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Hamilton’s theory of inclusive fitness revolutionized our understanding

of the evolution of social interactions. Surprisingly, an incorporation of

Hamilton’s perspective into the quantitative genetic theory of phenotypic

evolution has been slow, despite the popularity of quantitative genetics in

evolutionary studies. Here, we discuss several versions of Hamilton’s rule

for social evolution from a quantitative genetic perspective, emphasizing

its utility in empirical applications. Although evolutionary quantitative gen-

etics offers methods to measure each of the critical parameters of Hamilton’s

rule, empirical work has lagged behind theory. In particular, we lack studies

of selection on altruistic traits in the wild. Fitness costs and benefits of altru-

ism can be estimated using a simple extension of phenotypic selection

analysis that incorporates the traits of social interactants. We also discuss the

importance of considering the genetic influence of the social environment,

or indirect genetic effects (IGEs), in the context of Hamilton’s rule. Research

in social evolution has generated an extensive body of empirical work

focusing—with good reason—almost solely on relatedness. We argue that

quantifying the roles of social and non-social components of selection and

IGEs, in addition to relatedness, is now timely and should provide unique

additional insights into social evolution.
1. Introduction
Fifty years ago, Hamilton [1–3] published a series of papers that showed how gen-

etic changes in a population should occur when relatives affect one another’s

fitness. These papers developed three important concepts that changed our view

of evolution. First, using a population genetic model, Hamilton showed how see-

mingly costly traits (such as altruistic behaviour) could be favoured; second, he

showed that a quantity he called ‘inclusive fitness’ was maximized; and third, he

showed that inclusive fitness maximization could occur when interacting with

any form of relative. The most influential aspect of this work was the development

of a simple rule for the evolution of altruistic behaviour: altruism should evolve

when the fitness costs to the altruist are outweighed by the benefits to its recipients,

weighted by the relatedness of the two individuals [1,2]. Hamilton’s rule, which

built upon previous insights by Fisher [4], Haldane [5] and Williams & Williams

[6], relied upon considering evolution from what was later called a ‘gene’s eye’

view [7,8]. From a gene’s perspective, it does not matter whether it resides in the

body of an altruist or a recipient as long as it leaves more copies of itself than

does an alternative version of that gene. Any allele that increases inclusive fit-

ness—as a result of direct fitness effects on the bearer, indirect fitness effects that

accrue by helping relatives, or both—should spread in a population.
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By explicitly considering the spread of alleles in a popu-

lation, Hamilton’s work followed in the footsteps of the

architects of the Modern Synthesis and promoted a population

genetic understanding of social behaviour. In fact, in titling his

two major papers ‘The genetical evolution of social behaviour’

[2,3], Hamilton was probably paying homage to Fisher, whose

book, The Genetical Theory of Natural Selection [4], was a major

influence on his ideas [8,9]. Despite Hamilton’s population

genetic focus, it is his simple fitness-maximizing rule for the

evolution of altruistic phenotypes that is typically remem-

bered. Hamilton’s rule has been enormously influential,

leading to both empirical and theoretical advances in evol-

utionary biology and behavioural ecology [10]. Ironically,

given Hamilton’s emphasis of ‘genetical evolution’, the use

of his rule in these fields has been largely phenotypic; genetics

is usually ignored except when considering the relatedness of

interacting individuals.

As a contrast to its embrace by behavioural ecology,

inclusive fitness theory was not immediately integrated into

evolutionary quantitative genetics, the standard framework

for studying the dynamics of phenotypic evolution [10].

Instead, the theoretical work of Lande [11] and Lande &

Arnold [12] and the empirical work that followed [13]

mostly developed separately from social evolution theory.

In this review, we present an introduction to the mathemat-

ical and conceptual overlap between quantitative genetics

and inclusive fitness theory, first noted by Cheverud [14,15]

and Queller [16–18] and elaborated upon in more recent

work [19–26]. We avoid mathematical details as much as

possible, focusing instead on the potential empirical appli-

cations of the theory. Throughout, we use the term altruism
to indicate a trait that is costly to the individual but beneficial

to others and cooperation to indicate a trait that evolves based

on its benefit to others, regardless of individual cost [27].
2. Parallels between social evolution and
quantitative genetics

The original statement of Hamilton’s rule [1, pp. 354–355]

was based upon a verbal argument:
. . .the ultimate criterion which determines whether G [a gene that
causes altruism] will spread is not whether the behaviour is to
the benefit of the behaver but whether it is to the benefit of the
gene G . . . If the gain to a relative of degree r is k-times
the loss to the altruist, the criterion for positive selection of the
causative gene is
k .
1

r
: (2:1)

