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ABSTRACT Stochastic switching is an example of phenotypic bet hedging, where offspring can express a phenotype different from
that of their parents. Phenotypic switching is well documented in viruses, yeast, and bacteria and has been extensively studied when
the selection pressures vary through time. However, there has been little work on the evolution of phenotypic switching under both
spatially and temporally fluctuating selection pressures. Here we use a population genetic model to explore the interaction of temporal
and spatial variation in determining the evolutionary dynamics of phenotypic switching. We find that the stable switching rate is mainly
determined by the rate of environmental change and the migration rate. This stable rate is also a decreasing function of the
recombination rate, although this is a weaker effect than those of either the period of environmental change or the migration rate. This
study highlights the interplay of spatial and temporal environmental variability, offering new insights into how migration can influence
the evolution of phenotypic switching rates, mutation rates, or other sources of phenotypic variation.

GENETICALLY identical cells can show significant cell-to-
cell variability in gene expression and other phenotypic

characteristics. This variation in gene expression can be due
to fluctuations in levels of methylation of CpG sites, in mRNA
transcription, or in protein translation and may cause shifts
among different regulatory states that result in bi- or multi-
stability (Smits et al. 2006), which have also been viewed as
an epigenetic switch (Lim and van Oudenaarden 2007).
Moreover, these states are often heritable between generations,
perhaps due to epigenetic inheritance. Examples include the
lactose utilization network in Escherichia coli, where single cells
can stochastically switch between two different states (Mettetal
et al. 2006), or the galactose utilization network in yeast that
displays bimodal patterns in the expression of GAL genes (Acar
et al. 2005; Kaufmann et al. 2007).

In stochastic switching, individual cells can randomly switch
between different phenotypes, which may be inherited. The
mode of inheritance in such cases can depart from straightfor-
ward Mendelism (Bonduriansky and Day 2009; Danchin and

Wagner 2010). In particular, there can be interactions between
inherited environmental conditions and epigenetic effects (see,
e.g., Furrow et al. 2011) that contribute to the statistical her-
itability of phenotypes.

Why do these genetically identical populations exhibit
such switching behaviors? Stochastic switching is often inter-
preted as a bet-hedging strategy (Starrfelt and Kokko 2012)
that could confer a fitness advantage in volatile environments
(Thattai and van Oudenaarden 2004; Kussell and Leibler
2005). Switching increases the phenotypic diversity of the
population within one generation, thereby increasing the
chance of well-adapted offspring in a future environment.
Studies have shown that stochastic changes can be advanta-
geous even in comparison to environmental sensing when the
switching rate is closely tuned to the rate at which the
environment fluctuates (Acar et al. 2008). In this frame-
work, the trade-off between the costs of maladaptation and
the benefits of phenotypic variability becomes the object
of mathematical analysis (Leigh 1970; Ishii et al. 1989;
Thattai and van Oudenaarden 2004; Kussell and Leibler
2005; Leibler and Kussell 2010). It is important to note that
bet hedging (increasing phenotypic variance within a gene-
ration) as a response to environmental volatility is one way
to decrease the variance in fitness between generations and
thus increase the geometric mean fitness of the genotype
(Carja et al. 2013).
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Population genetic approaches to stochastic phenotypic
switching have generally been couched in terms of the dy-
namics of the mutation rate in a fluctuating environment.
Mutation, in this context, refers to mutation between different
allelic states or epiallelic states that are the cause of the
phenotypic variability, and the question boils down to finding
the optimal mutation rate as a function of the way the
environment changes. Ishii et al. (1989) analyzed one of the
earliest models of this kind in which alleles A and a were
assigned fitnesses 1 + s(t) and 1 2 s(t), respectively, at time
t, with s(t) allowed to fluctuate through time with mean zero.
A second locus, with alleles B and b, controlled the rate of
mutation between A and a. Ishii et al. (1989) found that the
evolutionarily stable mutation rate maximized the long-term
geometric mean fitness of the population. They suggested that
under a wide array of conditions the uninvadable mutation
rate was 1/n if the selection cycled with period 2n.

Other studies of symmetric periodic selection models,
without the mutation modifying gene as the cause of the
switching, also suggested that the fitness was optimized at
a mutation rate of 1/n (Lachmann and Jablonka 1996). One
important theoretical implication of these results is that if the
mutation rate is very low, the population can be invaded by
a mutator that increases this rate (up to 1/n). This violates the
mutation reduction principle of Feldman and Liberman
(1986), which holds in constant environments. When the se-
lection regime does not fluctuate, the reduction principle, that
zero is the uninvadable mutation rate, recombination rate
(Liberman and Feldman 1986), and migration rate (Balkau
and Feldman 1973; Liberman and Feldman 1989), is quite
general. However, in fluctuating environments, the reduction
principle does not generally hold.

Recent analyses by Salathé et al. (2009) and Liberman
et al. (2011) of switching and mutation modification in fluc-
tuating environments have produced results that are much
more complicated than originally derived by Ishii et al.
(1989). If the time spent in each of two environments is
a random variable, then even if the fitnesses in the two
environments are symmetric, the stable switching rate can
be very different from 1=~n, where ~n is the mean time in each
environment. In addition, if the fitnesses of allele A relative
to allele a in one environment and of allele a to allele A in
the second environment are not very similar, then a switching–
reducing modifier allele will succeed, with the result that the
switching rate ultimately evolves toward zero.

In the case of symmetric selection with cycles of period 2,
Liberman et al. (2011) showed that for any recombination
rate between the switching–modifying gene and the gene
under direct selection, higher switching rates are always
favored, and the mean fitness at equilibrium is an increasing
function of the switching rate; the opposite is true in a con-
stant environment. Liberman et al. (2011) also proved that
with period 4 and no recombination, the stable switching
rate was 1/2. Furthermore, when there is no recombination,
the critical points of the mean fitness with respect to the
switching rate are the same switching rates that cannot be

invaded. With asymmetric fitnesses, mathematical results
have not been obtained, but numerical analysis, with and with-
out recombination, has demonstrated that large asymmetries
actually lead to a reduction of the switching rate (Salathé et al.
2009).

The regimes in which the benefits outweigh the costs of
switching have been extensively studied both theoretically
and experimentally when there is temporal heterogeneity in
the selection pressures. However, organisms experience
environmental heterogeneity through both time and space.
The change in the selection pressure for an organism’s off-
spring can therefore arise either from a temporal change in
the fitness function or from migration to a different deme.
Although the evolution of phenotypic switching has been
extensively studied when the selection pressures vary tempo-
rally, there have been few studies of the evolution of stochas-
tic switching in the case of a subdivided population, when
selection varies spatially. We might expect differences in the
evolutionary dynamics because in a spatially heterogeneous
environment, only the migrants experience the change in the
selection pressures, while in temporally varying environments
the change in selection pressure is experienced by the entire
population. Studies of the evolution of phenotypic variability
when there is both spatial and temporal heterogeneity include
that of Arnoldini et al. (2012), who investigated the evolution
of sensed switching, finding that the relative balance of sensed
and stochastic switching depended on the accuracy of the
environmental stress signal. Moran (1992) explored the evo-
lution of noninherited phenotypic variability and argued that
the optimal amount of variability is zero.

Our goal here is to study the evolution of switching rates in
the presence of both spatial and temporal heterogeneity in
selection pressures. Do the inherent differences between tem-
poral and spatial change in the selection regime result in
different evolutionary conditions under which stochastic
switching evolves? We find that the evolutionary dynamics
of the system are mainly governed by the rate of environ-
mental change. For large enough periods in the environmental
fluctuations, the migration rate in the system also has strong
effects on the evolution of stochastic switching: the uninvad-
able switching rate is on the order of 1/n minus the migration
rate, where selection cycles with a period 2n, and zero when
the migration rate is .1/n. This stable switching rate is also
a decreasing function of the recombination rate in the system,
although this effect is weaker than those of the environmental
change and migration. The evolution of stochastic switching is
therefore determined by a complex interplay between all the
forces that contribute to the variability under periodic change
in selection pressures.

Modeling Stochastic Switching

Consider an infinite, haploid population, divided into two
demes, Ex and Ey, each with its own selection regime. Every
individual in this population is defined by two biallelic loci:
the major A/a locus controls the phenotype and fitness of
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the individual, while the modifier B/b locus is selectively
neutral and controls the switching rate between these two
phenotypic states. Alleles B and b determine switching rates
mB and mb, respectively, and our main interest is in finding
the evolutionarily stable switching rate between the two
phenotypes A and a, namely, a switching rate that cannot
be invaded by mutants that produce different rates of
switching. Toward that goal, we use an explicit population
genetic model to track the allele frequencies at the modifier
gene and ask under what conditions phenotypic switching is
adaptive and what the role of migration is in the evolution-
ary dynamics of the modifier locus.

