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We survey the population genetic basis of social evolution, using a logically

consistent set of arguments to cover a wide range of biological scenarios. We

start by reconsidering Hamilton’s (Hamilton 1964 J. Theoret. Biol. 7, 1–16

(doi:10.1016/0022-5193(64)90038-4)) results for selection on a social trait

under the assumptions of additive gene action, weak selection and constant

environment and demography. This yields a prediction for the direction of

allele frequency change in terms of phenotypic costs and benefits and genea-

logical concepts of relatedness, which holds for any frequency of the trait

in the population, and provides the foundation for further developments

and extensions. We then allow for any type of gene interaction within and

between individuals, strong selection and fluctuating environments

and demography, which may depend on the evolving trait itself. We reach

three conclusions pertaining to selection on social behaviours under broad

conditions. (i) Selection can be understood by focusing on a one-generation

change in mean allele frequency, a computation which underpins the utility

of reproductive value weights; (ii) in large populations under the assump-

tions of additive gene action and weak selection, this change is of constant

sign for any allele frequency and is predicted by a phenotypic selection gra-

dient; (iii) under the assumptions of trait substitution sequences, such

phenotypic selection gradients suffice to characterize long-term multi-

dimensional stochastic evolution, with almost no knowledge about the gen-

etic details underlying the coevolving traits. Having such simple results

about the effect of selection regardless of population structure and type of

social interactions can help to delineate the common features of distinct bio-

logical processes. Finally, we clarify some persistent divergences within

social evolution theory, with respect to exactness, synergies, maximization,

dynamic sufficiency and the role of genetic arguments.
1. Introduction

[P]onderous mathematical cortices skimmed my pages like flying saucers and back at
their base did not always pronounce favourably on what they saw. Inclusive fitness
wasn’t ‘well defined’, it was said . . . [1, p. 95]
Inclusive fitness theory was first described by Hamilton [2] and has delivered

insights about the evolution of the biological world, which range from inter-

actions between genes and cells within individuals to the spatial structuring

and fighting among groups. Consequently, inclusive fitness theory has become

the foundation for social evolution. As illustrated by the above quote, however,

Hamilton’s results have been controversial, as they became a target in the

debate about sociobiology, where issues at stake have not been simply a willing-

ness to understand the biological world [3]. The relationship between social

evolution and population genetic theory has consequently been obscured.

Our goal in this paper is to present a mature account of the population gen-

etic basis of social evolution theory. We survey a formulation of this theory that,

despite its compactness, has shed light on many of the earlier misunderstand-

ings, and has allowed investigations of many extensions of Hamilton’s original

analysis. Our aim is not to provide the most general proofs, but to provide an

exposition consistent with exacting derivations, rather than simply a rationaliz-

ation of Hamilton’s rule and its extensions. We will progress through a series of

examples, and point to potential pitfalls in generalizing from them.

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2013.0357&domain=pdf&date_stamp=2014-03-31
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http://dx.doi.org/10.1016/0022-5193(64)90038-4


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130357

2
The paper is organized as follows. (i) We present a

derivation of Hamilton’s [2] first insight in its most attractive

form: a description of the result of natural selection on the

evolution of a trait that affects its carrier as well as other

individuals in the population (i.e. a social behaviour with

possible interactions among phenotypes) and that deals as

little as possible with unknown details of the genetic basis

of the trait considered. (ii) We relax demographic and gene-

tic assumptions. We consider extensions of Hamilton’s [2]

results to populations with localized dispersal and discuss

how complex environmental and population dynamic pro-

cesses can be handled by the concept of reproductive value.

Then, we consider versions of Hamilton’s rule including non-

additive gene interactions, such as dominance, epistasis and

synergies between genotypic effects of different individuals.

(iii) We consider the joint evolution of several traits on

the longer time scale of the change of trait values in the

presence of a recurrent flow of mutations. In this ‘long-

term’ perspective [4], coevolving traits can impinge on the

ecological and demographic properties of a population so as

to result in eco-evolutionary feedback or niche construction.

(iv) Finally, we discuss the implications of the results surveyed

for long-discussed topics: exact versus approximate results,

dynamic sufficiency, maximization of (inclusive) fitness and

how behaviours conditional on others’ behaviours fit within

the general framework.
(a) Fitness and allele frequency change
(i) Stochastic allele frequency change
As a foundation for our later developments, we focus in this

section on a description of allele frequency change under

natural selection without mutation in a finite population

with constant environment. Let p(t) be the frequency of a

mutant allele in the population at time t, viewed as the rea-

lized value of a random variable P(t), whose change

between a parental generation at time t and an offspring gen-

eration at time t þ 1 is DP(t) ¼ P(tþ 1)� P(t). For simplicity,

this change will be denoted DP ¼ P0 � P, as throughout this

paper a variable without any time index (e.g. P) is by default

considered at some parental generation, and we use a prime

(0) to denote that variable in the offspring generation (e.g. P0).
Our starting point to describe DP is gene counting. The

allele frequency in the descendent generation is

P0 ¼
X

i

AiPg(i), (1:1)

where Ai is a random variable giving the frequency of gene

copies in the offspring generation that descend from parent

i and Pg(i) is the frequency of the mutant allele among these

gene copies. This expression also applies to diploids if we

consider each of the two homologous gene copies of a diploid

parent as an individual. Then, i runs over all 2NT gene copies

of a diploid population of NT organisms in the parental

generation. In a fully assumed gene-centred manner [5], we

can envision such gene copies as individuals, to which the

following always apply.

To express Ai in biological language, we introduce fitness

through Hamilton’s [2] own words: ‘the number of adult off-

spring’ of an individual. The general point to be made here

out of the word ‘adult’ is that fitness must count the total

number of descendants of an individual after one full iter-

ation of the life cycle of the organism (thus including itself
through survival, and offspring after density-dependent

competition). This can be illustrated by an example. Consider

a haploid semelparous population made of many groups of

identical and constant size N over generations, where each

parent i produces a large but random number Fi of juveniles

(Wright’s [6] island model). Each juvenile disperses indepen-

dently with probability m to compete in another randomly

chosen group, and density-dependent regulation is assumed

to affect each individual independently and equally. Then, a

number (1 2 m)Fi of the focal’s offspring remain in the natal

group and compete for settlement in N breeding spots with

an average number [(1�m)Fn þmFp]N of juveniles, which

depends on the average fecundity Fn in the focal group and

the average fecundity Fp in the total population. Given

these numbers, the expected number of adult offspring of

an adult focal individual i is

(1�m)Fi

(1�m)Fn þmFp
þmFi

Fp
: (1:2)

Thus, when successful offspring are counted after a full iter-

ation of the life cycle (‘adult’ offspring), the fitness of an

individual generally depends on the vital rates of others.

Equation (1.2) only provides the expectation of the

number Wi of adult offspring of individual i, which itself is

a random variable that cannot in general be expressed in

terms of average quantities, but unambiguously determines

Ai. That is, we have Ai ¼Wi/
P

i Wi ¼Wi/(NT
�W), where

�W is average fitness. This precise definition of fitness is not

consistently followed in the literature. As such, the precise

meaning of the variables considered in this paper and the

operations made (e.g. various conditional expectations that

appear below) may differ among different authors. For the

flow of our argument, we will not comment extensively on

such similarities and differences, yet we cannot emphasize

enough that a consistent adherence to this definition of fitness

simplifies all further arguments made to evaluate systemati-

cally allele frequency change.

With fitness defined as Wi, we then have

P0 ¼
X

i

Wi
�WNT

Pg(i), (1:3)

[7, eqn (3), first line], where the key element to be retained

here from Price’s formalism is the use of individual attributes,

for example Wi, rather than the older formalism of genotypic

attributes. If total population size is constant, then �W ¼ 1 (i.e.

one offspring on average for each parent) and Ai ¼Wi/NT. If

total population size is not constant, then Ai ¼ Wi/( �WNT),

and �W must be retained in equation (1.3). We first assume

constant population size and discuss variable population

size later. But a case can already be made that expressions

in terms of Wi/NT should more generally be understood as

expressions in terms of Ai so that the following expressions

retain generality.
(ii) Expected frequency change
Through fitness values, individuals of the parental generation

transmit their gene copies to the offspring generation. If

reproduction is haploid, then Pg(i) is the allele frequency Pi

in individual i. Under diploidy (where the realization of Pi

is pi ¼ 0, 1/2 or 1), gene copies in parents are not necessa-

rily transmitted to offspring owing to the randomness of

Mendelian segregation. A change Pg(i) 2 Pi in frequency



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130357

3
may then occur for some or all i between the parental and off-

spring generation. We can avoid this complication by taking

each of the two gene copies of a diploid organism as an

abstract individual (i.e. gene-centred approach). Alternatively

but less generally, since we will focus below on expectations,

we can assume that transmission is ‘fair’, i.e. on average the

descendant frequency is equivalent to parental frequency

[E(Pg(i)j pi) ¼ pi
1] a standard assumption in social evolution

theory [8,9].

For constant total population size, the conditional expec-

tation of equation (1.3) for any vector p of all realized pi

values can be written as

E[P0jp] ¼ E
X

i

Wi

NT
pi

�����p
" #

¼
X

i

E[Wijp]

NT
pi

¼
X

i

wi(p)

NT
pi, (1:4)

where wi ¼ wi(p) ¼ E[Wijp] is the expected fitness of individ-

ual i conditional on the genotypes of all individuals in the

parental population. This yields

E[DPjp] ¼ Cov(wi, pijp), (1:5)

where the covariance is over all individuals in the popula-

tion (i.e. Cov(wi, pijp) ¼
P

i (wi � 1) pi/NT) and is a form of

Price’s [7] covariance equation.

In the example of equation (1.2), a possible expression for

fitness wi is

wi ¼
(1�m) fi

(1�m) fn þm fp
þm fi

fp
, (1:6)

in terms of expected fecundities fi ¼ E[Fijp], fn ¼ E[Fnjp] and

fp ¼ E[Fpjp] given p. Expressions for expected fitness, for

example equation (1.6), dominate the literature [10–15], but

potential pitfalls should be noted. The expectation of a ratio

of random variables (as shown in equation (1.2)) is in general

not a ratio of expectations, so one cannot a priori write the

expected Wi in this form. The traditional way to overcome

this complication in population genetics and evolutionary

biology is an (often implicit) asymptotic argument assuming

arbitrarily large fecundities with small variance-to-mean

ratios for each genotype (for exceptions see e.g. [16–18]).