Hamilton lent this simple statement extensive mathematical

support in a later paper [2], but the general conclusion

remained the same: fitness losses to an altruist must be com-

pensated for by fitness benefits to related individuals, and

these benefits must be greater as relatedness decreases. As

is typical of population genetic models, Hamilton assigned

these fitness effects to genotypes rather than phenotypes,

defining the costs (C ) and benefits (B) of altruism as the

direct effect of a genotype on the fitness of its bearer and

the effect of the same genotype on other individuals, respect-

ively. Relating these effects to (2.1) and rearranging, we arrive

at the now-familiar expression for Hamilton’s rule

rB . C: (2:2)
Although Hamilton’s early papers are used to explain the

evolution of altruistic phenotypes, they were actually models

of the evolution of altruistic genotypes. Other approaches treat

the evolution of phenotypes more explicitly. For example, in

evolutionary quantitative genetics, fitness is typically modelled

as a function of phenotype rather than genotype, with direc-

tional selection representing the direction in phenotypic

space with the greatest increase in fitness. A consequence of

this view is that directional selection can be estimated using a

multiple regression of relative fitness (w) on phenotype (z). In

mathematical terms

w ¼ aþ b1z1 þ b2z2 þ � � � þ 1, (2:3)

where a is an intercept, b is a partial regression slope known

as a selection gradient, each zi is a different trait and 1 is a

residual term [12]. This relationship has been exceptionally

useful empirically, as thousands of selection gradients have

now been estimated, contributing to our understanding of

the distribution of selection in natural populations [13,28–31].

Lande & Arnold [11,12] showed that these selection gradi-

ents can be combined with estimates of genetic variances and

covariances (given by the matrix G) to predict evolutionary

change in phenotypic means ðD�zÞ using the multivariate

breeder’s equation

D�z ¼ Gb, (2:4)

where b is a vector of selection gradients. Such predictions

[32–34] have been made much less frequently than phenotypic

selection has been measured, because estimating G usually

requires longer term studies or large-scale controlled breeding

designs [35]. Nevertheless, empiricists can often understand a

great deal about selection in natural populations without genetic

data. If the correct phenotypes are measured, simply estimating

phenotypic selection gradients can inform researchers about

which traits are likely to underlie variation in fitness, leading

to robust predictions that can be tested experimentally [36,37].

The first attempts to synthesize Hamilton’s social evol-

ution theory and evolutionary quantitative genetics came

when Cheverud [14,15] explicitly incorporated genetic covari-

ances into the formulation of Hamilton’s rule. A quantitative

genetic perspective was again taken up in two landmark

papers by Queller [17,18] that note a parallel between the

breeder’s equation and Hamilton’s rule: each partitions evol-

utionary change into a phenotypic component (selection or

benefits/costs) and a genetic component (heritability or relat-

edness). If social effects on fitness flow entirely through

phenotypes, an equation for relative fitness can be written as

w ¼ aþ bNzþ bSz0 þ 1, (2:5)

where bN represents the effect of a focal individual’s phenotype

(z) on its own fitness and bS represents the effect of the pheno-

type of the individual with whom it interacts (z0) [18]. (Here, we

use notation that corresponds to [21,24] instead of [18] for con-

sistency with later sections.) Equation (2.5) is analogous to (2.3),

and in fact, the termsbN and bS are selection gradients; each is a

partial regression slope estimated while holding constant the

traits of a social interactant. Elsewhere [21,24], we have called

bN the non-social selection gradient and bS the social selection

gradient. This is consistent with Hamilton’s use of ‘social selec-

tion’ ([38], see also [39]) but should be distinguished from other

uses of the term [40,41]. Note that although equation (2.5) is

written from the perspective of an individual, the selection gra-

dients are population-level parameters. That is, each represents
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the average effect of a given trait via non-social and social path-

ways across an entire population. For proper evolutionary

predictions, all individuals in a population must be represented

in the pool of ‘focal individuals’ (although any given individual

may be simultaneously a focal individual and a social partner

for another focal individual).