Biological interpretation of the model

Even though the model is presented from the perspective of
genetically controlled phenotypic switching (examples of
which can be found in Smits et al. 2006; Veening et al. 2008;
Beaumont et al. 2009; Rainey et al. 2011) between two
bistable states or phenotypes (similar to Thattai and van
Oudenaarden 2004; Salathé et al. 2009; Gaál et al. 2010;
Liberman et al. 2011), it is also general enough to be appli-
cable to a wider range of evolutionary questions. A possible
mechanism for switching is epigenetic control of gene ex-
pression through variation in levels of methylation or chro-
matin formation. Therefore, the B/b modifier locus can be
interpreted as an epigenetic locus able to influence the tran-
sition between the two phenotypes or the levels of expres-
sion of alleles A and a. Examples of such epigenetic loci are
the DNMT genes that have been shown to have a role in the
establishment and regulation of cytosine methylation (Bird
2002). Another possible interpretation of the model is that
the switching rate is a mutation rate between the two A/a
alleles at the major locus under selection. The evolution of
mutation has been an area of intense research in population
genetics and exceptions to the Feldman–Liberman reduction
principle (Feldman and Liberman 1986) are expected in
populations experiencing spatial and temporal variation. Be-
cause the B/b modifier locus may be genetic or epigenetic,
we explore a wide range of switching rates.

There are four possible genotypes in the population AB,
Ab, aB, and ab. At each generation, the population goes
through recombination, selection, and phenotypic switch-
ing, in each deme separately, and then individuals may mi-
grate between the two demes. As in general analyses of
neutral modifiers, we frame the question in terms of the
stability of the state of fixation in B, producing switching
rate mB, to invasion by allele b, which produces switching
rate mb. We assume these rates of switching to be the same
in both phenotypic directions. This symmetry assumption
makes our analysis more tractable but relaxing this assump-
tion should not change the general conclusions of the model
(see Salathé et al. 2009). In particular, we ask how the
migration between Ex and Ey, which is assumed to occur at
rate m per generation, affects this stable switching rate. We
shall see that much of the analytical structure of the mathe-
matical problem recapitulates that seen in Balkau and Feldman

(1973), where there was no switching from A to a but where
locus B/b controlled the migration rate between Ex and Ey
with constant fitnesses in the two demes.

We first present the case in which selection is constant in
the two demes. We find that the reduction principle (zero is
the uninvadable switching rate) holds for all possible migra-
tion rates. We then consider the case in which there is periodic
fluctuating selection within each of the demes. In this case, we
find parameter regimes in which the reduction principle
does not hold, and nonzero switching rates can be favored.
These evolutionarily stable rates are shown to depend both
on the environmental volatility and on the migration rate
of the system.

Constant Selection

Let the frequencies and the fitnesses of the four genotypes in
the two demes be as follows:

deme Ex Ey
genotype AB Ab aB ab AB Ab aB ab
fitness wx1 wx2 wx3 wx4 wy1 wy2 wy3 wy4

frequency x1 x2 x3 x4 y1 y2 y3 y4:
(1)

As the modifier locus is selectively neutral, we have

wx1 ¼ wx2 ;wy1 ¼ wy2 ;wx3 ¼ wx4 ;wy3 ¼ wy4 : (2)

With allele B at the modifier locus, the switching rate in both
directions between alleles A and a in each deme is mB, and it
is mb with the modifier allele b. We denote by r the recom-
bination rate between the two loci in both demes and by m
the rate of migration between the demes.

Thus, in the next generation, after recombination, sel-
ection, phenotypic switching, and migration, the new fre-
quencies x91; x92; x93; x94 and y91; y92; y93; y94 of the genotypes in the
two demes are

x91¼ ð12mÞ~x1 þm~y1 y91 ¼ ð12mÞ~y1 þm~x1

x92 ¼ ð12mÞ~x2 þm~y2 y92 ¼ ð12mÞ~y2 þm~x2

x93 ¼ ð12mÞ~x3 þm~y3 y93 ¼ ð12mÞ~y3 þm~x3
(3)

x94 ¼ ð12mÞ~x4 þm~y4 y94 ¼ ð12mÞ~y4 þm~x4;

where

wx~x1 ¼ ð12mBÞwx1ðx1 2 rDxÞ þ mBwx3ðx3 þ rDxÞ
wx~x2 ¼ ð12mbÞwx2ðx2 þ rDxÞ þ mbwx4ðx42 rDxÞ
wx~x3 ¼ ð12mBÞwx3ðx3 þ rDxÞ þ mBwx1ðx1 2 rDxÞ
wx~x4 ¼ ð12mbÞwx4ðx4 2 rDxÞ þ mbwx2ðx2 þ rDxÞ

wy~y1 ¼ ð12mBÞwy1
�
y1 2 rDy

�þ mBwy3
�
y3 þ rDy

�
wy~y2 ¼ ð12mbÞwy2

�
y2 þ rDy

�þ mbwy4
�
y4 2 rDy

�
wy~y3 ¼ ð12mBÞwy3

�
y3 þ rDy

�þ mBwy1
�
y12 rDy

�
wy~y4 ¼ ð12mbÞwy4

�
y42 rDy

�þ mbwy2
�
y2 þ rDy

�
;

(4)

with
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Dx ¼ x1x4 2 x2x3; Dy ¼ y1y42 y2y3   ; (5)

wx ¼
X4
i¼1

wxixi; wy ¼
X4
i¼1

wyiyi   : (6)

This general model is very complicated and, to gain some
mathematical insight, we assume the following symmetry
relations among the fitness parameters:

wx1 ¼ wx2 ¼ wy3 ¼ wy4 ¼ ð1þ sÞ;
wy1 ¼ wy2 ¼ wx3 ¼ wx4 ¼ 1: (7)

Thus, we assume that with s . 0, phenotype A is preferred
in deme Ex, while phenotype a is preferred in deme Ey and
there is symmetry in these fitness differences between the
demes (Ishii et al. 1989; Lachmann and Jablonka 1996).
Symmetry assumptions in selection pressures are made
throughout this article and are important for the mathemat-
ical tractability of the model. Future work will focus on the
effect of relaxing these symmetry assumptions on the gen-
eral conclusions of the model.

Boundary equilibria with symmetric selection

We start our analysis by assuming that initially only allele B
is present at the modifier locus; i.e., x2 = x4 = y2 = y4 = 0.
To simplify the notation, since x3 = 1 2 x1 and y1 = 1 2 y3,
let x1 = x and y3 = y. With this notation, the change in the
population state following the transformations given in (3)
and (4) becomes

x9 ¼ ð12mÞ ð12mBÞð1þ sÞx þ mBð12 xÞ
1þ sx

þ  m
ð12mBÞð12 yÞ þ mBð1þ sÞy

1þ sy

y9 ¼ ð12mÞ ð12mBÞð1þ sÞy þ mBð12 yÞ
1þ sy

þ  m
ð12mBÞð12 xÞ þ mBð1þ sÞx

1þ sx
:

(8)

Here,

wx ¼ ð1þ sÞx þ ð12 xÞ ¼ 1þ sx
wy ¼ ð1þ sÞy ¼ ð12 yÞ ¼ 1þ sy: (9)

We first study the equilibrium points of (8). With 0 , m,
mB , 1, (8) has no equilibria where one of the two alleles A
or a is fixed in either deme (i.e., x = 0, x = 1, y = 0, y = 1
are impossible). To find the polymorphic equilibria, we ex-
amine the change in (y 2 x). A simple computation shows
that

y92 x9¼ ð12 2mBÞð1þ sÞ
ð1þ sxÞð1þ syÞ ðy2 xÞ: (10)

Hence, at equilibrium, either y = x or

ð12 2mBÞð1þ sÞ
ð1þ sxÞð1þ syÞ ¼ 1: (11)

We call an equilibrium with y = x a “symmetric equilib-
rium” and any equilibrium with y 6¼ x, such that (11) holds,
an “asymmetric equilibrium.”

Let us write

x ¼ ðx1; x2; x3; x4Þ; y ¼ ðy1; y2; y3; y4Þ: (12)

The following result holds when 0 , m, mB , 1:

Result 1.