Otherwise, expected fitness wi may depend on all the

moments of the distribution of fecundities of locally interact-

ing individuals as well as those from the whole population

[18, eqn (A.6)]. Equation (1.6) can also be reached by assum-

ing finite, Poisson-distributed fecundities [19,20], although

this is generally not sufficient to obtain expected number of

offspring in age-structured populations, where surviving

adults come in competition with youngsters [21,22]. Regard-

less of the exact underlying assumptions behind wi, they do

not affect the conclusions of the next section.

(b) Hamilton’s rule
Our aim now is to recover Hamilton’s weak-selection result,

in the form

Dp � p(1� p)(�cþ rb) (1:7)

from the previous expressions, obtaining en route definit-

ions for the fitness cost 2c and benefit b and relatedness r.

Here, � denotes a first-order approximation with respect to

the phenotypic effect of a mutant and p is taken as a determi-

nistic variable.
(i) Phenotypic costs and benefits
We first assume a simple relationship between phenotypes and

genotypes: two alleles segregate in the population and the phe-

notype of individual i is written as zi ¼ z þ dpi, where z is the

phenotype of individuals carrying the resident allele and d

the phenotypic deviation induced by the expression of the

mutant. Fitness wi ¼ wi(z(p)) thus depends on the full phenoty-

pic distribution z in the population, itself a function of the

genetic state p. But for a family- or group-structured popu-

lation, we can simplify the arguments of the fitness function

and express wi in terms of the phenotype zf(i) ¼ zþ d pi of

individual i and of two average phenotypes, the average pheno-

type zn(i) ¼ zþ d pn(i) of ‘neighbours’, i.e. family or group mates

(excluding the focal individual) and the average phenotype

zp(i) ¼ zþ d pp(i) in the population (excluding the focal family

or group). Then, assuming that all individuals face the same

set of problems (individuals are exchangeable), we can write

wi � w(zf(i), zn(i), zp(i)), (1:8)

for some function w that is the same for each focal individual

and further depends only on the average phenotype of actors

on a focal recipient. Fitness can be expressed in this way only

to the first order in selection intensity d (as emphasized by

our use of � here), because only in that case can the average

of the effects of different individuals of the same class be gener-

ally expressed in terms of an average phenotypic value of that

class [23, appendix 1; 24, ch. 6].

We can now expand the total derivative of fitness

(equation (1.8)) in terms of the partial derivatives of the

fitness function w ¼ w(zf, zn, zp). Namely,

wi � 1þ d
@w
@zf

pi þ
@w
@zn

pn(i) þ
@w
@zp

pp(i)

� �
, (1:9)

where the partial derivative @w/@zj represents the effect of

the whole set of individuals of category j [ {f, n, p} on the fit-

ness of a focal and is evaluated at zj ¼ z for all j. If all parents

express the same phenotype, they must all have the same

(expected) fitness, w(z) ¼ 1. From this it follows that the

sum of partial derivatives of w with respect to elements of

z is zero. This means that the last derivative can be expressed

in terms of the two others, out of which the traditional fitness

costs and benefits 2c and b can be defined

wi � 1þ d
@w
@zf

( pi � pp(i))þ d
@w
@zn

( pn(i) � pp(i))

¼ 1� c( pi � pp(i))þ b( pn(i) � pp(i)),

(1:10)

where 2c ¼ d@w/@zf and b ¼ d@w/@zn are thus marginal

costs and benefits of expressing the mutant allele, respect-

ively, and this expression for fitness holds at all allele

frequencies, not only on ‘rare’ mutants.
(ii) Replicates of the evolutionary process
The next step to recover Hamilton’s result (equation (1.7)) is to

consider expectations of allele frequency change given realized

average frequency p in the parental generation. That is, we con-

sider replicates of the evolutionary process starting from an

initial p(0) and will evaluate expected allele frequency change

from generation t to t þ 1 among all replicates that reach a

given frequency p(t). From equation (1.5), this expected

change can be written as

E[DPjp] ¼ E[Cov(wi, pijP)jp], (1:11)
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where the expectation is among all realizations with given p.

Suppose that over such replicates, variation in wi is to be

predicted only from variation in the allele frequency pi in

individual i. To each individual, we assign the value

ŵi ¼ E[wi(P)j pi, p], which is the expected fitness of individuals

that bear the same allele as individual i. Then,

wi ¼ ŵiþei, (1:12)

where ei is independent of pi. This basic construct of least-

square prediction theory [25,26, ch. 9] shows that ŵi is

sufficient to describe selection as

E[DPjp] ¼ E[Cov( ŵi , pijP)jp]: (1:13)
Figure 1. Genealogical events in the ancestry of different pairs of genes
and their associated probabilities of identity in the island model of dispersal.
This figure shows the position over time of some gene lineages among differ-
ent groups, each of which is shown as a group of five flowers and the ghosts
of some of their ancestors. In the group on the left, the ancestral lineages of
two sampled genes coalesce in a recent common ancestor in that group, in
which case they are both of the mutant type with probability p. By contrast,
the right group illustrates the case where the two sampled lineages have
recent ancestors in different groups, in which case they are considered as
independent and both are of the mutant type with probability p2.

rans.R.Soc.B
369:20130357
(iii) Relatedness as regression
From equation (1.9), ŵi will be a function of the expected

value of Pn(i) and Pp(i) among bearers of each allele. We

first assume that Pp(i) is independent of Pi, in the sense that

the expected value of Pp(i) among bearers of each allele is p
and we write the expected value of Pn(i) among bearers of

each allele as

E[Pn(i)jpi, p]¼ pþ r(pi�p))E[Pn(i)Pi]¼ rpþ (1� r)p2, (1:14)

where r is by construction a regression coefficient2. Given that

the average Pi value is p, this merely describes two points

(either pi ¼ 0 or 1) by a line. This construction is always

feasible and implies

ŵi � 1þ ( pi � p)(�cþ rb): (1:15)

Then equation (1.13) yields E[DPjp] � p(1� p)(�cþ rb) and

together with the above assumption that Pp(i) is independent

of Pi, equation (1.14) can be seen as the definition of related-

ness r that makes Hamilton’s rule work (the regression

definition [8,27]).

This definition of relatedness can be extended to diploid

populations, where one can consider the regression of

the focal’s mutant allele frequency to transmitted gene copy

(see appendix A(a)). A regression coefficient can then be

associated to 2c, which is simply 1/2 in the absence of

inbreeding (the probability that one of the focal’s gene

copies is the transmitted copy) in a panmictic population,

and relatedness can be expressed as a ratio of covariances,

that of neighbours’ phenotypes to transmitted value and that

of focal’s phenotype to transmitted value [28].

(iv) Genealogical relatedness
The definition of r as a regression coefficient (equation (1.14))

says little about its biological interpretation: for example, it

says nothing about its relationship to pedigrees, and r can

a priori be expected to differ for different values of p, and even

for different populations with the same p. To obtain more

definite results, we need to be more explicit about the under-

lying biological assumptions, which will allow us to relate the

regression definition of r to a genealogical concept of relatedness

independent of p.

Consider, for instance, the classical island model of

dispersal described above (equation (1.2)), where we define

genealogical relatedness to be the probability that two

gene lineages have a common ancestor in the same group

and we will see that this corresponds precisely to the

regression definition under specific assumptions. To that

aim, we ignore changes in allele frequency owing to
selection or random genetic drift in the total population,

and focus on the ancestral lineages of the focal gene’s copy

and a neighbour’s gene copy. In each generation there is a

probability (1 2 m)2 that none of the two lineages is immi-

grant, in which case the two lineages can coalesce in a

common ancestor. If a coalescence event is the first event

back (probability r), it almost certainly occurs over a few

recent generations, in which case the common ancestor car-

ries the mutant allele with probability p. If the first event

back is the one where at least one lineage is of immigrant

origin (probability 1 2 r), then the two ancestral gene

lineages become independent lineages of the total popu-

lation, and the probability that the neighbour’s allele is the

mutant one is p, irrespective of the focal’s allele, which is

also mutant with probability p (figure 1). This gives the

expected allele frequency in the neighbours in the desired

form (second term in equation (1.14)) and allele frequency

changes according to equation (1.7), with r independent of

p, but not necessarily independent of z. The very same argu-

ment, where one considers the events back in the ancestry of

two gene lineages, underlies the use of genealogical related-

ness in the classical family-structured population models [29].

The defining property of r as a regression coefficient

(equation (1.14)) can actually be interpreted in two ways.

First, by considering only expectations given p over replicates

of the evolutionary process (as done in the previous section),

or second, by assuming that the average value of Pn(i)Pi for

almost any such replicate is practically equal to the expec-

tation over replicates. As replicates that deviate from the

expectation can always be conceived (for example, the con-

figuration where all mutants are in distinct groups cannot

be excluded a priori), this then implies that the probability

of such replicates is negligible, which is typically obtained

by assuming an infinite number of groups. Then, E[DPjp]

reduces to a deterministic change Dp and this finally yields

Hamilton’s [2] expression for allele frequency change in its

deterministic form (equation (1.7)): Dp � p(1� p)(�cþ rb),

which was really his result.
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(v) Assumptions behind genealogical relatedness
The largely verbal argument subtending the use of genealogi-

cal relatedness highlights assumptions that may need to be

reconsidered and steps that are to be taken in a formal proof

of equation (1.15), for r independent of p. First, we assumed

that the allele frequency in the generation of the common

ancestor, within a group, is the current allele frequency.

Thus, we ignored random drift at the total population level,

meaning that the population is large, and we ignored the

effect of selection, both on ancestral allele frequency and on

probability of coalescence, meaning that we only obtain an

expression for allele frequency change to the first order in

selection. More precisely, in the context of family groups in a

panmictic population, it is assumed that p can be considered

constant since the last round of random dispersal. In the

island model, it is assumed that p can be considered constant

over a few ancestral generations, over a time scale depending

on m, meaning that m has to be large relative to the strength of

selection. A formal proof of these two cases and others involving

selfing rests on the concept of separation of time scales in popu-

lation genetics [29–31], where certain coalescence events occur at

a much faster rate than that of others, which holds in the limit of

infinite population size. Then, relatedness can be described

conveniently (if somewhat heuristically) as a probability of

identity-by-descent or of recent coalescence.

(vi) Frequency independence at the genetic level
One of the most remarkable features of Hamilton’s [2] result

is that selection appears independent of allele frequency,

meaning that (to the first order in selection intensity) allele

frequency change is

Dp � p(1� p)ds(z), (1:16)

where the phenotypic selection gradient s(z) ¼ @w/@zf þ r@w/

@zn is constant with respect to p. This happens despite fitness

being frequency dependent (equation (1.15)) and thus does

not imply that social interactions are frequency independent.