The beauty of equation (2.5) is that it provides pheno-

typic—and hence, readily estimable—analogues of the costs

and benefits in Hamilton’s model, with bN corresponding

to Hamilton’s –C, and bS corresponding to B [16,18]. These

relationships allow both for quantitative genetic versions of

Hamilton’s rule and for quantification of the forces driving

social evolution in natural populations.
 rans.R.Soc.B
369:20130358
3. Quantitative genetics and Hamilton’s rule
Envisioning Hamilton’s costs and benefits as selection gradi-

ents has led to several quantitative genetic versions of

Hamilton’s rule. In general, these versions of Hamilton’s

rule can be derived using a version of Price’s theorem (also

known as the Robertson–Price identity),

D�z ¼ cov(A, w), (3:1)

which states that the evolutionary change in the mean of trait

z owing to a single generation of selection is equal to the

covariance between its breeding value (A) and relative fitness

[42–44]. Some versions of this theorem, including Price’s

original derivation [44], include an additional expectation

term that allows transmission bias [45]; Hamilton [46],

Frank [20] and others have made use of this term. We

follow Queller [17,18] and assume no meiotic drive, genetic

drift or other non-Mendelian effects and so omit this term.

Below, we synthesize a number of quantitative genetic

versions of Hamilton’s rule that use the common notation of

selection gradients as analogues for Hamilton’s benefits and

costs. We specifically adopt a quantitative genetic perspective

developed to address the evolution of social interactions by

incorporating indirect genetic effects (IGEs) [24,47,48]. All of

the examples we discuss are placed in the context of a single

phenotype expressed in interacting individuals but can be

easily extended to multi-trait formulations [24,47]. In general,

these models make standard quantitative genetic assumptions

about the genetic basis of traits (e.g. many loci of small effect)

but should be robust to other genetic assumptions.

(a) Phenotypic Hamilton’s rule
The simplest version of Hamilton’s rule is completely pheno-

typic and describes change within a generation owing to an

episode of selection rather than evolutionary change across

generations. In other words, the phenotypic Hamilton’s rule

is derived from the definition of the selection differential (s)

that relates phenotype and fitness, rather than relating the

more difficult to measure breeding value to fitness

s ¼ cov(z, w): (3:2)

Substituting equation (2.5) for relative fitness, we find that

selection within a generation favours altruism when

Cii
0

Pii
bS . �bN, (3:3)

where Cii
0

is the phenotypic covariance between the traits

expressed by the pair of interactants (i.e. cov(z,z0)) and Pii is
the phenotypic variance of the trait [21]. This condition is ana-

logous, but not identical, to Hamilton’s rule. Instead of stating

the conditions under which altruism should evolve, it shows

the conditions under which an altruistic phenotype should

be favoured by selection within a generation. In other words,

when (3.3) is true, a population will have higher levels of altru-

ism after selection than before, but this does not guarantee that

this change will be transmitted to the next generation.

In this formulation, the ratio Cii
0
=Pii is a phenotypic analogue

to Hamilton’s relatedness. As a ratio of covariance to variance,

this measure is equivalent to the regression of a social partner’s

phenotype on that of the focal individual. Thus, instead of quan-

tifying the expected genetic similarity between two individuals,

Cii
0
=Pii measures the level of phenotypic similarity among inter-

acting individuals. This ratio incorporates many possible sources

of non-random association between phenotypes, including gen-

etic relatedness and social modification of phenotypic expression

[21]. The latter category includes such phenomena as reciprocity

(i.e. tit-for-tat behaviour), manipulation and punishment [21].

As we will show below, both of these sources can also contribute

to non-random genetic associations that influence evolutio-

nary outcomes. Shared environmental effects can also lead to

a non-zero Cii 0=Pii. Of course, if interacting individuals have

uncorrelated phenotypes, this ratio is zero (analogous to a zero

value for relatedness) and phenotypic selection is dominated

by non-social selection.
(b) Genetic Hamilton’s rule with phenotypic
selection gradients

A closer parallel to Hamilton’s rule is achieved by replacing

the phenotypic regression in (3.3) with a ratio that represents

the association between genes and phenotype. Substituting

equation (2.5) into Price’s theorem allows us to derive the rule

CAz0

CAz
bS . �bN, (3:4)

where CAz and CAz0 , respectively, represent covariances

between the focal individual’s genetic breeding value and its

own phenotype and between its breeding value and the pheno-

type of its partner [16,18,24]. In other words, each covariance

describes how well genetic variation predicts phenotypic dif-

ferences, and the ratio CAz0=CAz quantifies the similarity of

two social partners. This ratio is similar to the one in (3.3), but

any sources of environmental covariance between individuals

have been removed. Thus, CAz0=CAz represents phenotypic

similarity that may contribute to a genetic response to selection.