1. On the boundary, where only allele B is present, there is
a unique symmetric equilibrium (x*, y*) with

x* ¼ �x*; 0; 12 x*; 0
�
; y* ¼ �12 x*; 0; x*; 0

�
; (13)

where x* is the unique positive root of the quadratic equa-
tion

QðxÞ ¼ sx2 þ ½ðsþ 2Þðmþ mB 2 2mmBÞ2 s�x
2  ðmþ mB 2 2mmBÞ ¼ 0:

(14)

2. (x*, y*) is internally stable on the boundary with only B
present.

3. If 0 , m, mB ,
1
2; then x* . 1

2:

The proof of this result is in Supporting Information, File
S1.

In addition to the symmetric equilibria, asymmetric
equilibria may exist when (11) is satisfied. In fact, we have
the following result:

Result 2. If 0 , m , m0 and 0 , mB , m0, where

m0 ¼ sðsþ 1Þ
2ðsðsþ 2Þ þ 1Þ; m0 ¼ s

2ðsþ 1Þ; (15)

then there is a unique asymmetric equilibrium ðx̂ ; ŷ Þ: Here,

x̂ ¼
�
x̂; 0; 12 x̂; 0

�
; ŷ ¼

�
ŷ; 0; 12 ŷ; 0

�
; (16)

where x̂ is the unique positive root of the quadratic equation

TðxÞ ¼ ð12mÞs2x22 sx½sð12mÞ2mBðsþ 2Þð12 2mÞ�
2  mBð2mþ sÞ ¼ 0;

(17)

and

ŷ ¼ sð1þ sÞ x̂ þ 2mBð1þ sÞ
s
�
1þ s x̂

� : (18)

A proof of Result 2 can be found in File S2.
An interesting question is whether the asymmetric

equilibrium can be internally stable. The mathematical
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analysis of this issue is complicated, but we conjecture that
the asymmetric equilibrium is never internally stable in the
boundary with only the B allele present. Our conjecture is
based on extensive simulations of the model and the follow-
ing result, which holds when the switching rate mB is small.

Result 3. When mB is “small”, the asymmetric equilibrium
ðx̂; ŷÞ is “near” the fixation of B in the two demes and is in-
ternally unstable.

See File S3 for the proof of this result.

External stability of the symmetric equilibrium

We now check the local stability of the symmetric equilib-
rium (x*, y*) to the introduction of the modifier allele b,
which changes the switching rate from mB to mb. To this
end, we investigate the linear approximation L* to the trans-
formation of the population state near (x*, y*), such that, up
to nonlinear terms,

�
x9
y9

�
¼
�
x*
y*

�
þ
�
e9
d9

�
¼
�
x*
y*

�
þ L*

�
e
d

�
: (19)

Here, e = (e1, e2, e3, e4), d = (d1, d2, d3, d4) with ei and di
small, and

P
iei ¼

P
idi ¼ 0 and similarly for e9 and d9.

The stability of (x*, y*) is determined by the eigenvalues
of L*. This approach has been used extensively in modifier
theory (see, for example, Feldman and Liberman 1986). The
matrix L* has the structure

L* ¼

0
BBBBBBBBBB@

Lin *

0 Lex

1
CCCCCCCCCCA

e1 e3 d1 d3 e2 e4 d2 d4 e1
e3
d1
d3
e2
e4
d2
d4

; (20)

where we have swapped the columns and the rows. The
matrix * does not affect the eigenvalues of L*, which are
those of the two submatrices Lin and Lex. Lin determines
the internal stability of (x*, y*) in the boundary where only
B is present. Since (x*, y*) is assumed to be internally stable,
the eigenvalues of Lin are less than 1 in magnitude. Lex
corresponds to the linear approximation of the evolution
near (x*, y*) of the genotypes Ab and ab in the two demes.

A straightforward computation shows that the 4 3 4
matrix Lex can be written as

Lex ¼

0
BB@

ð12mÞA ð12mÞB mC mD
ð12mÞD ð12mÞC mB mA

mA mB ð12mÞC ð12mÞD
mD mC ð12mÞB ð12mÞA

1
CCA;

(21)

where A, B, C, D are positive and depend on (x*, y*) and on
s, r, and mb. Lex has exactly the same form as the matrix that
appears in the external stability analysis of Balkau and Feldman

(1973). What enables us to analyze the positive largest ei-
genvalue of Lex, which determines the external stability of
(x*, y*), are the following properties of matrices L of the
form (21):

1. If P is the 4 3 4 matrix given by

P ¼

0
BB@

1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

1
CCA; (22)

then

PLP21 ¼
�
M 0
* N

�
; (23)

where 0 is the 2 3 2 zero matrix and

M ¼
� ð12mÞAþmD ð12mÞBþmC
mAþ ð12mÞD mBþ ð12mÞC

�
;

N ¼
� ð12mÞC2mB ð12mÞD2mA
ð12mÞB2mC ð12mÞA2mD

�
:

(24)

Thus L is “similar”, via P, to the block matrix (23).
2. The fourth degree characteristic polynomial of L factors

into the product of the two quadratic characteristic poly-
nomials of M and N. These two polynomials share the
same constant term

detðMÞ ¼ detðNÞ ¼ ð12 2mÞðAC2BDÞ: (25)

3. In general if, for fixedm, L1, L2, . . . , Ln are matrices of the
form (21) with corresponding positive entries Ai, Bi, Ci, Di

for i = 1, 2, . . . , n, then

P

 Yn
i¼1

Li

!
P21 ¼

 Yn

i¼1
Mi 0

*
Yn

i¼1
Ni

!
: (26)

Here Mi and Ni are the M and N matrices of (23) asso-
ciated with Li. Moreover, the fourth-degree characteristic
polynomial of

Qn
i¼1Li factors into the two second-degree

characteristic polynomials of
Qn

i¼1Mi and
Qn

i¼1Ni. These
two polynomials share the same constant term

Yn
i¼1

detðMiÞ ¼
Yn
i¼1

detðNiÞ ¼ ð122mÞn
Yn
i¼1

ðAiCi 2BiDiÞ:

(27)

In File S4 we use properties 1 and 2 to obtain the follow-
ing external stability result.

Result 4. When 0 , m, mB, mb ,
1
2; the symmetric equilib-

rium (x*, y*) is externally stable to the introduction of the new
modifier allele b if mb . mB and is unstable if mb , mB.
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Therefore, the reduction principle holds and zero is the only
uninvadable switching rate.

Overview of results when selection pressures
are constant

Intuitively, in this model, both migration and phenotypic
switching conspire to reintroduce the deleterious pheno-
type in each of the two spaces, which selection is trying to
remove. Therefore, it is expected that both the migration
and the switching rates evolve toward zero (Balkau and
Feldman 1973; Liberman and Feldman 1986). For a fixed
migration rate, as presented here, phenotypic switching
will not evolve, and the population will approach a migration–
selection balance at the major loci.

Periodically Fluctuating Selection

Suppose that within each deme the selection regime varies
temporally. We assume periodically fluctuating selection and
explore the evolution of the switching rate as a function of
both the migration rate and the length of the period of the
fluctuating selection, which we also refer to as the environ-
mental period. Specifically, we assume two types of selection
regimes, type 1 with the fitness parameters

deme Ex Ey
allele A a A a
fitness 1þ s 1 1 1þ s

(28)

and type 2 with

deme Ex Ey
allele A a A a
fitness 1 1þ s 1þ s 1:

(29)

In the general case, an environmental cycle consists of
(k + ℓ) phases of selection, the first k of type 1 followed by
ℓ phases of type 2 selection. We first mathematically explore
the dynamics of the system in the cases k = ℓ = 1 (cycle of
period 2) and k = ℓ = 2 (cycle of period 4). These are the
cases in which we are able to derive analytical results. We
then study the system in the case of larger environmental
periods, using numerical approximations and simulation.

Assumptions and limitations of the fluctuating
selection model

For analytical tractability, we make stringent symmetry
assumptions on the fitnesses of the two phenotypes A and
a, both in time and in space. We assume that, within each
environment, each deme has an optimal phenotype and
there is symmetry in these fitness differences between the
demes. We also assume that, within each deme, each tem-
poral environment produces a different optimal phenotype
and, again, symmetry in these fitness differences is assumed.
Another important assumption of the model is that there are
only two different environments that fluctuate periodically.

We do not expect the results to change qualitatively if there
are more than two environments; we also hypothesize that
introducing random waiting times for environmental change
will affect the evolutionarily stable switching rate, but not
whether nonzero switching rates can evolve (Salathé et al.
2009). Moreover, it is known that asymmetry in selection pres-
sures can substantially affect evolved switching rates in amodel
with just temporal heterogeneity (Salathé et al. 2009). There-
fore, future work will need to focus on the effect of relaxing
these symmetry assumptions on the conclusions of our model.