For instance, consider a social insect population, where par-

ental queens control the phenotype of their offspring, which

may be either reproductives or sterile workers that help to

raise the reproductive offspring. The latter all disperse ran-

domly over a large number of colony sites. If the survival of

juvenile reproductives increases linearly from 1 2 6 to 1 as

the fraction z of workers in a colony increases from 0 to 1, a

first-order approximation for the fitness of a parental gene

copy residing in a focal queen (equation (1.8)) can be written as

w(zf, zn, zp) ¼ (1� zf)(6þ (1� 6)zn)

(1� zp)(6þ (1� 6)zp)
, (1:17)

which is the ratio of the focal individual’s fecundity to the

average in the population. Here, 1 2 zf is the fraction of repro-

ductives among juveniles of the focal individual. This yields

the selection gradient

s(z) ¼ � 1

1� z
þ r

(1� 6)

6þ (1� 6)z
, (1:18)

where both the cost and benefit are seen to depend on the resi-

dent investment into workers in the population. Nevertheless,

if for some value of self-sacrifice z, s(z) . 0, the allele coding for

an increase in self-sacrifice will invade and go to fixation in

the population. Hence, game theoretic scenarios are subject

to analysis by Hamilton’s rule, according to which selection

is frequency independent at the genetic level.
(c) Localized dispersal
The simple relationship between genealogical relatedness

(probability of common ancestry of pairs of genes), gene

identity between actor and recipient, and allele frequency in

the total population (equation (1.14)) is essential for the first

derivation of Hamilton’s rule. But it rests on the assumption

that dispersal is homogeneous over the landscape. We now

relax this assumption and allow for isolation-by-distance.

For example, consider the case where groups of size N are

set on a circular array of positions and where juveniles dis-

perse at most to the nearest group on each side, where they

compete for settlement as in the classical nearest-neighbour

stepping stone model [32,33]. In this case, juveniles from a

focal parent compete with juveniles born at most two steps

apart. If we further suppose that this parent interacts socially

only with its group mates so that her average fecundity

depends on her own phenotype and the average phenotype

of within-group neighbours, the fitness of a focal individual

depends on the average phenotypes of neighbours at most

two steps apart, and can be written as w(zf, z0, z1, z2) where

zk for k ¼ 0, 1 or 2 denotes the average phenotype of parents

k steps apart (see appendix A(a) for an explicit example).

It is not clear a priori whether the property of frequency-

independent selection at the genetic level is retained in this

case. However, the previous results turn out to have informative

generalizations. In particular, the key result Dp ¼ p(1 2 p)ds(z),

viewed as p(1 2 p) times a constant, can be extended to a form

where p(1 2 p) is replaced by another non-negative function

s2( p) of the distribution of genetic variation in the total popu-

lation [34]. Thus, there is still a phenotypic selection gradient

that predicts the change of allele frequency at all frequencies

under isolation-by-distance. In the above case, where the fitness

function is w(zf, z0, z1, z2) and depends only on four arguments,

the change of mutant frequency can be written as

Dp � ds2(p)
@w
@zf
þ @w
@z1

R1 þ
@w
@z2

R2

� �
, (1:19)

for some relatedness coefficient Rk describing the similarity of

k-neighbours to the focal, relative to the similarity of group

neighbours and which can be expressed in terms of probabi-

lities of identity-by-descent (see appendix A(b), equation (B 4)

for a derivation). The effect of group neighbours has been cancel-

led from this equation, which results from the fact that

relatedness is no longer measured relative to population ave-

rage allele frequency (i.e. relatedness is no longer of the form

(E[Pk(i)Pijp]� p2)/(p(1� p)) for allele frequency Pk(i) in neigh-

bours at distance k). Although relatedness can still be defined

in the latter way (see appendix A(b)), it is then frequency depen-

dent, and thus no longer bears a simple relationship with

coalescence probabilities and this conceals the existence of a fre-

quency-independent component of selection. Further attempts

at writing a selection gradient as 2c þ rb potentially involves

joint redefinitions of c, r and b, which changes the interpretation

of the components of Hamilton’s rule [35].
(d) Reproductive value: from sex ratios to
environmental and demographic fluctuations

As a result of fluctuations in resource abundances or other

biotic and abiotic factors, different individuals may be

exposed to different conditions and this will result in the fluc-

tuation of the fitness of several or of all individuals in the
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population. While within-generation environmental fluctu-

ations are captured by w, since it is an average over all

chance effects given a distribution of allele copies in a parental

generation (see equation (1.6)), between-generation environ-

mental fluctuation can be analysed in essentially the same

manner; in particular, by averaging differentials of expected

fitness over environmental states, which again provides a selec-

tion gradient independent of allele frequency (see appendix

A(c) for an example). More generally, different individuals

may also be exposed to different local conditions and this

may affect their expected reproductive success compared to

that of others. Different individuals may then have different

value in transmitting alleles to the next generation, given a dis-

tribution of allele copies in a parental generation. A standard

way of taking this heterogeneity into account is through the

concept of reproductive value [36]. This concept is relevant

for scenarios with spatial environmental fluctuations, which

extend those of within- and between-generations fluctuations,

but classically arises in sex-ratio models where sons and

daughters must be given distinct values.

In the following, we consider reproductive values as a

vector of weights, which define a weighted average allele fre-

quency. We track the changes of this average through time,

whatever the original allele frequencies. The use of reproductive

value is often justified in an intuitive manner or through math-

ematical arguments loosely connected to this computation.

In particular, reproductive values appear in an approximation

for the growth rate of a rare mutant allele [37–40], but as

the asymptotic growth rate of weighted allele frequency is the

same whatever the weights, it may not be clear why using

reproductive value is necessary in the latter calculation. Further,

Fisher [41] is often cited as the origin of the concept, but his orig-

inal formulation does not exactly match much later usage. In

the following, we first recall an intuitive argument for using

reproductive value, then reconstruct a more formal argument.

Under biparental inheritance, a son has low reproductive

value (i.e. is of little value in transmitting his mother’s genes)

if the population sex ratio is male-biased, as males will never

contribute more than half the genes in the next generation,

whatever the sex ratio. In other words, the total reproductive

value of all sons and daughters is one-half for each sex, but

the individual reproductive value is determined by the sex

ratio. In order to describe allele frequency change, one thus

expects that the total offspring of one class (say, males) pro-

duced by an individual should be weighted by the

reproductive values of this class (say, aF), and thus the frac-

tion of sons that comes from a particular mother (the

probability of origin) should likewise be weighted by aF.

More formally, given parental class c and offspring class

c0, one can consider probabilities of origin ac0c of c0-offspring

from c-parents. In an infinite population in a constant

environment with unlimited uniform dispersal, the determi-

nistic change in allele frequency vector p(t) gathering the

average mutant allele frequency pc(t) in each class c is then

given over one generation by

p(t) ¼ Ad(t)p(t� 1), (1:20)

where Ad(t) is the matrix of transition probabilities ac0c in gen-

eration t, depending on allele frequencies among parents in

that generation and on mutant effect d. An average allele fre-

quency �p(t) ¼ b � p(t) ¼
P

c bc pc(t) can then be defined

through any vector of weights b (normalized such that its

elements add up to one). Premultiplying equation (1.20) by
this vector, one can write this average as a sum of changes

over generations as

�p(t) ¼ b � p(0)þ
Xt�1

k¼0

[bAd(k þ 1)� b] � p(k): (1:21)

Now consider the value A0 of Ad(k) for mutant effect d ¼ 0,

identical for all generations, and define reproductive value

as the normalized left eigenvector a associated with the lar-

gest (unit) eigenvalue of A0 (i.e. aA0 ¼ a). In the absence of

selection, average allele frequency weighted by b ¼ a does

not change over any generation, i.e. �p(t) ¼ �p(0) whatever

the distribution of the allele among classes in the parental

generation (as (aA0(k þ 1)� a)p(k) ¼ (aA0 � a)p(k) ¼ 0). In

mathematical language, this weighted allele frequency is a

martingale, associated with the unit-eigenvalue left eigenvec-

tors of the Markov chain defined by the A0 matrix [26,42]. It

allows one to characterize the effect of selection on allele fre-

quency change through a single average a � p, and to regard

the total average allele frequency change over many gener-

ations of selection as the sum of the changes of this average

only owing to selection in each generation3. It is in this con-

text, which is a standard one for social evolution theory,

that a reproductive value weighting is required.

To complete the definition of an inclusive measure of

allele frequency change in a social context, we need to express

the probabilities of origin ac0c as the function of the genotypes

of different actors and to characterize the distribution of allele

frequencies in the parental population, as done previously.

First, given parent i in class c with mutant allele frequency

pc,i one can consider probabilities of origin ac0 ,i ¼ E[Ac0 ,ijp]

of c0 offspring, where Ac0 ,i is the frequency of gene copies in

class-c0 offspring that descend from parent i. This generalizes

the Ais from equation (1.1). Then, the conditional expectation

of the reproductive value weighted average allele frequency

in the descendant generation is

E[�P0jp] ¼
X

c0
ac0
X

c

X
i

ac0 ,i

Nc
pc,i, (1:22)

where Nc is the total number of individuals in that class.

By the same arguments previously applied to fitness func-

tions, one can further write the probabilities of origin as

functions of phenotypes of the different individuals in the

parental population for some function ac0c(z) common to all

class-c parents (i.e. ac0 ,i ¼ ac0c(z(p)) for all i in class c]. Then,

applying the same set of arguments that lead to Hamilton’s

rule, allele frequency change can be written for stationary

processes as

D�p � �p(1� �p)ds(z), (1:23)

for a frequency-independent selection gradient s(z)4, where

fitness effects of actors are weighted by relatedness and

different descendant types are weighted by their reproduc-

tive values, and where the distribution of classes itself may

be affected by the evolving trait [24]. The literature contains

many incarnations of these results in a social evolution

context, such as age structure [44], sex-ratio evolution [45],

environmental and demographic stochasticity [46], host–

parasite coevolution [47] or combinations of these factors

[48]. The first-order approximation (equation (1.4)) fails if

the demographic classes become effectively disjunct popu-

lations, this being appropriately quantified in terms of

the subdominant eigenvalues of A0 and in particular by the
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largest of them: the approximation becomes inaccurate if this

eigenvalue departs from 1 only by a term of order d. This

potential complication is not apparent in the introductory

sex-ratio example, where the subdominant eigenvalue is zero.
lsocietypublishing.org
(e) Frequency dependence at the genetic level
We now relax assumptions on the genotype–phenotype

map of the previous sections and discuss two classical cases

where selection will no longer be frequency independent at

the genetic level.
Phil.Trans.R.Soc.B
369:20130357
(i) Synergies between alleles within individuals: dominance
The first case is genetic dominance. Here, the realized pheno-

type of individual i can be written as zi ¼ zþ d[2h piþ
(1� 2h)(pi

Cpi
F)], where h is the level of dominance and pi

C

(pi
F) is the frequency of the mutant in the maternally (pater-

nally) derived gene (pi ¼ (pi
Cþpi

F)/2). In a panmictic

population without interactions between relatives, equation

(1.10) then becomes

wi � 1� c[2h( pi � pp(i))þ (1� 2h)( pC
i pF

i � k pC pFlp(i))],

(1:24)

where c is defined as previously, only from the phenotype-

fitness map and k pC pFlp(i) is the average value of the

pC
j pF

j s in the population (excluding the individual i). If the

population is of large size, allele frequency change is

Dp ¼ �p(1� p)c[hþ (1� 2h)p]þO(d2), (1:25)

where the frequency-dependent term (122h)p represents the

effect of the non-additive interaction between the two gene

copies on the individual’s fecundity [49, eqn 3.29].