When the only source of covariance between individuals

is non-random assortment of genotypes, (3.4) reduces to

rbS . �bN, (3:5)

where r is relatedness given as a regression of additive genetic

values. In addition to familial relatedness or genetic population

structure, r can encompass non-random genetic associations

that arise for any other reason, including identification of altru-

ists via greenbeard genes [3,7]. Condition (3.5), which was

derived by Queller [18], shows that Hamilton’s costs and

benefits can be estimated using selection gradients.
(c) Indirect genetic effects and Hamilton’s rule
The genes of a focal individual and the phenotypes of its

partner may be non-randomly associated (i.e. CAz0 =0) for
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another reason: sometimes one individual’s phenotype is

influenced by genes expressed in another individual. This

phenomenon, known as an IGE [47,48] or an associative gen-

etic effect [49,50], arises whenever specific phenotype(s) in

the social environment influences the phenotype that is

expressed by a focal individual. IGEs are therefore expected

to be especially common for traits, like cooperative behaviour,

that are expressed only in a social context [47,48].

IGEs have been incorporated in models in various ways

[51,52], but for our purposes the most useful formulation

models IGEs as the effect of a specific phenotype of the social

partner on a specific phenotype of the focal individual, scaled

by the parameter c [47]. (Note that the parameter c refers

explicitly to IGEs that occur among individuals in the same gen-

eration, and thus cannot be used to model transgenerational

effects such as maternal effects, where other considerations

must be taken into account [53–55].) When considering the

same trait across both interacting individuals, c may range

from 21 to 1. As c approaches the extremes, the two pheno-

types are almost completely determined by the interaction,

with the two individuals expressing phenotypes that are

highly dissimilar (c ¼ 21) or nearly identical (c ¼ 1). IGEs

complicate the similarity ratio, CAz0=CAz, adding another

factor influencing the evolution of altruism. When IGEs are

added to relatedness as a potential source of covariance, (3.4)

becomes

rþ c

1þ rc
bS . �bN (3:6)

[24,26]. Remarkably, the influence of relatedness and IGEs on

the evolution of altruism is symmetrical: an increase in c will

affect the balance between social and non-social selection in

exactly the same way as an increase in r. The denominator on

the left-hand side of (3.6) means that the two are not exactly

additive, and that the quantity rþ c/1þ rc can never exceed

1. Van Cleve & Akçay [56] demonstrate the importance of

including the interaction term in the denominator, which has

been omitted from another formulation [25].

Condition (3.6) can be expanded to groups composed

of more than two interacting individuals following the

derivations in McGlothlin et al. [24]:

(n� 1)(rþ c)

1þ (r� (n� 2))c
bS . �bN, (3:7)

where c and bS are still defined as effects of one individual

on another. In this case, c has the upper bound 1/n 2 1,

which somewhat limits the influence of IGEs. This makes

intuitive sense, as the ability of any given individual to influ-

ence phenotype must decrease with the number of interacting

individuals. Smaller group size thus facilitates the evolution

of cooperative, altruistic or other socially influenced behav-

iour. Similar results to (3.6) and (3.7) have also been

obtained using different modelling approaches [23,26,56,57].

Conditions (3.6) and (3.7) are useful because they par-

tition phenomena often thought of as biologically distinct.

The selection gradients represent the fitness consequences

of expressed phenotypes, r represents the genetic similarity

of interactants and c represents the genetic influence of an

interaction on traits expressed. The last of these is potentially

the most interesting, because it represents a source of simi-

larity between interactants that is ignored (or at least

obscured) in Hamilton’s original formulation. Nevertheless,

the modification of behaviour within social interactions
encompassed by c in (3.6) and (3.7) is a cornerstone of

models of social evolution, including phenomena such as

reciprocity and manipulation [27,58–61]. In general, theory

predicts that when the behaviour of one individual is contin-

gent on the behaviour of the other, cooperation or ‘reciprocal

altruism’ may evolve [58,59].