Cycle of period 2 (k = ℓ = 1)

Here, selection goes through two phases. The first phase is
type 1 as in (28) and the second is type 2 as in (29).

Again, we first study the boundary equilibria where only
the modifier allele B is present and the switching rate is mB.
The initial frequencies of AB in the two demes are denoted
by x and y, respectively. After phase 1, they change to ~x and
~y; and after phase 2 they become x9 and y9, the frequencies at
the start of the next cycle. We have

~x ¼ ð12mÞ ð12mBÞð1þ sÞx þ mBð12 xÞ
ð1þ sÞx þ ð12 xÞ

þ  m
ð12mBÞð12 yÞ þ mBð1þ sÞy

ð12 yÞ þ ð1þ sÞy ;

~y ¼ ð12mÞ ð12mBÞð1þ sÞy þ mBð12 yÞ
ð1þ sÞy þ ð12 yÞ

þ  m
ð12mBÞð12 xÞ þ mBð1þ sÞx

ð1þ sÞx þ ð12 xÞ ;

(30)

and

x9 ¼ ð12mÞ ð12mBÞ~x þ mBð1þ sÞ�12 ~x
�

~x þ ð1þ sÞð12 ~xÞ

þ  m
ð12mBÞð1þ sÞ�12 ~y

�þ mB~y
~y þ ð1þ sÞð12 ~yÞ ;

y9 ¼ ð12mÞ ð12mBÞ~y þ mBð1þ sÞ�12 ~y
�

~y þ ð1þ sÞð12 ~yÞ

þ  m
ð12mBÞð1þ sÞ�12 ~x

�þ mB~x
~x þ ð1þ sÞð12 ~xÞ :

(31)

Due to the symmetry in the system, we have

�
~y2 ~x

� ¼ ð12 2mBÞð1þ sÞ
ð1þ sxÞð1þ syÞ ðy2 xÞ;

ðy92 x9Þ ¼ ð12 2mBÞð1þ sÞ
½1þ sð12 ~xÞ�½1þ sð12 ~yÞ�

�
~y2 ~x

�
:

(32)

Hence,

�
y92 x9

� ¼ ð122mBÞ2ð1þ sÞ2
ð1þ sxÞð1þ syÞ½1þ sð12 ~xÞ�½1þ sð12 ~yÞ� ð y2 xÞ:

(33)
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Thus, at equilibrium where ( y9 2 x9) = ( y 2 x), we have
either y = x or

ð122mBÞ2ð1þ sÞ2
ð1þ sxÞð1þ syÞ½1þ sð12 ~xÞ�½1þ sð12 ~yÞ� ¼ 1: (34)

Equilibria with y = x are the symmetric equilibria, while if
y 6¼ x and (34) holds, we have asymmetric equilibria. For the
symmetric equilibria we have the following:

Result 5. When 0 , m, mB , 1, and s . 0, a unique
symmetric equilibrium ðx; yÞ exists such that

x ¼ ðx; 0; 12 x; 0Þ; y ¼ ð12 x; 0; x; 0Þ: (35)

x is the unique positive root of R(x) = 0, where

RðxÞ ¼ sx2 þ ½22mBðsþ 2Þ�x2 ð12mBÞ; (36)

with mB = m + mB 2 2mmB. If, in addition, 0,m;mB ,
1
2,

then 0, x, 1
2.

The proof of this result is presented in File S5. In File S6
we also show the following:

Result 6. The unique symmetric equilibrium ðx; yÞ is in-
ternally stable on the boundary where only the modifier allele
B is present.

For the local stability of this symmetric equilibrium to the
introduction of the “new” modifier allele b, the external
stability matrix Lex is given by

Lex ¼ L2exL
1
ex; (37)

where both L1ex and L2ex have the form (21). Thus, using the
properties of these matrices, the characteristic polynomial of
Lex factors into two quadratic polynomials, which allows us
to find the conditions needed for external stability. The com-
plete analysis is given in File S7, where the following result
is proved:

Result 7. In the case of selection fluctuating with period 2,
the internally stable unique symmetric equilibrium ðx; yÞ is
externally stable when mB . mb and is unstable when mB ,
mb, for all 0 # r # 1 and 0,m, 1

2: Thus, in this case, higher
switching rates are favored, and the evolutionarily stable phe-
notypic switching rate is 1.

The mean fitness and external stability

We saw that in a constant environment the symmetric
equilibrium is externally stable if mb . mB and unstable if
mb , mB, so that smaller switching rates are favored. On
the other hand, with fluctuating selection of period 2, non-
zero switching rates evolve; the symmetric equilibrium is sta-
ble if mB . mb and unstable if mB , mb. This phenomenon is
related to the behavior of the mean fitness at equilibrium in
the following way:

Result 8. The mean fitness at the symmetric equilibrium is
(i) a decreasing function of mB in a constant environment or
(ii) an increasing function of mB in a period 2 cycling environment.

The proof is given in File S8.

Cycle of period 4 (k = ℓ = 2)

In this case, in each generation, the fitnesses of the genotypes
in each population go through four phases (“1”, “2”, “3”, “4”).
The fitnesses at these phases are

deme Ex Ey
allele A a A a

fitness “1” 1þ s 1 1 1þ s
fitness “2” 1þ s 1 1 1þ s
fitness “3” 1 1þ s 1þ s 1
fitness “4” 1 1þ s 1þ s 1:

(38)

The analysis of this case for r = 0 parallels that of Liberman
et al. (2011) if we replace mM by mB = m + mB 2 2mmB and
mm by mb = m + mb 2 2mmb (see Result 5). Our results for
this case can be summarized as follows.

On the boundary where B is fixed, if we assume that x1 =
y3, x3 = y1 through the four phases of a cycle, then the four-
step recursion is

wx9 ¼ T2�T2�T1�T1ðxÞ; (39)

where x = (x1, x3) = ( y3, y1), x9 ¼ ðx91; x93Þ ¼ ð y93; y91Þ and T1
and T2 are the transformations associated with fitness “1”
and fitness “3”, respectively. The mean fitness w, which is
the normalizing factor, is

w ¼ ð1þ sÞ2 þmBð12mBÞs2ð1þ sÞ
þ  mBð12mBÞsðsþ 2Þ2½ðsþ 2Þx1 2 1�: (40)

If r = 0, we can show that, at the symmetric equilibrium
ðx; yÞ; we have ½ðsþ 2Þx2 1�. 0: Therefore, at equilibrium,
w. ð1þ sÞ2:

For the external stability of ðx; yÞ note that if mb = 0, the
matrices governing the evolutionary dynamics of the system
in steps T1 and T2 become

�
1þ s 0
0 1

�
and

�
1 0
0 1þ s

�
; (41)

respectively. If mb = 1, the matrices in steps T1 and T2
become

�
0 1

  1þ s 0

�
and

�
0 1þ s
1 0

�
; (42)

respectively. As a result, when mb = 0, the local stability is
governed by the matrix M*:

wM* ¼
�
1 0
0 1þ s

�2�1þ s 0
0 1

�2

¼
� ð1þ sÞ2 0

0 ð1þ sÞ2
�
; (43)

and when mb = 1,
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wM* ¼
�
0 1þ s
1 0

�2� 0 1
1þ s 0

�2

¼
� ð1þ sÞ2 0

0 ð1þ sÞ2
�
: (44)

Since w. ð1þ sÞ2; in the case r = 0 ðx; yÞ is externally
stable when either mb = 0 or mb = 1. Since mb = 0 if
m = 0, mb = 0, or m = 1, mb = 1 and mb = 1 if m = 0,
mb = 1 or m = 1, mb = 0 (which is not biologyically rele-
vant), we conclude that when both r andm are small for any
0 , mb , 1, a new mutation-modifying allele cannot invade
ðx; yÞ if it produces switching rates that are too high or too
low. This suggests that there might be an intermediate
switching rate mB that gives rise to a symmetric equilibrium
ðx; yÞ; which cannot be invaded by allele b. Actually, we
have the following result:

Result 9. In the period 4 symmetric case, if r= 0, the mean
fitness w ¼ wðmBÞ achieves a maximum at mB ¼ 1

2:

The proof is similar to that in Liberman et al. (2011).
Note that since mB = m +mB(1 2 2m), mB ¼ 1

2 implies that
(1 2 2m)(1 2 2mB) = 0, and as 0#m, 1

2; mB ¼ 1
2 coincides

with mB ¼ 1
2: Hence, for fixed 0#m, 1

2; w ¼ wðmBÞ has its
maximum when mB ¼ 1

2: The next result is based on exten-
sive simulations.