Setting this in the more general framework of a situation

of social interactions, one sees that the fitness of a focal

gene copy depends on the fecundity of competing individ-

uals, which depends on the non-additive effects of gene

copies in their genotypes (for h = 1/2). In other words,

Cov(wi, pijp) now depends on the covariance between

actor’s pC
j pF

j and focal’s pi, and this leads to frequency depen-

dence. Under fair Mendelian inheritance, the two gene copies

of a focal individual are transmitted independently of their

allelic information. Thus, one can consider the covariance

between actor’s genotype and each of the focal’s gene

copies, which depends on coalescence probabilities of triplets

of genes. Writing Dp as p(1 2 p)(2c þ rb), with c and b still

defined as phenotypic effects, implies that r is in general no

longer a probability of recent coalescence of pairs of genes

and is itself frequency dependent, a point that has long

been understood [8,28].

Alternatively, the allele frequency change can be expressed

in terms of c, b, pairwise coalescence probability, and coalesc-

ence probabilities for triplets of genes, by a straightforward

extension of the arguments presented in §1b(iv) [29]. Indeed,

in a monoecious population the probability that both the

maternally and paternally derived copies of an actor and the

focal lineage (say pC
i ) carry the mutant can be written as

E[PC
j PF

j PC
i jp] ¼ r3pþ 3(r� r3) p2 þ (1� 3rþ 2r3) p3, (1:26)

where r3 is the probability that the ancestral lineages of

three genes coalesce within their group, and r is the probabi-

lity that the ancestral lineages of two genes coalesce within

their group (e.g. [50], equation (1.5)) and is no longer the
relatedness that makes Hamilton’s rule work. Nevertheless, it

is noteworthy that even with this complication, there are sev-

eral situations under random dispersal where the direction of

selection remains proportional to 2c þ rb for pairwise r inde-

pendent of p [29,51], so that dominance does not affect the

direction of selection on altruism at allele frequencies under

weak selection.
(ii) Synergies between alleles among individuals
Another case where selection can be frequency dependent is in

the classical two-person, two-strategies games, such as the

hawk–dove or prisoner’s dilemma games, here interpreted

as scenarios where the fecundity of an individual depends

on its pairwise interaction with a randomly chosen partner

in the population. Let the relative fecundities be 1 þ R, 1 þ T,

1 þ S and 1 þ P, respectively, when both individuals

cooperate, the focal cheats on its partner, the focal is cheated

by its partner and both partners defect. A synergy occurs

when D ¼ R 2 S þ P 2 T is non-zero, meaning that the

pay-off difference of joint defection is not the sum of pay-offs

differences of individual defections. Let the phenotype be the

probability that an individual acts cooperatively in a pairwise

interaction, so that the expected fecundity of focals with

phenotype zf interacting with partners with phenotype zn is

f(zf, zn) ¼ 1þ Rzfzn þ Szf(1� zn)þ T(1� zf)zn

þ P(1� zf)(1� zn): (1:27)

In a large panmictic population, where the fitness of a

focal individual is its fecundity f (zf, zn) relative to the average

fecundity in the population, one has

Dp � dp(1� p)[S� Pþ (zþ pd)D]

þO[d3, (R, S, T, P)2]: (1:28)

Two ways of analysing this model can then be consi-

dered. First, R, T, S, P are the given ecological constraints,

and we consider the evolution of z. Then, to the first order

in d, equation (1.28) reduces to Dp � dp(1� p)[S� Pþ zD],

where selection is independent of allele frequency. This is

2cp(1 2 p) by definition of the marginal fitness cost and

can be extended to games with interaction between relatives.

As this example shows, the marginal c takes into account the

synergistic interaction (and so would b) so that no additional

term is needed to account for them. This result is striking and

very useful, as it allows more generally an analysis of modi-

fiers d of any continuous z affecting signalling or repeated

games in terms of only pairwise relatedness [52–55], where

the evolving phenotype itself can be a dynamic trait, i.e. a

function of the round of the game, as occurs in sequential

decision problems [56].

The second and alternative analysis considers an expan-

sion in R, T, S, P, but not in d. Then the term pd in the

parentheses in equation (1.28) is retained, contributing

p2(1 2 p)d2D to the whole expression so that selection is fre-

quency dependent at the genetic level when R 2 S þ P 2 T
is non-zero, i.e. when the acts of each partner non-additively

affects the pay-offs. Now, the change of allele frequency Dp
depends on associations among three gene positions so that

games in pure strategies can be analysed under limited dis-

persal using coalescence probabilities of triplets of genes

[15,57]. From a gene-centred perspective, this case is indeed

no different from the case of dominance discussed above.
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( f ) Multi-locus processes
(i) A simple example with linkage disequilibrium
As illustrated in the last section, one can relax the basic

genetic assumptions by changing the genotype–phenotype

map, and we now discuss this for multi-locus processes.

For example, one may consider that an individual expresses

helping only if it harbours a two-locus combination of alleles,

in which case the phenotype of individual i can be written

1 þ dpiqi, where pi and qi are indicator variables for the rea-

lized allelic states at each of the two loci. Equation (1.10)

then generalizes as

wi � 1� c[ piqi � k pqlp(i)]þ b[k pqln(i) � k pqlp(i)] (1:29)

in terms of the average values k pqln(i) of the product of indi-

cator variables among the within-group neighbours and in

the rest of the population k pqlp(i). The deterministic change

in mutant allele frequency at the first locus is obtained by

taking expectations over replicates of the evolutionary pro-

cess given the realized average allele frequency p and q at

the respective loci in the parental population yielding

Dp � (E[ piqijp, q]� E[ pik pqlp(i)jp, q])(�cþDb), (1:30)

where

D ¼
E[ pik pqln(i)jp, q]� E[ pik pqlp(i)jp, q]

E[ piqijp, q]� E[ pik pqlp(i)jp, q]
, (1:31)

and E[ pik pqln(i) p, qj ] is the expectation of the product of the

indicator variable for the transmitted allele pi of the focal

individual and of the average value k pqln(i) describing the

neighbours’ acts (as in equation (1.14)), and E[ pik pqlp(i)jp, q]

is identically defined but for actors not in the focal group.

The similarity of equation (1.30) with Hamilton’s rule is

superficial, however, as D is a gametic disequilibrium coeffi-

cient [58], which is null at neutrality (d ¼ 0). Allele frequency

change is thus at most of second order in d, in which case a

full account of second-order terms on allele frequency changes

requires more than expansion (1.29) in terms of the first-order

fitness effects c and b.

This example illustrates that multi-locus effects appear as

weak forces, which would easily be overcome by any first-

order one-locus effect acting on the evolution of the trait.

Exceptions can occur, in particular with very strong linkage,

because linkage disequilibrium actually depends on the mag-

nitude of selection relative to recombination rather than

simply of selection. Another exception occurs, for example,

in the case of genetic kin recognition, where helping is con-

ditional on identity between actor and recipient at some

recognition locus. Then, the change in allele frequency at

one locus can be shown to depend on a so-called identity dis-

equilibrium coefficient, quantifying the dependence between

the events that two individuals share alleles at each of dif-

ferent loci [59, fig. 1]. At a genealogical level, it quantifies

the fact that the realized genealogical trees at two loci for two

group members are not independent of each other. It is indeed

non-zero at neutrality in the same conditions (limited disper-

sal or family-structured interactions) where the one-locus

relatedness coefficients are non-zero at neutrality.
(ii) Systematic analysis of allele frequency change
Equation (1.29) is of the same form as equations (1.10) and

(1.24), where fitness of a gene position is expanded in terms
of selection coefficients weighted by allelic states at homolo-

gous or different loci. These expressions illustrate four types

of fitness effects on a focal gene copy: those due to homo-

logous genes in the same individual (equation (1.24)),

homologous genes in different individuals (equation (1.10)),

and different loci in the same and/or different individuals

(equation (1.29)). More generally, any number of gene pos-

itions within the same or different individuals may affect a

focal position, where individuals can further live in different

generations and with possible interactions between gene

copies. All these situations can be analysed by a logically

straightforward extension of the approach delineated in the

previous section (although the calculations may be complex),

where the dependence of evolution on the genealogical struc-

ture is quantified by generalized identity disequilibrium

coefficient (e.g. [60] for some general developments and

references). Arbitrary levels of ploidy, genomic imprinting,

sex linkage, trans-generational effects and cytoplasmic inheri-

tance can all be considered in this unified way and, by

systematic perturbation expansion with respect to selection

strength, effects on fitness can be evaluated under arbitrary

levels of accuracy. For populations without a relatedness

structure, this general approach reduces to the quasi-linkage

equilibrium (QLE) approach originally formulated by

Kimura [61] and more systematically developed in later

works [62–64], and the connection between multi-locus pro-

cesses and social evolution theory extends beyond such

approximation frameworks [65].

Although relatedness and linkage disequilibrium may

quantify forces of different magnitude, their formal analysis

can be based on two similar steps. First, in both cases the effects

of selection over several generations are summarized by an

expression for one-generation change given the state of the

population in the parental generation. Second, the causal

chain of events in earlier generations is summarized by its

effects on the expected parental states. In the QLE approach,

earlier events are summarized by an approximation for

expected gametic disequilibrium in the parental population.