In the strongest form of such reciprocity, known as ‘tit-for-

tat,’ an individual either cooperates or not based solely on the

previous actions of the individual with which it is interacting

[59]. In our formulation, this would be represented by c ¼ 1,

in which case an individual’s actions would be perfectly pre-

dicted by those of its partner. However, (3.6) and (3.7)

suggest that reciprocity need not be so strong to allow co-

operative behaviour to evolve. Consider the case where two

unrelated individuals interact. Then, (3.6) becomes

cbS . �bN, (3:8)

which indicates that the critical strength of reciprocity needed

for the evolution of cooperation is �bN/bS, or the ratio of

benefits to costs. In other words, a behaviour with benefits

greater than costs may be favoured even when reciprocity is

not perfect. It has been argued that pure reciprocity should

not be referred to as altruism because costs paid by the actor

are returned via the reciprocal benefit [27]. Condition (3.8)

makes this clear: cooperation will not evolve unless the costs

(2bN) are outweighed by the benefits returned (cbS). Thus,

cooperation evolving by IGEs alone might be more properly

described as mutual benefit as opposed to altruism [27]. It is

important to remember, however, that the necessary condition

is that the benefits are returned on average across the popu-

lation; a behaviour that is mutually beneficial at the

population level may be altruistic to any given actor.
(d) Hamilton’s rule with genetic selection gradients
Thus far, all the versions of Hamilton’s rule that we have con-

sidered have followed classical evolutionary quantitative

genetics in separating phenotypic selection from genetic inheri-

tance. However, it has been argued that such an approach does

not result in a true Hamilton’s rule, because Hamilton’s orig-

inal model was focused on the evolution of genes that lead to

altruism rather than altruistic phenotypes per se [62]. In the

absence of IGEs, the genetic component of an individual’s

phenotype derives solely from its own genes, and therefore

phenotypic and genetic fitness effects tend to be identical or

at least proportional. However, IGEs complicate matters

because phenotypic expression can no longer be modelled

solely as a direct function of an individual’s own genes. As a

result, versions of Hamilton’s rule that rely on phenotypic fit-

ness effects will diverge from those that rely on genetic

fitness effects.

Queller [18] presented an alternative formulation that

modelled selection as arising solely because of genetic effects

in two interacting partners. In this model, relative fitness may

be written as

w ¼ aþ bAAþ bA0A
0 þ 1: (3:9)

The new b terms in equation (3.9) are genetic selection gradi-

ents, which describe the effects of the breeding values of

each interactant on the fitness of the focal individual. Under

this fitness model, the condition for the evolution of altruism is

rbA0 .� bA, (3:10)
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which is identical to (2.2), with bA0 equivalent to B and 2bA

equivalent to C. In the absence of IGEs (and other complexities

discussed by Queller [18]), genetic and phenotypic selection

gradients are equivalent, and the Hamilton’s rules in (3.5)

and (3.10) are identical.

When IGEs are present, that is, when the social environ-

ment matters to the expression of a trait, they contribute to

both of the genetic selection gradients in (3.9) and (3.10)

because the total breeding value (A) for an individual

includes both direct and IGEs

A ¼ a
1� c

, (3:11)

where a is the additive genetic value for a given trait [24,47].

Under the assumption that all fitness effects of genes flow

through expressed phenotypes, then it can easily be shown

that

bA ¼
bN þ cbS

1þ c
(3:12)

and

bA0 ¼
bS þ cbN

1þ c
: (3:13)

The genetic selection gradients clearly incorporate multiple

pathways by which a social partner may influence the fitness

of another individual: social selection, which represents fit-

ness effects that may be directly attributed to the phenotype

of the social partner, and IGEs, which indirectly influence fit-

ness by altering the expression of the focal individual’s own

phenotype. The extent to which genetic and phenotypic selec-

tion models diverge depends upon the magnitude of IGEs.

The stronger IGEs are, the more an individual’s genetic fit-

ness effects arise via its effects on the phenotypes of others.

We can show the relationship between genetic and pheno-

typic versions of Hamilton’s rule with a rearrangement of

(3.6) that maintains the separation of social genetic effects

on the left and focal genetic effects on the right

r(bS þ cbN) .� (bN þ cbS): (3:14)

One notable feature of (3.14) is that when unrelated individ-

uals interact, the left-hand side becomes zero. As expected,

the evolution of cooperative behaviour depends solely on

the effects of one’s own genes. As in (3.8), cooperation will

evolve only if the benefits outweigh the costs (on average).
(e) Comparing versions of Hamilton’s rule
We have reviewed a number of quantitative genetic versions

of Hamilton’s rule ((3.2)–(3.8), (3.10), (3.14)), most of which

are minor mathematical variations of one another. Arguably,

only one of these (3.10) is entirely faithful to Hamilton’s orig-

inal conception [62] in that it assigns fitness effects to genes

alone and includes only costs, benefits and relatedness. How-

ever, as we will argue in §4, each version of Hamilton’s rule

presented here has its advantages and utility, and the choice

among them should be made pragmatically.