Result 10. In the period 4 symmetric case with 0 # r #
1 and for all migration rates, the phenotypic switching
rate mB ¼ 1

2 cannot be invaded by rates either smaller
or larger than 1

2: Thus, mB ¼ 1
2 is the stable switching

rate.
Here, again, the migration rate does not affect the un-

invadable switching rate. Moreover, with a switching rate of
1/2, both alleles A and a reach a frequency of 0.5 in each
deme, and thus migration acts to neutrally reshuffle these
alleles only between the two demes.

Cycle of period k + ℓ

Following our previous analyses where k= ℓ= 1 and k= ℓ=
2, we conjecture that, in the general case, on the boundary,
where the modifier allele B is fixed, we have the following
result:

Result 11. If 0 , m, mB , 1, and s . 0, a unique sym-
metric equilibrium ðx; yÞ exists such that

x ¼ ðx; 0; 12 x; 0Þ; y ¼ ð12 x; 0; x; 0Þ (45)

and x is the unique positive root of a quadratic equation

GðxÞ ¼ x2 þ px þ q ¼ 0 (46)

with G(0), 0 and G(1). 0, where p and q are functions of s,
mB, k, and l. Moreover, this symmetric equilibrium is internally
stable.

Our conjecture is based on analytical examination of
several choices of the (k + ℓ) phases, using Mathematica,
and on extensive simulations.

The external stability analysis of ðx; yÞ is very compli-
cated in the general case with arbitrary k and ℓ, as the asso-
ciated external stability matrix Lex is then

Lex ¼ ~L
ℓ
ex � ~L

ℓ21
ex �⋯� ~L1ex � Lkex � Lk21

ex �⋯� L1ex: (47)

Liex corresponds to selection phase i in the k phases where
selection is of type 1, and ~L

j
ex is associated with phase j of the

ℓ phases where selection is of type 2.
Each of these (k + ℓ) matrices is of the form0
BB@

ð12mÞA ð12mÞB mC mD
ð12mÞD ð12mÞC mB mA

mA mB ð12mÞC ð12mÞD
mD mC ð12mÞB ð12mÞA

1
CCA (48)

with corresponding parameters Ai
;Bi

;C
i
;Di for Liex and

~A
j
; ~B

j
; ~C

j
; ~D

j
for ~L

j
ex (similar to the matrices presented in File

S7). All the matrices Liex and ~L
j
ex for i= 1, 2, . . . , k and j= 1,

2, . . . , ℓ are positive.
Applying the properties of matrices of the form (48), we

have the following result:
Result 12. The characteristic polynomial of Lex factors into

two quadratic polynomials. The constant terms of both poly-
nomials are

ð122mÞkþℓ
Yk
i¼1

�
AiCi

2BiDi
�
�
Yℓ
j¼1

�
~A
j~C

j
2 ~B

j~D
j
�
: (49)

The constant term (49) is always positive, and based on
extensive mathematical checks using Mathematica it is
always ,1. Therefore, using the same argument as in the
case k = ℓ = 1, the external stability of the symmetric equi-
librium is determined by a sole condition C1(1) . 0 where
C1(l) is the “first” quadratic polynomial in the factorization
of the characteristic polynomial of Lex.

Overview of analytic results when selection pressures are
periodic, periods 2 and 4: When environments change
periodically, the reduction principle no longer holds and
nonzero switching rates are evolutionarily stable and unin-
vadable. In fact, if the environment changes every genera-
tion or every two generations, this evolutionarily stable
switching rate does not depend on the migration rate in the
system and is 1/n as reported by previous studies (where n,
the number of generations in each environmental phase, is 1
or 2, respectively). An important result is that this evolution-
arily stable switching rate maximizes mean fitness at equi-
librium. This result is deeply rooted in classic population
genetics theory and is connected to early work on neutral
modifiers and the mean fitness principle of Karlin and
McGregor (1972).

We were not able to derive mathematical expressions for
the external stability conditions for cycles k = l . 2. For
these longer cycles of equal period (which we from now on
denote by 2n, where n is the number of generations in each
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phase), we use simulation and numerical analyses and find
that the leading eigenvalue depends not only on the differ-
ence between mB and mb, but also on the initial switching
rate mB and the migration rate. We present these results in
the next section.

Simulations and Numerical Analyses

Description of the simulation

We start with a population fixed on the B allele at the mod-
ifier locus, which determines a switching rate mB sampled
randomly between 0 and 1 and then held constant. The
population evolves for 1000 generations until it reaches an
internally stable symmetric equilibrium at the A/a locus. We
then introduce the b allele at a small frequency (1024) near
this symmetric equilibrium. The switching rate mb set by
allele b is chosen as the product of the resident switching
rate and a number generated from an exponential distribu-
tion with mean 1. This allows us to test invading mutation
rates that are more often close to the resident rate, but also
rates that are far from it. After 5000 generations with these
fixed values of mB and mb, we determine whether the newly
introduced allele was able to invade in the population; if the
frequency of b is larger than its initial frequency of 1024, we
declare invasion. This is the initial invasion trial. If the b al-
lele was able to invade, we start the next invasion trial with
this invading switching rate chosen as the new resident
switching rate of the B allele. If there was no invasion, the
B allele determines the same resident switching rate as the
previous trial. We then repeat the invasion steps described
above. After at least 500 invasion trials and after the resi-
dent switching rate cannot be invaded in 50 consecutive
trials, the final switching rate in the population is declared
to be the stable switching rate.

Results

The case in which each environment persists for three gene-
rations before a change shows some anomalies is presented in
Figure S1 as a function of the migration and recombination
rates. In the case of no migration, Ishii et al. (1989) first
showed that there are two equilibria for the mutation rate,
one stable and one unstable. It was also shown that increas-
ing the recombination rate r can change the stability and the
domains of attraction of the two equilibria. With positive
migration, we show that the uninvadable switching rate is
sensitive to the interplay of recombination and migration,
with possible sharp discontinuities in the stable switching
rate. For no recombination and small migration rate, any
switching rate can be invaded by a larger one. As the recom-
bination rate increases, for small migration, the stable mu-
tation rate is on the order of 1/3. As the migration rate
increases, the stable switching rate decreases in a manner
consistent with larger values of n.

The results for the evolutionarily stable switching rate as
a function of migration rate for periods 2n. 6 are presented

in Figure 1A. The stable switching rate is seen to be a de-
creasing function of both the migration rate and the number
of generations n before an environmental change. Indeed,
we confirm that, in the absence of migration, the stable
switching rate is of the order of 1/n as reported by previous
studies. As the migration rate increases, the stable switching
rate decreases until, above a threshold migration rate, it
becomes zero. Note that this threshold in migration also is
on the order of 1/n. This is intuitive, since in this case where
the environments both change at the same time, a migration
rate inversely proportional to the rate of environmental
change would place the migrants in a deme and environ-
ment with the same selection pressure as the one to which
they were adapted. This effectively eliminates the need for
switching. For migration rates below this threshold, the
uninvadable switching rate is such that, together with mi-
gration, it generates the required variability that allows the
system to cope with the environmental change it experien-
ces. In fact, Figure 1B shows that the stable switching rate is
such that the parameter mstable = m + mstable 2 2mmstable

(the equivalent of mb in Result 5) is of the order 1/n.
In Figure 2 we show that, for recombination rate r = 0,

there is an alternative way to obtain the evolutionarily sta-
ble switching rate. Ishii et al. (1989) found that, when r= 0,
the evolutionarily stable switching rate is the one “that max-
imizes the long-term geometric average of population fit-
ness.” Therefore, we expect that the switching rate that
maximizes mean fitness at equilibrium is also the uninvad-
able switching rate (also see Result 8). The invasibility con-
dition is again given by the properties of the leading
eigenvalue l0 of the local stability matrix of the system.
To determine invasibility numerically, we can differentiate
l0 with respect to mb and then evaluate this derivative at
mb = mB, where we know that l0 = 1. The sign of this de-
rivative then tells us whether a larger or a smaller value of
mb will produce a leading eigenvalue l0 larger or smaller
than 1 and thus whether b will invade or not. Therefore, the
values of mb where this derivative crosses zero with a nega-
tive slope correspond to values of mB that are uninvadable.
We see that the switching rates that maximize the mean
fitness at equilibrium (and are zeros for the derivative of
mean fitness with respect to mB) are also the zeros of the
derivative of l0 and therefore can be regarded as uninvad-
able. Figure 2B shows this equality of the critical points for
the two derivatives, using an example where the environ-
ment changes every n = 4 generations, the symmetric selec-
tion coefficient is s = 0.4, and the migration rate m = 0.1.
Figure 2C demonstrates the match between the stable, unin-
vadable switching rates found by simulation and the switch-
ing rate that maximizes mean fitness at equilibrium.