In the basic social evolution theory approach, earlier events

are summarized by relatedness coefficients that quantify the

effects of common ancestry on covariances in genotypes

among different individuals. In both approaches, concepts of

separation of time scale are further used to approximate the

relevant parameters: relatedness, or gametic disequilibrium,

approach their equilibrium values at faster rates than the

rate of changes in allele frequency in the population. These

different steps together allow for a systematic analysis of

the causes of allele frequency change, rather than simply a

statistical description of this change.
(g) Small populations
We have assumed so far that the population was very large

(ideally infinite) and emphasized that in this case selection

can be understood by focusing on a one-generation change in

allele frequency. However, in small populations selection will

be frequency dependent in a way not captured by the previous

results. Nevertheless, whether the total number of groups is

small or not previous expressions for the phenotypic selection

gradient s(z) can be reinterpreted so that they are proportional

to the effect dp (z, d)/dd of a small phenotypic change d on the

fixation probability p(z, d) ¼ E[P(1)jp(0) ¼ 1/NT] of a single

mutant introduced in a resident population. This result
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captures the cumulative effects on allele frequency change of

actor–recipient interactions over generations, until the loss or

fixation of the mutant. In this generalization, r can be interpreted

as a ratio of average coalescence times of the different pairs

of genes compared, rather than as a constant regression coeffi-

cient, but the two interpretations coincide when the latter is

applicable. Insofar as qualitative features of fixation probabilities

determine evolutionary outcomes, all genetic and demographic

scenarios considered so far can be analysed in these terms

[24,66]. From a quantitative perspective, the approximation

p(z, d) � 1/NT þ ddp(z, d)/dd for the fixation probability of a

single mutant is accurate only for d of the order of 1/NT (and

this holds in the multi-locus case as well), while more accurate

approximations can be obtained for larger d using diffusion

approximations when results for allele frequency change, for

example equation (1.7), are available [67].
.B
369:20130357
2. Evolutionary genetics
(a) Everyone’s approximations
Until now, we have considered evolutionary dynamics

without mutations and where Hamilton’s rule predicts the

invasion and substitution of mutant alleles in two-allele sys-

tems. Once an allele, say a mutant increasing the level of

altruism (see, for example, equation (1.18)), has fixed in the

population, a new allele may arise through mutation and

may again be selected for. By the repeated invasion of

mutant alleles, the trait z then evolves in a step-by-step trans-

formation and may converge to a candidate evolutionary

stable point; that is, a phenotypic state where evolution

stops. Hence, for such a point to be approached gradually

from its neighbourhood phenotypic variation needs to be

produced. This entails that whenever a candidate evolution-

ary stable point is identified as a point where a phenotypic

selection gradient vanishes (a singular point), explicit (or

implicit) assumptions on the mutation machinery are made.

We now discuss the common assumptions behind models

of social interactions in the presence of a constant influx of

mutations, which generally deal with continuous phenotypes.

Such phenotypic models may come under different labels:

‘adaptive dynamics’, ‘evolutionary game theory’, ‘direct fit-

ness’, ‘kin selection model’ or ‘quantitative trait game theory’.

But to a first approximation, everyone makes the same

assumptions about the mutation machinery and the effects of

mutations. This presumably stems from the fact that the various

analyses of evolutionary dynamics face common mathematical

difficulties, and so far only common approximations to circum-

vent these difficulties have been found.

At the risk of oversimplifying, these approximations usually

come under two different packages, which delineate two dis-

tinct limiting approaches to evaluate long-term evolutionary

dynamics. These are the trait substitution sequence (TSS)

assumption [68–74] and the quantitative genetics approach to

social interactions [75–77], which are now detailed.
(i) Trait substitution sequences
We start with TSSs, where the following set of assumptions

has proved useful.

— Small mutation rate and symmetric mutation distribution. The

mutation rate is assumed so small that a novel mutation
occurs only in a population where polymorphism has pre-

viously been eliminated by selection. A single event of

phenotypic change can then be analysed by focusing on

a mutant–resident system. The distribution of mutant

deviations d is further assumed to have mean zero and

individuals of every class have the same mutation rate

and produce mutants regardless of their class.

— Selection is weak. Gene action is additive and the mutant devi-

ates phenotypically by a small amount d from the resident.

— The demographic and/ or environmental processes are stationary
Markov processes. Demographic and environmental hetero-

geneities (as considered in §1d) are assumed to follow an

ergodic Markov chain. When a mutant appears in a resi-

dent population, the resident demography is further

assumed to have reached its stationary state, conditional

on non-extinction of the total population.

Under TSSs, whether a mutant is favoured or not by selection

is determined by the selection gradient s(z) alone. In general,

this should be averaged over the different demographic back-

grounds in which the mutant may be introduced (e.g. a

population with variable density [20]) and from now on

s(z) is thought of in that way. Because the mutation distri-

bution is symmetric, only selection and thus s(z) can

determine the direction of expected evolutionary change of

the evolving phenotype given current phenotypic value z,

which thus necessarily takes the form

E[DZjz] ¼ v(z)s(z) (2:1)

for some measure v(z) � 0 of genetic variance produced in

the resident population. Fluctuations around this expectation

will also necessarily and constantly occur through the con-

tinuous inflow of mutations, but these effects will average

out. Hence, evolution stops (on average) only when

s(z) ¼ 0, (2:2)

which characterizes candidate evolutionary stable (ES) points

[4,73,78]. Whether such a point is a local attractor of the mean

phenotypic change (equation (2.1)) depends on whether

d

dz
s(z) , 0: (2:3)

This corresponds precisely to the notion of convergence stable

states [4], which is in standard use to determine whether a singu-

lar point is a local attractor of the evolutionary dynamics [73,78].

(ii) Approximations to quantitative genetic models
The mean phenotypic change (equation (2.1)) is of the same

form as the canonical equation of adaptive dynamics [74,79],

which is usually derived under more restrictive assumptions

as mutant–mutant interactions are neglected. Regardless of

the level of generality of such equations, they are obtained by

assuming that only two alleles can segregate in the population.

But an equation of the same form also obtains for any number

of alleles and any distribution of allelic effects as long as the

phenotypic variance in the population is small [75,76,80]. To

see this, it suffices to perform a Taylor expansion of the

expected fitness wi(z) around the average phenotypic value z
in the population. In particular, under additive gene action

on phenotypes, and using the covariance equation under the

form E[DZjz] ¼ Cov(wi, zijz), the expected change in average

phenotype can then be expressed as

E[DZjz] ¼ Var(zi)(�cþ rb), (2:4)
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for the same c, b and r as in the two-allele model. This stems, in

particular, from writing the analogue for phenotypes of the

regression definition of relatedness (equation (1.14))

E[Zn(i)jzi, z]¼ rziþ (1� r)z) E[Zn(i)Zijz]¼ rzþ (1� r)z2 (2:5)

[28,81] and additionally showing that the same r applies to all

alleles subtending the phenotypes. Equation (2.4) is the actual

rationale given by Taylor & Frank [39] (appendix A(b)) for their

direct fitness method.

(b) Joint evolution of several traits
(i) Infinite populations
In the one-dimensional case, convergence stable states can be

characterized only in terms of fitness costs and benefits and

genealogical relatedness. Thus, under well-specified assump-

tions, the selection gradient s(z) alone predicts long-term

evolution. But the situation is likely to differ in at least two

ways in the presence of multi-dimensional traits. Here,

there may be interactions between traits that affect fitness

and genetic variation may be correlated across traits. Can

joint adaptive evolution still be characterized by the selection

gradient for each trait?

Let us consider a vector z ¼ (z1, . . . , zn) of n coevolving

traits (the realized value of Z ¼ (Z1, . . . , Zn)) and denote by

s(z) the vector of selection gradients. In this case, the con-

ditional average change in phenotype given the resident

phenotypic value z satisfies

E[DZjz] ¼ V(z)s(z), (2:6)

where V(z) is some symmetric variance–covariance muta-

tion matrix. As the net response to selection on a trait

may depend on the selection gradient of each other trait,

it is a priori not clear whether the evolutionary dynamics

starting in a neighbourhood of a singular point, where

s(z) ¼ (0, . . . , 0), can be shown to converge or not to that

point, independently of the knowledge of V(z). This raises

the question whether the point attractors of equation (2.6)

can be predicted from s(z) alone, without further reference

to the mutation matrix.

Leimar [82] provides a characterization of multi-dimensional

convergence stability and a definite answer to this question.

He defines a singular point to be strongly convergence stable

if it is an asymptotically stable point of the canonical equation

of adaptive dynamics [82, p. 197], which is of the form of the

right member of equation (2.6). He further shows that for

strong convergence stability of a singular point it is sufficient

that the Jacobian matrix of the selection gradient s(z) is negative

definite at that point. This owes to the fact that V(z) is a var-

iance–covariance matrix that is necessarily positive definite

for a parsimoniously defined model (such that one of the

traits is not a linear combination of the others). Hence, for a

negative-definite Jacobian matrix pleiotropy does not affect

convergence; otherwise, pleiotropy can matter. Although

Leimar [82] did not consider interactions between relatives,

his result clearly holds in that case, as it rests on the form of

the right member of equation (2.6).

(ii) Small populations
Our discussion on long-term evolution under the TSS

assumptions also applies to finite populations. In this case,

the average evolutionary change of the evolving phenotype

is still given by an equation of the form E[DZjz] ¼ v(z)s(z)
(equation (2.1)), but where s(z) is now interpreted as the

average fixation probability perturbation d�p(z, d)/dd over

the different demographic backgrounds in which the

mutant may be introduced. Fluctuations around the average

change will also occur owing to sampling effects in a small

population and the continuous inflow of mutations5. To the

leading order, this complicated stochastic adaptive dynamics

can be described by a diffusion process (E[DZjz] is the infini-

tesimal mean of the process), which will eventually reach a

stationary state describing the phenotypic distribution c(z)

in the population at a mutation–selection–drift balance.