A major philosophical difference does arise from the two

major classes of Hamilton’s rule: those that include pheno-

typic selection gradients ((3.2)–(3.8)) and those that include

genetic gradients ((3.10), (3.14)). The distinction between

these classes of model goes away under certain assumptions,

i.e. if all fitness effects arise causally from phenotypes and the

only source of covariance between interactants is relatedness
[18]. For our purposes, the latter assumption amounts to the

absence of IGEs. Introducing IGEs creates biological reality

but mathematical inconvenience: genetic and phenotypic

selection gradients are no longer equivalent. However, each

type of gradient can be expressed in terms of the other,

which leads to the derivation of equivalent, but rearranged,

versions of Hamilton’s rule ((3.6), (3.14)).

Comparing the versions of Hamilton’s rule in (3.6) and

(3.14) shows that the perception of the role of IGEs is

simply a matter of perspective. If one follows evolutionary

quantitative genetics and traces fitness costs and benefits to

phenotypes, IGEs lead to phenotypic similarity among inter-

actants by creating an alternative pathway from genotype to

fitness, and thus contribute to the ‘relatedness’ term in

Hamilton’s original formulation. As we have argued pre-

viously [24], the quantity ðrþ cÞ/ð1þ rcÞ can then be

viewed as encompassing both direct (additive genetic) and

indirect relatedness via r and c, respectively. Alternatively,

if one follows the population genetic approach, as did Hamil-

ton, and assigns fitness effects to genes then IGEs contribute

to the genetic selection gradient. Thus, from one viewpoint,

IGEs alter the covariance among interactants, and from the

other, IGEs alter the form of selection. Neither of these is

truer than the other; as in the debate between inclusive fitness

and multilevel selection [27,63,64], mathematical equivalence

means that differences between the two perspectives are a

matter of semantics.

The caveat remains that one must be careful to precisely

define costs and benefits, especially when IGEs are poten-

tially involved. Clearly, costs and benefits can differ based

on whether they are viewed phenotypically or genetically,

and behaviours that could be viewed as ‘altruistic’ from

one perspective might be viewed as ‘mutually beneficial’

from the other [27].
4. Empirical applications
All of the versions of Hamilton’s rule presented in §3 have

utility in various situations. Because of its simplicity and its

similarity to Hamilton’s original version, equation (3.10)

may indeed be the most useful for theoretical applications

[62]. However, selection in natural populations is generally

measured via phenotypic selection gradients [12,13], and

for this reason, the versions of Hamilton’s rule that include

such gradients ((3.2)–(3.8), (3.13)) will generally be more

accessible to empirical applications in natural populations.

In this section, we will discuss how the various versions of

Hamilton’s rule may be employed in such studies.

(a) Estimating non-social and social selection
The Lande–Arnold method for estimating selection is easily

extended to include social selection gradients using a method

analogous to contextual analysis, which may be used to

partition group- and individual-level selection [65–67]. As

suggested by equation (2.5), social selection can be estimated

by simply including the traits of social partners in a multiple

of regression of fitness on phenotype. More generally, the

regression equation is

w ¼ aþ zTbN þ z0TbS þ 1, (4:1)

where the vector z contains the traits of the focal individual, the

vector z0 contains the traits of the social partner, and the twobs
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are vectors of non-social and social selection gradients [21,24].

(The notation T is for transposition, meaning simply that each z

should be written as a row rather than a column to follow the

rules of matrix multiplication.) Any number of traits can be

entered into such a regression model, and it is not necessary

for each vector to contain all the same traits; for example, stat-

istical considerations may necessitate limiting the number of

traits included in one or both vectors. Equation (4.1) is easily

expanded to larger groups by using the average phenotype

of social interactants (or some group-level phenotype) in

place of z0 [24,68]. Such a partitioning is similar to that of con-

textual analysis [65–67], with one subtle but crucial difference.

In contextual analysis, the focal individual’s phenotype is

included in the calculation of the group mean, but in social

selection analysis it is excluded. When groups are large, the

two analyses converge, but in relatively small groups, social

selection analysis achieves a more precise separation between

non-social and social effects. Ideally, lifetime fitness would

be used as the fitness measure in equation (4.1), but analyses

of individual fitness components (e.g. survival, mating success

or fecundity) can be informative as well.