Figure 3 shows the stable switching rate when the envi-
ronment alternates every four generations as a function of
the migration and recombination parameters. We find that
the stable switching rate is a decreasing function of the re-
combination rate, for any migration rate (see also Liberman
et al. 2011). As recombination increases, the force of
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secondary selection on the modifier decreases as the linkage
disequilibrium between the two loci decreases. This is
expected to be a relatively weak force, which explains the
relatively small difference between the curves in Figure 3
compared to the effect of migration (see Figure 1) for a given
recombination rate. In Figure S2, the effect of increasing
period is also seen to be more pronounced than that of in-
creasing the recombination rate. In earlier studies of neutral
modifiers of mutation and recombination, the induced selec-
tion on the modifier locus was of the order of the square of
the disequilibrium between the major and the modifier loci.
Even if this effect is exaggerated somewhat by the environ-
mental fluctuations, it remains weaker than the effect of
either the period of fluctuation or the migration rate.

In Figure S3, we show that the strength of the symmetric
selection coefficient s does not qualitatively influence the
evolutionary dynamics of the system. This result is in accor-
dance with previous analyses in temporally varying environ-
ments showing that changing the symmetric selection
coefficient does not affect the evolutionarily stable switching
rate (Ishii et al. 1989; Salathé et al. 2009).

Discussion

In recent years, the evolution of microbial populations has
become a question of significant biological importance. The

medical threat posed by the ability of some bacterial species
to resist antibiotics by using phenotypic heterogeneity
(Dubnau and Losick 2006; Smits et al. 2006) is significant
(Centers for Disease Control 2013). Stochasticity and
growth bistability allow bacteria to create diverse pheno-
types and specialized cells in anticipation of possible adverse
changes in the selection pressures (Barrett Deris et al. 2013).
For example, bacterial persistence is a well-known mecha-
nism that depends on stochastic switching between normal
and persister phenotypes, which are able to survive better in
the presence of antibiotics but are virtually growth arrested
in standard media (Balaban et al. 2004). Given the role that
stochastic switching has in bacterial populations, there is
a need to consider the kinds of selective pressures that pro-
mote the evolution of switching behaviors and may be asso-
ciated with the efficacy and evolvability of drug resistance.

We have investigated the evolution of stochastic switching
under both temporal and spatial volatility, using a population
genetic model with a modifier gene that controls the rate of
switching (for examples see Smits et al. 2006; Veening et al.
2008; Beaumont et al. 2009; Rainey et al. 2011). We study
conditions under which switching is adaptive and determine
the evolutionarily stable (i.e., uninvadable) switching rates
for a wide range of migration rates, recombination rates,
symmetric selection, and periodic rates of environmental
fluctuation. Closed-form analytical results such as those

Figure 1 The evolutionarily stable switching rate as function of migration and number of generations before an environmental change, n . 3. (A) The
symmetric selection coefficient s = 0.4. Recombination rate is r = 0.2. We vary the rate of environmental change n as in the legend. The dots represent
the average over 10 runs of the simulation. The plotted curves represent a fit to the data using a generalized additive model with penalized cubic
regression splines. The stable switching rate is a decreasing function of both the migration rate and the rate of environmental change. (B) The parameter
mstable =m + mstable 2 2mmstable. The symmetric selection coefficient s = 0.4. Recombination rate is r = 0.2. The rate of environmental change n varies as
in the key. The dots represent the average over 10 runs of the simulation.
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presented here help in gaining insight into the driving evo-
lutionary process that we can then use to inform experimen-
tal and possibly medically motivated studies.

Our model reproduces the results found in previous
studies with no spatial heterogeneity, but the migration rate
between demes with different selection pressures can dra-
matically alter the evolutionarily stable switching rate. Our
results demonstrate that the stochastic phenotypic switching
rate is a decreasing function of the migration rate between
demes. Moreover, with both spatial and temporal heteroge-
neity in the system, for environmental periods 2n . 6, there
exists a threshold migration rate above which stochastic
switching cannot evolve. This threshold is also of the order
of 1/n, where n is the number of generations spent in each
environment. Below this threshold, the switching rate
evolves to the order of 1/n minus the migration rate in
the system. We also find that the switching rate is a de-
creasing function of the recombination rate in the system,
although this effect is small compared to that of the migra-
tion rate.

Our work highlights the importance of incorporating
spatial heterogeneity when studying stochastic switching in
the laboratory. Thus space-dependent fitness conditions
ought to play a central role in the design and interpretation
of experiments that seek to understand the behavior of
natural populations and should try to recreate the natural
time and space variations to which these populations would
be subject. Populations of cells or strains of bacteria in the
wild can experience both temporally and spatially hetero-
geneous selection pressures, and understanding the differ-
ent contributions of these two inherently different selection
regimes may help to interpret the differences observed
between wild and laboratory populations (Dubnau and
Losick 2006). Moreover, current methods of studying drug

efficacies are often performed in bulk growth conditions,
which might fluctuate spatially in unforeseen ways. A better
understanding of the role of phenotypic variability in these
populations could enable the development of new tech-
niques and treatment strategies against drug-resistant
bacteria.

Although this work is framed in terms of a gene con-
trolling phenotypic switching, the model is general enough
to be applicable to a wider range of dynamical systems. The
evolutionary dynamics of the modifier locus B/b can provide
insight into the evolution of an epigenetic locus that is able
to influence the transition between two different pheno-
types, a locus controlling the mutation rate between the
two alleles at the major locus A/a, or the rate of switching
between two expression levels.

Here we have focused exclusively on the case in which
the environment in the two demes varies periodically, with
equal numbers of generations before environmental changes
in each deme. We have also studied only the case of sym-
metric selection, where the selection coefficients in the two
demes are equal. Previous work in temporally fluctuating
environments (Salathé et al. 2009; Liberman et al. 2011) has
shown that asymmetry in selection pressures or variance in
times between environmental changes can substantially
change the optimal switching rate. Incorporating selection
asymmetries and variability in the environmental fluctua-
tions is an important follow-up to this work.

The question of optimal phenotypic variability and the
evolution of stochastic switching needs to be further ex-
plored under more general ecological scenarios driven by
both temporal and spatial change. Using both analytic and
numerical arguments we have made a first step in this
direction: we find that under spatial and temporal fluctua-
tions in selection pressures, phenotypic switching can evolve

Figure 2 The link between the evolutionarily stable switching rate and the switching rate that maximizes mean fitness at equilibrium. The symmetric
selection coefficient s = 0.4. Recombination rate is r = 0. The environment changes every n = 4 generations. (A) Mean fitness at equilibrium, for the
range of migration rates in the key. In B, using the migration rate m = 0.1 as an example, we show that the switching rate that maximizes mean fitness
at equilibrium is also the switching rate that is uninvadable by other rates; in other words, the zeros of the derivative of the mean fitness at equilibrium
are also the zeros of the derivative of the leading eigenvalue of the local stability matrix. (C) The match between the stable switching rates found by
simulation and the switching rates that maximize mean fitness at equilibrium, as a function of the migration rate.

Evolution of Phenotypic Switching 1195



only when migration is not too high, and its evolution is
heavily controlled by the forces driving variability in the
population: migration, recombination, and the rate of change
in selection pressure.
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Proof of Result 1

1. When y = x, the mean fitnesses in the two demes E
x

and E

y

are equal:

w

x

= 1 + sx = 1 + sy = w

y

, (S1.1)

and, from (8), the equilibrium equation is, (with µ = µ

B

),

(1+sx)x = (1�m)
⇥

(1�µ)(1+s)x+µ(1�x)
⇤

+m

⇥

(1�µ)(1�x)+µ(1+s)x
⇤

. (S1.2)

Thus

(1 + sx)x = (1 + s)x
⇥

(1�m)(1� µ) +mµ

⇤

+ (1� x)
⇥

µ(1�m) +m(1� µ)
⇤

, (S1.3)

or

x+ sx

2 = (1 + s)x
⇥

1�m� µ+ 2mµ

⇤

+ (1� x)
⇥

m+ µ� 2mµ

⇤

. (S1.4)

This is equivalent to

Q(x) = sx

2 +
⇥

(s+ 2)(m+ µ� 2mµ)� s

⇤

x� (m+ µ� 2mµ) = 0. (S1.5)

Now, as 0 < m, µ < 1, we have

(m+ µ� 2mµ) = m(1� µ) + µ(1�m) > 0. (S1.6)

Therefore

Q(0) = �(m+ µ� 2mµ) < 0 (S1.7)

and

Q(1) = (s+ 1)(m+ µ� 2mµ) > 0. (S1.8)

As Q(±1) > 0, we conclude that the equation (S1.5) has a unique root x

⇤ with

0 < x

⇤
< 1. Thus there is a unique symmetric polymorphism (x⇤

,y

⇤), given by (13).