The phenotypic values that dominate this distribution are

the most probable outcomes of evolution and, when only

one trait evolves and the mutation distribution is indepen-

dent of z, correspond precisely to the convergence stable

states defined previously from the derivative of the selec-

tion gradient (i.e. d2c(z)=dz2 / ds(z)=dz , 0 for reflecting

boundary conditions [83]). Under multi-dimensional evolu-

tion in a finite population, one can also generalize equation

(2.6) so that the ith element of s(z) represents the change in

the fixation probability of a single mutant when phenotypic

component i is varied. This yields a multi-dimensional diffu-

sion equation whose stationary distribution is in general not

known, but that can reach the maximum corresponding

to the attractor points of the expected dynamics when the

variance–covariance matrix does not depend on z [84]. How-

ever, the precise conditions under which this occurs are not

clear, so further work is needed to establish whether this will

be the case for state spaces of interest, for instance when all

components of z vary between zero and one, which occurs in

many allocation problems.
(c) The evolutionary stability condition
The selection gradient s(z) predicts whether or not a popu-

lation will converge to a singular point z* from within a

small neighbourhood of that point. But if z* is expressed by

most individuals in a population, will it be resistant to the

invasion of any alternative mutant phenotype, whenever

individuals carrying the mutant phenotype are rare? This

is the question of evolutionary stability, and convergence

stability does not imply evolutionary stability [4]. For

instance, it may be beneficial to consume the most abundant

resource among various alternatives when few individuals

consume it. But when all individuals in the population

consume that resource, individuals consuming a less abun-

dant resource may be favoured by selection owing to the

reduction in competition. Hence, by successive allele replace-

ment favouring the consumption of more abundant resources

the population may first converge to the state where all

the population consumes the most abundant resource.

When it is close enough to that point, rare deviant individ-

uals consuming less abundant resources will be favoured

and a polymorphism of resource consumption will be main-

tained, in which case the convergence stable strategy is not

evolutionarily stable.

When the population approaches a convergence stable

state, the selection gradient vanishes. Second-order terms

then become comparatively important. They determine, in

particular, whether selection is disruptive on the trait,

whereas the weak-selection version of Hamilton’s rule is

not sufficient to delineate these two cases [78]. The change

of allele frequency to the first order of selection (equation
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(1.16)) can be extended to the second order in the phenotypic

deviation d to give

Dp ¼ p(1� p)[ds(z)þ d2d(z, p)]þO(d3), (2:7)

where d(z, p) is a frequency-dependent term that quantifies

the intensity of disruptive selection at a phenotypic point z
[24, eqn 12.1]. It allows one to check whether a singular point

(satisfying s(z*) ¼ 0) is really evolutionarily stable and this

will be the case if d(z*, 0) , 0 so that no nearby mutant can

invade when rare. ‘Rare’ does not entail that the frequency of

mutants is negligible around a single mutant that appears in

a group. In the same way as the first-order term depends on

local fluctuations in allele frequency even though the mutant

originally arises in a single copy in a group, the measure of dis-

ruptive selection intensity d(z*, 0) takes mutant interactions

into account and involves both second-order partial deriva-

tives and effects of selection on the distribution of mutant

number within groups or families.

The full second-order evolutionary stability condition

is hardly ever evaluated in models of social evolution under

limited dispersal or when interactions occur among family

members, except by numerical methods or in cases where

there are no non-trivial relatedness coefficients [85,86]. An

analytical second-order condition for a one-locus genetic basis

in the haploid island model has been given [87] for N ¼ 2 indi-

viduals per group [88] for arbitrary N and the methods

described in §1f can be used under more general assumptions.

If N . 2, the expression for d(z*, 0) involves relatedness coeffi-

cients for triplets of genes, already encountered in §1e and it

involves first-order effects of selection on relatedness. The com-

plexity of the latter computation, where fitness functions can in

general no longer be written in terms of average phenotypes,

makes it less attractive, and as a result it is still avoided in

recent models [89]. Other features of the computation may

also be overlooked, as they are absent from an earlier attempt

at defining inclusive fitness criteria of evolutionary stability

[85]. Indeed, the very fact that there is such a condition to be

computed, distinct from the gradient version of Hamilton’s

rule, may have been ignored, as it is absent from influential

accounts [11].

A further problem is that the biological conclusions to

be drawn from the computation are themselves not so clear.

For mutations of small effect around a singular point, it can

in general be concluded that the change in the phenotypic

variance s2
z is given by E[Ds2

zjz�]/ d(z�, 0) for a rare mutant

( p! 0, see appendix A(d)). In particular, when d(z*, 0) . 0

the expected variance in the population will increase as a

result of selection. If the mutation rate is high enough and

inheritance is clonal, or haploid and uni-locus, two genealogi-

cal and phenotypic clusters are formed (‘branching’) and can

diverge from each other on both sides of the singular point. It

has indeed been shown that an increase in the phenotypic var-

iance can be a very good predictor of the onset of branching

and applies to finite populations [90]. However, the response

to disruptive selection is sensitive to dominance, polygenic

basis and interactions between loci [91] so that there is continu-

ing debate about the biological expectations to be drawn from

the models of disruptive selection. Moreover, under TSS

assumptions (at most two alleles in the population) branching

cannot occur, and therefore long-term evolution can be deter-

mined by the condition of convergence stability alone, as

implied by results for infinite [82] and finite populations [92].
3. When the dust settles
(a) Main theoretical messages
There are three main take-home messages behind the approxi-

mations to evolutionary dynamics surveyed in this paper.

— The one-generation perspective. Selection on a social behaviour

can be understood by focusing on a one-generation change

in mean allele frequency. In this perspective, different classes

of offspring are weighted by reproductive value, and all

multi-generational effects (of selection or of common ances-

try) are taken into account by evaluating uni- or multi-locus

identity disequilibrium coefficients (generalized relatedness

coefficients) quantifying genetic structure in the parental

population. The latter is generally done using quasi-equili-

brium approximations of different order, which identify in

a systematic way forces of different magnitude and often

allow the identification of forces common to different bio-

logical scenarios.

— Allele frequency change under weak selection. In general,

selection is frequency dependent when gene interactions

within and between individuals are taken into account.

However, under weak selection, the direction of allele fre-

quency change is of constant sign for any allele frequency

and is predicted by a phenotypic selection gradient, even

in a game theoretic context. This result generally follows

from assuming additive gene action and small phenotypic

deviation d. Early studies had reached this conclusion for

large panmictic populations, and it has subsequently been

extended to spatially structured populations with many

groups. This is useful as it provides a description of the direc-

tion of microevolution where genetic details are omitted, and

that is expressed only in terms of phenotypic costs and

benefits and genealogical concepts of relatedness.

— Long-term evolution under weak selection. Multi-dimensional

long-term evolution can then be predicted by phenotypic

selection gradients on each trait. This is useful as one can

obtain a description of long-term evolution and characterize

convergence stable states by omitting genetic details (under

the more precise assumptions stated in §2b).

(b) Analytical scope of social evolution theory
(i) Common logic versus alternative methods
There has been considerable controversy about social evolution

theory, but if the dust is allowed to settle, one can actually see

that there is little alternative to this methodology in the litera-

ture. By this we mean, for example, that a multilevel selection

approach is perfectly feasible, but if developed in a general

way it would need the same concepts and analytical tools as

described in this paper [93,94]. It is, of course, possible to

repeat key arguments, for example, to compute correlations

(or higher moments) of allele frequencies based on a separation

of time scales in the genealogical structure of the population or

to use coalescence probabilities (or times) and reproductive

values, without endorsing the language of social evolution

theory, but this does not define an alternative methodology.

There is also a common logic between the concepts of

social evolution theory and multi-locus selection theory,

which shows that the same analytical framework under-

lies what was previously thought of as different approaches

(see §1f). Likewise, there is a common logic between the con-

cepts of inclusive fitness theory and quantitative genetics
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theoryand this is maybe best seen in the light of the exact version

of social evolution theory [95]. This exact version can be

obtained from the expression for expected fitness ŵi (equation

(1.15)) if the partial derivatives are replaced by regression coeffi-

cients, which mean here coefficients of a least-square fit to a

linear regression model, which can be computed whether the

linear regression model is true or not. Then, 2c and b are the

linear regression coefficients with respect to the predictors pi

and pn, and r is a regression coefficient of pn over pi. As the

formalism of least-square regression makes no assumptions

about the processes controlling the variables considered,

writing fitness ŵi as 1þ (� cþ rb)( pi � p) no longer makes

any assumption about the strength of selection or genetic

architecture. Thus, 2c þ rb is precisely the average effect of an

allele substitution [23] from which the additive genetic variance

is evaluated. In this interpretation, Dp ¼ p(1 2 p)(2c þ rb)

holds generally and exactly, not neglecting any effect of order

higher than d, but all components are likely to be frequency

dependent [65, p. 219].

This general interpretation of Hamilton’s rule has been

repeatedly emphasized in the literature [65,95–97] and has

been useful in conceptual debates, for instance, showing that

intergroup selection requires relatedness between group mem-

bers for altruism to be selected for [98]. However, in most cases

of interest in behavioural ecology and even population genetics

it is practically impossible to evaluate the different regression

coefficients explicitly. As emphasized by Ewens [99, p. 164],

the average effects can generally only be expressed implicitly

as the unique solution of a gigantic set of simultaneous

equations. Thus, it is customary to evaluate approximations

that retain only the most important terms, in the presence of

social interactions the main such approximation being clearly

the weak-selection version of Hamilton’s rule and its exten-

sions. This is not to say that alternative approaches cannot be

developed but this has not been done in a systematic way to

cover classic topics in social evolution theory. For example,

an alternative to the one-generation perspective is a multi-gen-

eration measure of evolutionary success, for example, the

number of successful emigrants descended from an immigrant,

summed over all generations since the immigration event

[86,100], but simple questions of frequency dependence, dom-

inance or alternative controls of phenotype [10] have not been

addressed in this framework.

(ii) Maximization arguments
Hamilton [2] obtained a result for allele frequency change and

interpreted it as a maximization result. This interpretation can

be formalized as follows. The expected fitness of individual i
(equation (1.15)) can be written as

ŵi ¼ 1þ (wa,i � �wa ), (3:1)

where

wa,i ¼ 1þ pi(�cþ rb) (3:2)

is a value that can be associated to each gene copy and was called

‘inclusive fitness’ by Hamilton [2]. With this, the change in allele

frequency owing to selection proceeds as if individuals were

changing their behaviour to increase their inclusive fitness

Dp � p(1� p)
dwa,i

dpi
¼ p(1� p)(�cþ rb): (3:3)

The gradient dwa,i/dpi of wa,i points in the direction of the stee-

pest increase in inclusive fitness, which is the path taken by
allele frequency change if selection is weak and gene action is

additive (as this entails constant 2c þ rb).

Equation (3.1) shows that the inclusive fitness differential

(wa,i � �wa ) is equivalent to the fitness differential ( ŵi�ŵ ¼
ŵi�1) so that both quantities describe the change in allele

frequency in exactly the same way. Hence, the mean inclu-

sive fitness increases because the allele frequency changes

as if the true fitness values of the alleles were these inclu-

sive fitness values. However, the inclusive fitness values

for each allele, as defined by equation (3.2), are not the aver-

age fitness (i.e. numbers of adult offspring) for each allele:

fitness differs from inclusive fitness by a function of allele

frequency and this difference also changes as a result of

natural selection.