Surprisingly, attempts to quantify non-social and social

selection are rare, as most empirical studies motivated by

inclusive fitness theory have focused on relatedness. Although

a number of studies have quantified fitness costs and benefits

of social behaviour [69,70], few or none have been conducted

within an explicit selection context. The historical disconnect

between inclusive fitness theory and quantitative genetics

[10] and the perceived conflict between inclusive fitness and

multilevel selection approaches [27,63,64] may in part account

for the paucity of social selection studies. Another potential

explanation is that eusocial insects have been the primary test-

ing ground for inclusive fitness theory [71]. In such societies,

where a single queen or small group of queens typically

account for the entirety of a colony’s reproduction and sterile

workers pay the ultimate fitness cost, partitioning selection

into non-social and social components arguably adds little to

our understanding of the evolution of altruism, and related-

ness remains the key datum. Nevertheless, a small number of

studies have partitioned selection into individual and colony

levels, quantifying the conflict inherent in insect societies. For

example, Tsuji [72] used contextual analysis to study the unu-

sual social system of the myrmicine ant Pristomyrmex pungens,

in which queens are absent, males are rare and workers pro-

duce other workers parthenogenetically. Selection at the

individual level favoured larger workers, which tend to repro-

duce without foraging, but selection at the colony level acted in

opposition [72].

Most studies using social selection or related contextual

analysis approaches have focused on cases of competition.

In forked-fungus beetles (Bolitotherus cornutus), in which

horned males compete for access to females, non-social selec-

tion favoured larger males, while interacting with larger

males decreased mating success, leading to a negative social

selection gradient [68]. In other words, a male’s mating success

depended not only on his own size but also on the size of the

males surrounding him. Similarly, Eldakar et al. [73] used con-

textual analysis to show that aggression by male water striders

(Aquarius remigis) enhanced their own fitness at the expense of

that of the group because females tended to emigrate from

groups that included highly aggressive males.

Adopting a social selection approach should be just as

informative in studies of altruistic and cooperative behaviour.
Although the regression model in (4.1) may be difficult to

apply to traditional eusocial systems where the reproductive

division of labour is imposed early in life, it is applicable

whenever most individuals have the opportunity to obtain

non-zero direct fitness. In addition, a social selection analysis

requires only slightly more information than a traditional

selection analysis. All regression methods require fitness esti-

mates and phenotypic observations, while social selection

analyses simply require some measurement of how individ-

uals interact or associate with one another. While the direct

observation of social interactions is desirable for such an

approach, it is not absolutely necessary, particularly if the

phenotypes of interest are measureable outside of the social

context. Spatial distribution or other such data may be used

as a proxy for direct observation. For example, Formica

et al. [68] used home-range data to estimate the mean pheno-

type of an individual’s predicted social interactants, weighted

by the predicted frequency of pairwise interaction.

It is probable that the necessary data for estimating non-

social and social selection are currently available in long-term

studies of social animals such as baboons [74], ground squirrels

[75], meerkats [76] and various cooperatively breeding birds

[77,78]. Long-term studies are not compulsory, however.

Social selection analyses may be incorporated into studies of

any time scale, as long as estimates of fitness or its components

are feasible to obtain. Future studies of social behaviour

in natural or semi-natural populations should explicitly incor-

porate social selection analysis into their design so that the

fitness costs and benefits of the behaviour under study may

be rigorously quantified.

The benefits of measuring social selection are obvious.

In individual studies, social selection analysis may serve both

descriptive and hypothesis-testing purposes. At the most

basic level, estimating the strength of non-social and social

selection allows for a quantification of the fitness costs and

benefits of a particular behaviour, allowing investigators to

determine the direction, strength and source of selection in

their particular population. Comparative or experimental

methods may be used to test hypotheses about the effects of

particular environmental or social variables on such costs

and benefits [36]. On a larger scale, the accumulation of studies

that measure social selection could allow meta-analyses such

as those that have already been performed for traditional natu-

ral selection [13,31]. For example, such data could allow for a

much richer understanding of the relative strength of fitness

costs and benefits and how such selection changes across

space and time, among many other patterns.
(b) Hamilton’s rule in the wild
Once non-social and social selection gradients have been

estimated, fitting them into a version of Hamilton’s rule is

necessary to determine whether net selection is favouring or

disfavouring social traits. Social selection has no effect on the

response to selection when individuals interact randomly and

do not influence one another’s trait expression [21,68]. Thus,

estimates of the extent to which traits of interest covary between

interactants provide evolutionarily relevant complements to

social selection analyses. The extent to which such covariance

may be decomposed into relatedness and IGEs will depend

upon the feasibility of collecting relevant data.