2. Near the equilibrium (x⇤
,y

⇤), on the boundary where only B is present, (z � x)

is small, and from (10), the internal local stability of (x⇤
,y

⇤) in the boundary is

determined by the factor

C

⇤ =
(1� 2µ)(1 + s)

(1 + sx

⇤)(1 + sz

⇤)
. (S1.9)



As x⇤ = z

⇤, C⇤
< 1 if (1+s) < (1 + sx

⇤)2, and as s > 0 this is true if s(x⇤)2+2x⇤
> 1.

From the equilibrium equation (S1.5), as Q(x⇤) = 0 we have

s(x⇤)2 + 2x⇤ = �
⇥

(s+ 2)(m+ µ� 2mµ)� s

⇤

x

⇤ + (m+ µ� 2mµ) + 2x⇤

= �(s+ 2)(m+ µ� 2mµ� 1)x⇤ + (m+ µ� 2mµ).
(S1.10)

Thus s(x⇤)2 + 2x⇤
> 1 if and only if

(s+ 2)(1�m� µ+ 2mµ)x⇤
> (1�m� µ+ 2mµ). (S1.11)

But (1 � m � µ + 2mµ) = (1 � m)(1 � µ) + mµ > 0 as 0 < m, µ < 1, and so

C

⇤
< 1 provided x

⇤
>

1

s+2

. As Q(1) > 0 and Q(x⇤) = 0, it is su�cient to show that

Q

�

1

s+2

�

< 0. Indeed

Q

✓

1

s+ 2

◆

=
s

(s+ 2)2
+
⇥

(s+ 2)(m+ µ� 2mµ)� s

⇤ 1

s+ 2
� (m+ µ� 2mµ)

=
s

(s+ 2)2
� s

s+ 2
= �s(s+ 1)

(s+ 2)2
< 0. (S1.12)

3. We compute Q

�

1

2

�

using (14),

Q

✓

1

2

◆

=
s

4
+

1

2

⇥

(s+ 2)(m+ µ� 2mµ)� s

⇤

� (m+ µ� 2mµ). (S1.13)

In fact,

Q

✓

1

2

◆

= �s

4

⇥

1� 2(m+ µ� 2mµ)
⇤

. (S1.14)

But 1� 2(m+ µ� 2mµ) = (1� 2m)(1� 2µ) > 0 when 0 < m, µ <

1

2

, in which case

Q

�

1

2

�

< 0 and x

⇤
>

1

2

as Q(1) > 0.

2 SI text



File S2

Proof of Result 2

If an asymmetric polymorphism exists, then (11) holds, namely, (with µ = µ

B

),

1 + sy =
(1� 2µ)(1 + s)

1 + sx

. (S2.1)

That is,

y =
s(1� x)� 2µ(1 + s)

s(1 + sx)
, 1� y =

s(1 + s)x+ 2µ(1 + s)

s(1 + sx)
. (S2.2)

Substituting these relations into the equilibrium equation for x from (8), we find, after

some simplification, that

x =
1�m

1 + sx

⇥

(1� µ)(1 + s)x+ µ(1� x)
⇤

+
m

s

(sx+ 2µ+ µs). (S2.3)

Equation (S2.3) is equivalent to the quadratic equation

T (x) = (1�m)s2x2 � sx

⇥

s(1�m)� µ(s+ 2)(1� 2m)
⇤

� µ(2m+ s) = 0. (S2.4)

As µ,m, s are positive and m < 1, we have T (0) < 0 and T (±1) > 0, implying that T (x)

has two real roots, one positive and one negative. Now

T (1) = (1�m)s2 � s

⇥

s(1�m)� µ(s+ 2)(1� 2µ)
⇤

� µ(2m+ s)

= µ

⇥

s(s+ 2)(1� 2m)� (2m+ s)
⇤

.

(S2.5)

T (1;m) is a linear function of m and

T (1; 0) = µs(s+ 1) > 0

T (1; 1

2

) = �µ(2m+ s) < 0

T (1;m
0

) = 0.

(S2.6)

Hence if 0 < m < m

0

, T (1;m) > 0 and a unique 0 < x̂ < 1 exists such that T (x̂) = 0. In

order for x̂ to be an equilibrium, its corresponding ŷ should satisfy 0 < ŷ < 1, where

1� ŷ =
1 + s

1 + sx̂

sx̂+ 2µ

s

(S2.7)

and 0 < ŷ < 1 if and only if

(1 + s)(sx̂+ 2µ) < s(1 + sx̂) (S2.8)
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or

x̂ <

s� 2µ(1 + s)

s

. (S2.9)

So 0 < x̂ < 1 if 0 < µ < µ

0

= 1

2

s

s+1

, and
⇥

s� 2µ(1 + s)
⇤

> 0. We compute T

�

s�2µ(1+s)

s

�

,

which equals

(1�m)
⇥

s�2µ(1+s)
⇤

2�
⇥

s�2µ(1+s)
⇤⇥

s(1�m)�µ(s+2)(1�2m)
⇤

�µ(2m+s). (S2.10)

So

T

�

s�2µ(1+s)

s

�

= 2µ2(1 + s)(s+ 2m) + sµ(s+ 2)(1� 2m)� µ(2m+ s). (S2.11)

But when 0 < m < m

0

,

T (1) = sµ(s+ 2)(1� 2m)� µ(2m+ s) > 0, (S2.12)

therefore T

�

s�2µ(1+s)

s

�

> 0, and (S2.9) holds.
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Proof of Result 3

The asymmetric equilibrium (x̂, ŷ) is determined by the solutions of the quadratic

equation

T (x;µ
B

) = (1�m)s2x2 � sx

⇥

s(1�m)� µ

B

(s+ 2)(1� 2m)
⇤

� µ

B

(2m+ s) = 0. (S3.1)

When µ

B

= 0, equation (S3.1) reduces to

T (x; 0) = �(1�m)s2x(1� x) = 0, (S3.2)

giving the two solutions x̂ = 0 and x̂ = 1. As T (0;µ
B

) < 0, when µ

B

> 0 the solution

x = 0 shifts to a negative solution of (S3.1). Hence, when µ

B

is positive and small, the

positive root x̂(µ
B

) of T (x;µ
B

) = 0 is close to x = 1. That is, when µ

B

is small the

corresponding asymmetric equilibrium is close to the fixation of AB where x̂ = ŷ = 1.

Moreover, by continuity, if µ
B

is small, their stability is the same. Near fixation of AB,

w = 1� x and z = 1� y are small, and up to non-linear terms, when µ

B

= 0, we have

w

0 =
1�m

1 + s

w +m(s+ 1)z

z

0 =
m

1 + s

w + (1�m)(s+ 1)z.
(S3.3)

The characteristic polynomial P (�) of (S3.3) is

P (�) = �

2 � (1�m)



(1 + s) +
1

1 + s

�

�+ (1� 2m) (S3.4)

and

P (1) = 1� (1�m)
(1 + s)2 + 1

1 + s

+ 1� 2m. (S3.5)

In fact, it can be easily seen that

(1 + s)P (1) = �s

2(1�m). (S3.6)

As P (+1) > 0 and P (1) < 0, since s > 0, 0 < m < 1, P (�) has a root larger than

1. Thus, when µ

B

is small, fixation in AB is internally locally unstable and so is the

asymmetric equilibrium when µ

B

is small.
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Proof of Result 4

A straightforward computation shows that the 4⇥ 4 matrix L

ex

can be written as

L

ex

=

0

B

B

B

@

(1�m)A (1�m)B mC mD

(1�m)D (1�m)C mB mA

mA mB (1�m)C (1�m)D

mD mC (1�m)B (1�m)A

1

C

C

C

A

, (S4.1)

where
(1 + sx

⇤)A = (1 + s)(1� µ

b

) + r(1� x

⇤)
⇥

(s+ 2)µ
b

� (s+ 1)
⇤

(1 + sx

⇤)B = (1 + s)rx⇤ + µ

b

⇥

1� (s+ 2)rx⇤⇤

(1 + sx

⇤)C = (1� µ

b

) + rx

⇤⇥(s+ 2)µ
b

� 1
⇤

(1 + sx

⇤)D = (1 + s)µ
b

+ r(1� x

⇤)
⇥

1� (s+ 2)µ
b

⇤

.

