrib-
utes nothing to the entropy. That explains why the high �
�the 1�0� to 0�1� transitions are preferred� reduces to the
small complexity �entropy�. Physiologically, the cell signal-
ing network appears more regular in the high � regimes. We
also note that self-degradation changes the entropy but not
significantly. No evidence of saturation exists across the
spectrum of parameter c as was explored in the numerical
experiment. In our probability model, the different initial
probabilities on nodes lost their history in the cell signaling
process. The final steady states as we proved above always
have the identical final states independent on the initial val-
ues. However, the path connecting the initial states to the
final states strongly depends on the initial condition. So it is
more attractive to explore the statistical properties on the
time path, such quantities as the entropy, free energy, and
dependence test function.

Experimentally, the cell signaling network works in the
thermal bath with the temperature T. So the free energy is a
key function of state in this isothermal system,

G = kBT��states i
− ln�Pi� + Pi ln�Pi�� . �6�

Figure 5 demonstrates the free energy curves at different
times. Only three typical free energy curves are found in our
simulation: Well potential, downhill, and uphill potentials,
corresponding to that the free energy curve creates a mini-
mum in middle, at final, and at the beginning. From the point
view of energy, the thermal equilibrium state minimizes the
free energy of system. However, our cell signaling network
has no energy constraints with infinite energy inputs. Actu-
ally, the network stops continuing to move forward when it
reaches the minimum of free energy; then the system will
oscillate around the minimum as the balanced states. There-
fore, only the downhill potential will approach the final
steady state, while the uphill potential resists any change in
the initial states, and the well potential oscillates around the
bottom of free energy.

V. CONCLUSIONS

In this paper, we present a first study of the quantifica-
tion of various states comprising the integrin signaling net-
work. The execution of the analytical approach through a
GRID computing framework allowed us to quantify various
aspects of network information flow.

The results of our analysis of the reduced integrin sig-
naling network suggest two key features. First, we note that
the integrin signaling network is highly robust. The final
state of the network remains the same regardless of the initial
states. Robustness of networks has been described as a prop-
erty that allows the system to retain its function despite in-
ternal and external perturbations.27–29 We note that our net-
work leads to the same final state, which may correspond to
a specific function, regardless of the initial conditions. Yet at
the same time, the network is highly dynamic as the paths
connecting the initial and the final states depend highly on
the initial condition. This result is also of significant interest
to the systems biology community, as it is the structure of
network connectivity, not rate constants, that dictates the
evolution and sustainability of robust networks.27,30 Ex-
amples of such robust networks that operate over a wide
range of binding kinetics include �-phage,31 chemotaxis,32

and embryogenesis in D. melanogaster.33 Thus one can con-
ceive the energy landscape of the integrin signaling network

FIG. 4. The entropy curve shows in the parameter �a� � and �b�c. Only from 1�0� to 0�1� transitions contribute to the amount of entropy, while from 1�0� to
1�0� transitions keep entropy constant except the self-degradation.
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to be similar to a rugged funnel-like where the final states are
unique but the paths leading to the final state are dependent
on the initial conditions. This is similar to the results ob-
tained previously for MAPK network24,26 and the cell-cycle
network.23 Our result underscores the robustness of the net-
work and will hopefully lead to a better insight about the
evolution of the network. While our study focused primarily
on a reduced network, we believe that the network probed in
this study represents the core of the larger signaling network
and will have similarities with a much larger network behav-
ior.

It is our hope that future experimental and computational
studies will focus on rigorously testing the predictions of our
study and will probe in even more detail the robustness of
the network through mutational and siRNA knockdown stud-
ies.
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