In the absence of genetic data, the purely phenotypic version

of Hamilton’s rule (3.3) may be used as an approximation for



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130358

7
one of the genetic forms. The phenotypic analogue of related-

ness, the ratio Cii 0=Pii, is easy to measure whenever the pattern

of social interaction is known or can be estimated. For a single

trait, this ratio is estimated using the regression of social partner

traits on those of the focal individual, and in combination with

the selection gradients, this ratio determines the extent to which

phenotypic selection is dominated by non-social or social effects

[21]. Although Cii
0
=Pii is not equivalent to the genetic relation-

ship between individuals because it includes environmental

effects, it may often be proportional and can thus act as a pre-

liminary estimate that should allow empiricists to quickly

identify patterns that can be investigated further. In the

forked-fungus beetle example discussed earlier, Cii
0
=Pii was

found to be negative, which means that the negative social selec-

tion gradient actually made a positive contribution to net

phenotypic selection [68]. However, Cii
0
=Pii was also small,

meaning that this contribution was limited, and total selection

was instead dominated by non-social selection.

If the collection of genetic data is possible, empiricists

should attempt to fit the parameters of one of the genetic ver-

sions of Hamilton’s rule because they provide the most

relevant direct insights into evolutionary change. The ratio

CAz0/CAz, which determines the balance between non-social

and social selection, is not easily estimable, but its components

r and c can both be estimated. Methods for assessing related-

ness are generally well known and easy to employ using

neutral molecular markers [79]. Unless individuals associate

preferentially based on phenotype, neutral markers should pro-

vide accurate estimates of the genetic relatedness appropriate to

Hamilton’s rule. Non-random association by phenotype creates

the possibility that relatedness may vary across traits, leading to

difficulty in estimating the appropriate value for relatedness

[24]. Breeding values estimated from quantitative genetic

animal models could be useful in this situation, but such esti-

mates have a number of statistical difficulties of their own

and should be treated with caution [80]. The IGE coefficient

of interaction,c, can be calculated as a function of variance com-

ponents that can be estimated using a simple extension of the

quantitative genetic animal model [51,81–83]. The data

required for such an analysis are not much more extensive

than that required for a standard animal model. In addition to

phenotypic data and pedigree for the population under study,

an IGE analysis requires only knowledge of which indivi-

duals interact with one another. Although c has not yet been

estimated in any studies of natural populations, estimates of

its strength have been obtained in laboratory populations

of flies [84] and guppies [85].

A greenbeard scenario, where individuals both assort

non-randomly and direct altruistic behaviour based on a

phenotypic trait, can be approached by considering the
behaviour and the assortment phenotype as two separate

traits, in which case both relatedness owing to non-random

assortment and IGEs are predicted to be important [24].

Alternatively, if the behaviour and the trait are highly geneti-

cally correlated (or, as in true greenbeard, mediated by a

single gene or genes tightly linked to one another [3,86]), it

is easier to consider them as a single trait. The evolution of

single-gene greenbeards can be predicted by a standard ver-

sion Hamilton’s rule, but the costs and benefits are predicted

to depend upon several details of the population and whether

the altruistic behaviour is obligate or facultative [87]. In either

scenario, however, relatedness is predicted to be very high

(approaching unity) for the greenbeard trait (i.e. the phenotype

upon which individuals bias their association) and lower

(approaching zero) for other traits that are unlinked to the

greenbeard. Detection of such heterogeneity in relatedness

across traits may aid in the empirical identification of true

greenbeards and greenbeard-like traits.
5. Conclusion
Hamilton’s theory of inclusive fitness revolutionized the way

we view social evolution. Like any general theory, applications

to specific organisms and situations can be difficult and subject

to biological limitations imposed by the study system itself.

Nevertheless, Hamilton’s rule is robust to the specifics of

measurement and general outcomes can be found from many

different approaches. Here, we have reviewed quantita-

tive genetic approaches, which have the advantages of both

empirical utility and direct applicability to the prediction of

evolutionary change. We have also briefly outlined methods

for estimating the parameters of Hamilton’s rule, which with

the exception of relatedness, have been underexplored in natural

populations. These methods are simple extensions of widely

used methodology and should be applicable in natural popu-

lations of many social species, in both long- and short-term

studies. We encourage investigators to employ these methods

in studies of social evolution in the wild and hope that we will

be able to celebrate the hundredth anniversary of Hamilton’s

rule with a richer understanding of the micro-evolutionary

processes that shape social behaviour.
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