Even in the case of additive gene action and weak selec-

tion, the inclusive fitness maximization result thus says

nothing about adaptation in the usual sense of maximization

of fecundity or survival, it says only something about allele

frequency changes. Even assuming that all fitness effects

are the consequence of effects on fecundity, the average

fecundity of the population can actually decrease as a result

of selection, which occurs, for instance, in the case of selfish

mutants in the prisoner’s dilemma game (equation (1.27)).

In this sense, Hamilton’s results are not generalizations of

the classical ‘mean fitness increase’ results (that is, fecundity

or survival increase) of the non-social models he took inspi-

ration from [101,102]. Rather, Hamilton’s results can be

understood as demonstrating a ‘partial increase’ in mean

fitness, as in Price’s [103] interpretation of Fisher’s [41] so-

called Fundamental Theorem of Natural Selection [97].

When gene action is no longer additive, inclusive fitness

itself does not necessarily increase over generations as a

result of selection, as 2c þ rb will be frequency dependent.

Indeed, in the presence of dominance, Hamilton [2] failed

to obtain a full proof of total increase in inclusive fitness,

which points to a mismatch between his aims for inclusive

fitness and his results.

There is thus no univocal relationship between the

change in fitness (or inclusive fitness) and allele frequency

change under natural selection. Claims to the contrary must

be based on other notions of fitness or inclusive fitness

than those defined here. In particular, Grafen [104–106] has

developed an argument for inclusive fitness maximization

based on a different concept of maximization than that

implied by equation (3.3) and whose scope does not include

all social behaviours discussed in this review. In particular, it

applies only when effects on vital rates (fecundity, survival,

number of matings) are additive separable; that is, when

such effects are the sum of a function of the focal’s pheno-

type and neighbours’ phenotypes [107]. Hence, while

Hamilton’s rule is a general result about allele frequency

change, the results on maximization are far more specific

and do not have the same breadth.
(iii) Dynamic sufficiency
Analysing the dynamics of a biological scenario requires a

closed system of recursions: if the expression for change in

allele frequency depends on a frequency of identical pairs

of genes, recursions for such a frequency are needed. It is

well known that the exact (for any strength of selection)

recursions for pairs of genes may depend on triplets of

genes, the recursion for triplets may depend on quadruplets
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and so on, so that a closed system of recursions, said to be

dynamically sufficient, may be large (at least of the order of

the maximal group size in some cases based on the infinite

island model, but much higher in general). The system of

recursions needed to obtain the first-order change in allele

frequency is much simpler, as, for example, recursions for

change in allele frequency depend only on the frequency of

identical pairs of genes under neutrality, for which recursions

can be written which do not depend on frequency of triplets.

A dynamically sufficient system of recursions is then

obtained for the approximate solution.

Little biological conclusion can be drawn from an

incomplete set of recursions. For example, without a set

of equations for brother–sister relatedness there is nothing

that prevents one to claim that this relatedness is 22, from

which absurd conclusions follow. The Price covariance

equation, viewed in isolation, is dynamically insufficient and

has thus been criticized but, as emphasized, for example, by

Gardner et al. [65], this is not a problem when the covariance

equation is only taken as one recursion in a closed set of recur-

sions. The value of such constructs is that they hold as

members of many such systems of recursions considered in

practice. Nevertheless, dynamically insufficient models have

been defended from another perspective. In particular,

Grafen [8] viewed Hamilton’s original works as showing that

an incomplete system of recursions could be more productive

than a closed system, with the completely recursive methods

following on behind. However, Hamilton’s model was

actually equivalent to a closed system of recursions for an

approximation of the exact process, which was indeed pro-

ductive because the approximation has an unambiguous and

useful meaning, with more exact methods following on

behind. This shows that approximations are useful but adds

nothing in favour of dynamic insufficiency.
(iv) Interacting phenotypes
Finally, we emphasize that the weak-selection version of

Hamilton’s inclusive rule applies not only to fixed actions

but can also be used to investigate evolution of behavioural

rules; that is, the rules for responding to the environment

or the actions of others. Behavioural ecologists consider that

the actions (behaviours) of an organism can be predicted

from knowledge about a set of external stimuli (environ-

mental cues or behaviours expressed by other individuals)

and internal states of the organism [108–110]. One can then

model behaviour as a function that transforms states (internal

and external inputs) to actions or behavioural responses.

As long as the actions expressed by a focal individual during

its lifespan can be written as a function of its (continuous)

phenotype(s) and that of other individuals (which is not

always feasible), the trait(s) expressed by the focal and its neigh-

bours may affect the states of the focal, the transitions between

the states and/or the function that maps states into actions. In

other words, indirect genetic effects, where genes expressed in

one individual affect the phenotype of others [111], or repeated

and dynamic games can be analysed in terms of only pairwise

relatedness, a point we already mentioned in §1e(ii), but that is

repeatedly forgotten and rediscovered. Further, fitness effects

of actors may be felt by recipients alive several generations

later. This occurs, for instance, under host–parasite coevolution,

cultural inheritance or niche construction, which result in pro-

cesses that can be analysed with the gradient version of social
evolution theory, as long as they affect the phenotype-fitness

map [11, p. 132; 112–114].
(c) The role of genetics
In order to understand how an organism’s behaviour has

become adapted to its environment, it may be desirable

for an evolutionary biologist to focus on phenotypes, without

considering any knowledge of the underlying genetical

details. Early evolutionary theory, and thousands of years

of artificial selection, was de facto based on such premises,

which are therefore the reasonable first start for an evolution-

ary analysis. They are part of the research strategy known

as the phenotypic gambit [115]. The thrust of the pheno-

typic gambit is that it allows one to build predictions of

how behaviours have evolved based only on considerations

of trade-offs between various components of fitness, such

as survival and fecundity, without incorporating constraints

at the genetic level. The gambit was conceived to identify

constraints to which different strategies respond equally

well and this has led to a rich interplay between data and

predictions [116,117].

Phenotypic models have been described as based on the

assumption of haploidy [115] but can be more generally

said to assume fair transmission of average parental traits

to their offspring, which implies additive gene effects on phe-

notypes and, in particular, semi-dominance in diploid

populations. This also suggests that epistasis is absent from

the genotype–phenotype map, although this does not pre-

vent epistasis from operating on the genotype-fitness map.

Further, this does not exclude genotype–environment inter-

actions. For instance, nothing under the phenotypic gambit

excludes the study of evolution of learning rules, considered

as constraints on possible alternative strategies defined at the

phenotypic level, which themselves are encoded by alterna-

tive alleles. Additivity assumptions may seem practically

identical to a quantitative genetic formulation in terms of

average effects, but in general average effects are not

simply fixed properties of alleles, as they depend on the

whole population configuration of allele frequencies, so that

the quantitative genetic formalism per se does not provide

predictions of changes over several generations as definite

as those resulting from additivity assumptions.

The phenotypic gambit not only assumes that selection

is largely robust to the genetic details, but that any genetic

glitch will become negligible in the long term, an argument

formalized in models of evolution as TSSs. In its simplest

version, the modelling framework we have reviewed is

appropriate for the formulation and analysis of such

models. In its more general version, it also efficiently deals

with complex genotype–phenotype maps. But how far are

such complications useful?

There are certainly cases where they are useful. As empha-

sized in §2c, it has been abundantly documented that the

response to diversifying selection depends on genetic details.

Further, there are topics in evolution where the concept of

the phenotypic gambit has no immediate meaning (such as

evolution of reproductive systems in response to inbreeding

depression, of recombination, of intragenomic conflicts or gen-

etic kin recognition) and these processes can be viewed as

inherently social or can have a social component.

Even leaving these processes aside, how much should

one invest in a research strategy, for example the phenotypic
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gambit, as opposed to more explicit consideration of genetics?

This has been much discussed [118] but there is no clear

answer. For example, the fact that some presumably optimal

mutant is not produced in the course of evolution (experimen-

tal or not) can raise questions about the constraints on possible

phenotypes, but does not per se invalidate the assumption of

additive gene effect on phenotype.

Turning from genetic to environmental constraints,

we should finally emphasize that evolutionary arguments

based on long time-scales assume that the ecological con-

ditions are constant through time (the environment and

demography may fluctuate but they are stationary processes,

e.g. [26]). The constant diversification of life forms and

repeated occurrence of ecological successions imply that the

environment (biotic and abiotic) a gene pool is exposed to

is likely to be transient. Long time-scale arguments overlook

such unforeseeable changes. Of course, practically none of

these considerations are specific to social evolution and all

models are approximations. What this actually means is

that the relevant way of applying models in disequilibrium

conditions may be worth more attention. How far is it

useful, for example, to consider joint evolution of different

traits in stationary environments to ultimately understand

behaviours in non-stationary ones?

All these questions will undoubtedly be dealt with

in future research. The answers to these questions will

delineate the range of applications of the social evolution

theory we surveyed in this paper, which so far has provided

the most illuminating and general conceptual machinery for

understanding evolution of the sociobiological world.
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Endnotes
1Throughout the text, we use the shorthand notation E(X j y) for
E(X jY ¼ y).
2By definition of the regression coefficient, we have r ¼ ðE½PnðiÞPijp��
E½PnðiÞjp�E½Pijp�Þ=ðE½P2

i jp� � E½Pijp�2Þ. Since E½PnðiÞjp� ¼ E½Pijp� ¼
E½P2

i jp� ¼ p, we have r ¼ ðE½PnðiÞPijp� � p2Þ=ð pð1� pÞÞ, which gives
the right member in equation (1.14) upon rearrangement.
3In the most general setting for stationary and non-stationary pro-
cesses, average allele frequency at time t can be written in the form
of Doob’s decomposition of stochastic processes [43], as

�PðtÞ ¼ �Pð0Þ þ
Xt�1

h¼0

E½�Pðtþ 1Þ � �PðtÞjPðtÞ� þMðtÞ;

where M(t) is a martingale with zero expectation and �Pð0Þ ¼ �pð0Þ. This
representation is unique and obtained by considering (possibly time
dependent) weights ac(t) such that E½�Pðtþ 1ÞjPðtÞ� ¼

P
c acðtÞPcðtÞ,

which entails that in the absence of selection �PðtÞ ¼ �pð0Þ þMðtÞ. The
argument for using reproductive value makes no further assumptions
about the population structure or about the strength of selection.
4Given that the fitness functions wc0c,i for offspring numbers are
ac0c,iNc0/Nc in terms of the class census sizes, the selection gradient
can further be written

sðzÞ/
X

c0

ac0

Nc0

X
c

NcE
dwc0c;i

dd
Pi

�����p
� �

[24, ch. 11].
5In a finite population, one further has vðzÞ ¼ �NTðzÞmðzÞs2ðzÞ, where
�NTðzÞ is the average number of gene copies in a population mono-
morphic for z, m(z) is the probability that a randomly sampled gene
from this population mutates, and s2(z) is the variance of the
mutant step size distribution [83] of genetic variance produced in
the resident population.
Appendix A
(a) Relatedness in diploid populations
Here, we make plain the definition of relatedness as a ratio

of regression coefficients, in a diploid version of our basic

model (see §1b) in a monoecious diploid population of constant

size. For simplicity, we assume semi-dominance of gene effects

within individuals and that a single fitness function gives both

the expected number of successful female and males gametes

of individual i. With this, fitness wi can still be written as

equation (1.10); that is, wi � 1� c( pi � pp(i))þ b( pn(i) � pp(i))

but allele frequencies within individuals take the values 0, 1/

2, or 1. In particular, pi ¼ (pC
i þ pF

i )/2, where pC
i (pF

i ) is the fre-

quency of the mutant in the maternally (paternally) derived

gene of i. We then have

E[P0jp] ¼
XNT

i¼1

wi

2NT
( pC

i þ pF
i )

¼
XNT

i¼1

wi

NT
pi,

(A 1)

where, in the first line, 2NT represents the total number

of gene copies in the population, and individual i will transmit

(pC
i /2þ pF

i /2)wi mutant alleles through both male and

female gametes, which gives the total number (pC
i þ pF

i )wi of

transmitted mutant alleles.

As in the haploid case, the linear regression of pn(i) on pi is

E[Pn(i)j pi, p] ¼ r pi þ (1� r)p, (A 2)

which allows us to write predicted fitness as in the main text

(equation (1.15)): ŵi ¼ 1þ (�cþ rb)( pi � p), and where

r ¼ E[Pn(i)Pijp]� p2

E[P2
i jp]� p2

: (A 3)

The main difference with relatedness r in the haploid case

(equation (1.14)) is that r now does not reduce to a probability

of recent coalescence (‘probability of identity’) under the

separation of time-scale setting presented in §1b(iv), owing

to the fact that E[P2
i jp] is no longer equal to p. Nevertheless,

the genealogical interpretation can be extended in a straight-

forward way by writing

E[P2
i jp] ¼ rfpþ (1� rf) p2 and E[Pn(i)Pijp] ¼ rnpþ (1� rn) p2,

(A 4)

where both rn and rf are again regression coefficients by

construction, whereby

r ¼ rn

rf
: (A 5)

Under the assumptions presented in §1b(iv), rn and rf

become, respectively, the probability that two homologous

genes randomly sampled in the focal individual coalesce in

a recent past and the probability that two homologous

genes, one randomly sampled in the focal individual and

one in a neighbour, coalesce in a recent past. Then, equation

(A 5) is a ratio of probabilities of identity-by-descent, as given

in Hamilton [27].
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Using equation (A 5) in equation (A 1) and applying the

same argument as in §1b gives Dp � p(1� p) rf(� cþ rb),

where in the absence of inbreeding rf ¼ 1/2.
royalsocietypublishing.org
Phil.T
(b) Allele frequency change under stepping-
stone migration

As a concrete example of a fitness function w(zf, z0, z1, z2)

for the stepping-stone model, we can assume that each

individual can help its group neighbours, giving a relative

fecundity benefit B shared among the N 2 1 neighbours at

a cost C for itself and that the life cycle follows the Moran
model [121], where adults are replaced one at a time. Specifi-

cally, one of the NT adults taken randomly in the total

population dies and is replaced by a juvenile from one parent

chosen in proportion to the expected fecundity of the different

parents. As the offspring of the focal can compete against a

relative number 1þ (B� C)zR
0 of offspring produced in the

focal group (where zR
0 ¼ zf/N þ z0(N � 1)/N is the average

phenotype in this group), a relative number 1 þ (B 2 C)z1 of

offspring produced in the group located one step apart from

the focal group, and relative number 1 þ (B 2 C)z2 of offspring

produced in a group two steps apart, taking into account the

various migration events, leads to
ran
s.R.Soc.B
369:20130357
w(zf, z0, z1, z2) ¼ 1� 1

NT
þ 1

NT

(1�m)(1� Czf þ Bz0)

(1�m)(1þ (B� C)zR
0 )þm(1þ (B� C)z1)

"

þ m(1� Czf þ Bz0)

(1�m)(1þ (B� C)z1)þ (m=2)(1þ (B� C)zR
0 )þ (m=2)(1þ (B� C)z2)

# (B 1)
which generalizes equation (1.6). Then, by the same

argument used in Hamilton’s rule, we have

wi � 1þ d
@w
@zf

pi þ
@w
@z0

p0(i) þ
@w
@z1

p1(i) þ
@w
@z2

p2(i)

� �
, (B 2)

where p0(i), p2(i) and p2(i) are, respectively, the average fre-

quency of the mutant allele in neighbours living zero, one

and two steps apart from the focal group. As in the deri-

vation of Hamilton’s rule, we now consider the expected

value ŵi of the focal individual’s fitness over replicates of

the evolutionary process, for given p. It may be felt that

we can evaluate it by applying the regression definition of

relatedness (equation (1.14)) for one-step and two-step

neighbours, but such regression coefficients will no longer

be independent of p and cannot be interpreted as coalescence

probabilities. As a result, when relatedness is defined rela-

tive to population average allele frequency (i.e. it is of

the form (E[Pk(i)Pijp]� p2)/(p(1� p))), the frequency-

independent selection gradient is no longer apparent.

Hence, we need another argument to go beyond a simple

description of allele frequency change.

Using the zero-sum property of partial derivatives and

subtracting 0 ¼ (
P

k @w/@zk) p2(i) from equation (B 2), we

can express the last derivative in terms of the other

two, and taking the average of replicates over the evolution-

ary process and assuming a very large number of groups

leads to

Dp � d(p� E[PiP2(i)jp])
@w
@zf
þ @w
@z0

R02 þ
@w
@z1

R12

� �
, (B 3)

where Rk2 ¼ (E[Pk(i)P2(i)jp]� E[PiP2(i)jp])/(p� E[PiP2(i)jp])

describes the similarity of k-neighbours to the focal, relative

to the similarity of 2-neighbours to the focal. Further, Rk2

can be considered as independent of p: for any p, it quantifies

a difference in the distributions of coalescence times of the

different pairs of genes compared [34]. As for Hamilton’s

result (equation (1.7)), this conclusion rests on asymptotic

results when the strength of selection d! 0, for non-vanish-

ing dispersal. In this limit, practically nothing is known about
(p� E[PiP2jp]) as the function of model parameters, except

that it is positive [34].

Equation (B 3) is perhaps the closest analogue for

the localized dispersal of Hamilton’s result, displaying a

frequency-independent factor. In this equation, the term for

the most distant actors plays the role previously played

by the average population term: the fitness effects from the

most distant actors are absorbed in the other terms, and

the ‘relatedness’ Rkl of k-step neighbours is accordingly

defined relative to the most distant l-neighbours. There

are other ways to exhibit a frequency-independent term,

owing to the fact that any of the partial derivatives may be

absorbed into the others. These other ways are useful as

they may involve simpler relatedness coefficients, but either

the phenotypic cost term or the benefit term for within-

group neighbours is lost from sight, as we now show. By

expressing the second derivative in equation (B 2) in terms

of the other two, one obtains

Dp � d(p� E[P0(i)Pijp])
@w
@zf
þ @w
@z1

R1 þ
@w
@z2

R2

� �
, (B 4)

where Rk ¼ (E[Pk(i)Pijp]� E[P0(i)Pijp])=(p� E[P0(i)Pijp]) des-

cribes the similarity of k-neighbours to the focal, relative to

the similarity of group neighbours. Now, the within-group

benefits (the b of Hamilton’s rule) have been cancelled out,

but the Rks have useful compact expressions and can be com-

puted as Rk ¼ (r0 � rk)/(1� r0), where ri is the probability of

identity-by-descent of two individuals sampled without

replacement i steps apart on the lattice. The simplest case is

the Moran model assumption leading to equation (B 1), for

which Rk ¼ (1� k/m)/N.
(c) Between generation fluctuations
In order to illustrate how to analyse how between-generation

fluctuations affect allele frequency change, we consider that

there may be good and bad years so that the environment

determines the survival probability 6g (6b) of queens in

good (bad) years in our social insect colony model



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:2013035

16
(equation (1.17)). In this case, the survival probability in the

fitness function (equation (1.17)) becomes a random variable

6d depending on the state d [ {g, b} of the environment, and

as this fluctuates it may be felt that ‘fitness’ should be

measured over several generations in order to evaluate the

growth rate of a mutant (i.e. the geometric growth rate).

However, allele frequency changes add up over generations

and thus it is also correct to describe the change over several

generations as an (arithmetic) average of one-generation

changes. For example, if there is only one queen per nest so

that zn ¼ zf in equation (1.17) and the selection gradient is

given by the derivative of fitness with respect to zf, this

average change is given as

Dp � p(1� p)d qg

@wg

@zf
þ qb

@wb

@zf

� �
, (C 1)

where qg (qb) are the probabilities of occurrence of good (bad)

years and wd is the fitness in state d ([20], equation (1.23)).

Therefore, under temporal fluctuations, the selection gradient

is independent of allele frequency, whether environmental

change occurs within or between generations.
(d) Disruptive selection and phenotypic variance
Here, we show that the disruptive selection term d(z*, 0) gives

the direction of change of the phenotypic variance E[Ds2
zjz�]

around a singular point when the mutant is rare ( p! 0).

Given the resident phenotypic value z and mutant pheno-

type z þ d, the change in phenotypic variance over one

generation is

E[Ds2
zjz] ¼ [{(zþ d)2p0 þ z2(1� p0)}� (zþ dp0)2]

� [{(zþ d)2pþ z2(1� p)}� (zþ dp)2]:
(D 1)

On substitution of p0 ¼ pþ Dp and Dp ¼ p(1� p)d2d
(z�, p)þO(d3) for a singular strategy this produces

E[Ds2
zjz�] ¼ d4p(1� p)d(z�, p)(1� 2p)þO(d6): (D 2)

This shows that when the d values are small, the remainder

can be neglected and the dynamics of the variance is sign

equivalent to d(z*, 0) when p! 0.
7
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