(S4.2)

Observe that “formally” A,B,C,D are linear in µ

b

. Let A
0

be the value of A when

µ

b

= 0 and A

1

be its value when µ

b

= 1. Similarly we have B

0

, B

1

, C

0

, C

1

, D

0

, D

1

. In

fact,
(1 + sx

⇤)A
0

= (1 + s)
⇥

1� r(1� x

⇤)
⇤

(1 + sx

⇤)A
1

= r(1� x

⇤)

(1 + sx

⇤)B
0

= (1 + s)rx⇤

(1 + sx

⇤)B
1

= 1� rx

⇤

(1 + sx

⇤)C
0

= 1� rx

⇤

(1 + sx

⇤)C
1

= (1 + s)rx⇤

(1 + sx

⇤)D
0

= r(1� x

⇤)

(1 + sx

⇤)D
1

= (1 + s)
⇥

1� r(1� x

⇤)
⇤

.

(S4.3)

As 0 < r < 1, 0 < x

⇤
< 1 we have A

i

, B

i

, C

i

, D

i

positive for i = 0, 1. Hence, as A,B,C,D

are linear in µ

b

, A,B,C,D are all positive for 0 < µ

b

< 1. Moreover we have

C

0

= B

1

, C

1

= B

0

, D

0

= A

1

, D

1

= A

0

. (S4.4)

Let S(�) = det(L
ex

� �I) be the characteristic polynomial of L
ex

. The structure of L
ex

given in (S4.1) entails that S(�) factors into the product of two quadratic polynomials

S

1

(�) and S

2

(�):

S(�) = S

1

(�)S
2

(�), (S4.5)
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where

S

1

(�) = �

2 � �

⇥

(1�m)(A+ C) +m(B +D)
⇤

+ (1� 2m)(AC �BD)

S

2

(�) = �

2 � �

⇥

(1�m)(A+ C)�m(B +D)
⇤

+ (1� 2m)(AC �BD).
(S4.6)

See Balkau and Feldman (1973) for analogous calculations with migration modification.

Consider first the roots of S
1

(�) = 0. These are real since the discriminant of S
1

(�) = 0

is

⇥

(1�m)(A+ C) +m(B +D)
⇤

2 � 4(1� 2m)(AC �BD) =

=
⇥

(1�m)(A� C) +m(B �D)
⇤

2

+ 4m(1�m)(AD +BC) + 4(1�m)2BD + 4m2

AC,

(S4.7)

which is positive since A,B,C,D are positive and 0 < m < 1.

In addition,

AC �BD =
⇥

(1� µ

b

)A
0

+ µ

b

A

1

⇤⇥

(1� µ

b

)(C
0

+ µ

b

C

1

⇤

�
⇥

(1� µ

b

)B
0

+ µ

b

B

1

⇤⇥

(1� µ

b

)D
0

+ µ

b

D

1

⇤

.

(S4.8)

Since C

0

= B

1

, C
1

= B

0

, D
0

= A

1

, D
1

= A

0

, (S4.8) reduces to

AC �BD = (1� 2µ
b

)(A
0

B

1

�A

1

B

0

). (S4.9)

Substituting A

0

, A

1

, B

0

, B

1

from (S4.3) we have

(1 + sx

⇤)2(AC �BD) = (1� 2µ
b

)(1 + s)(1� r). (S4.10)

Since we assume 0 < m, µ
b

<

1

2

, the two roots of S
1

(�) = 0 are positive. Both of these

roots are less than 1 if and only if S
1

(1) > 0 and S

0
1

(1) > 0.

S

0
1

(1) = 2�
⇥

(1�m)(A+ C) +m(B +D)
⇤

. (S4.11)

As C
0

= B

1

, C

1

= B

0

, D

0

= A

1

, D

1

= A

0

, we have

(A+ C) = (1� µ

b

)(A
0

+ C

0

) + µ

b

(A
1

+ C

1

)

= (1� µ

b

)(A
0

+ C

0

) + µ

b

(B
0

+D

0

),
(S4.12)

(B +D) = (1� µ

b

)(B
0

+D

0

) + µ

b

(B
1

+D

1

)

= (1� µ

b

)(B
0

+D

0

) + µ

b

(A
0

+ C

0

).
(S4.13)
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Hence,

(1�m)(A+ C) +m(B +D) = (1�m

b

)(A
0

+ C

0

) +m

b

(B
0

+D

0

), (S4.14)

where

m

b

= m+ µ

b

� 2mµ

b

. (S4.15)

Substituting for A
0

, B

0

, C

0

, D

0

, gives

S

0
1

(1) = (1 + sx

⇤)�1

⇥

r + rsx

⇤ + s(1� r)(2x⇤ � 1) +m

b

(1� r)(s+ 2)
⇤

. (S4.16)

Now s > 0, 0 < r < 1, m
b

= m(1 � µ

b

) + µ

b

(1 �m) > 0, and x

⇤
>

1

2

if 0 < m, µ
B

<

1

2

.

Therefore S

0(1) > 0 provided 0 < m, µ
B

<

1

2

. Using (S4.11) and (S4.16) it is easily seen

that S(1) > 0 if

(1 + sx

⇤)�2(1� r)
n

(x⇤)2s2 + sx

⇤⇥�s+m

b

(s+ 2)
⇤

� sm

b

o

> 0. (S4.17)

Using the equation Q(x⇤) = 0 from (14), we have

s(x⇤)2 +
⇥

(s+ 2)m
B

� s

⇤

x

⇤ �m

B

= 0, (S4.18)

where

m

B

= m+ µ

B

� 2mµ

B

. (S4.19)

Therefore (S4.17) is satisfied if and only if

(m
b

�m

B

)(1 + sx

⇤)�2(1� r)s
⇥

x

⇤(2 + s)� 1
⇤

> 0. (S4.20)

As x⇤
>

1

2

, by Result 1, and 0 < m <

1

2

, (S4.20) holds if and only if m
b

> m

B

, which is

true if and only if µ
b

> µ

B

.

It is not obvious that the roots of S
2

(�) = 0 are real. However, as the matrix L

⇤
ex

is positive, the Perron-Frobenius theory ensures that its largest eigenvalue in magnitude

is positive. Therefore we just have to ensure that when both eigenvalues are real and

positive they are less than 1; when they are real, both are positive or both are negative

8 SI text



since (1� 2m)(1� 2µ
b

)(AC �BD) is positive for 0 < m, µ
b

<

1

2

. The conditions for this

are that both S

2

(1) and S

0
2

(1) are positive. But

S

2

(1) = 1�
⇥

(1�m)(A+ C)�m(B +D)
⇤

+ (1� 2m)(AC �BD)

> 1�
⇥

(1�m)(A+ C) +m(B +D)
⇤

+ (1� 2m)(AC �BD) = S

1

(1),
(S4.21)

and S

1

(1) > 0 when 0 < m, µ
b

<

1

2

and µ

b

> µ

B

, so also S

2

(1) > 0. Similarly

S

0
2

(1) = 2�
⇥

(1�m)(A+ C)�m(B +D)
⇤

> 2�
⇥

(1�m)(A+ C) +m(B +D)
⇤

= S

0
1

(1).
(S4.22)

Thus, when S

0
1

(1) > 0 also S

0
2

(1) > 0.
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File S5

Proof of Result 5

At a symmetric equilibrium y = x, and also, by (32), ỹ = x̃. Thus (30) and (31)

imply that

x̃ =

⇥

(s+ 1)(1�m

B

)�m

B

⇤

x+m

B

sx+ 1
(S5.1)

and

x =

⇥

(1�m

B

)�m

B

(s+ 1)
⇤

x̃+m

B

(1 + s)

(1 + s)� sx̃

. (S5.2)

Substituting (S5.1) into (S5.2) gives the quadratic equation

(s+ 2)m
B

�

sx

2 +
⇥

2�m

B

(s+ 2)
⇤

x� (1�m

B

)
 

= 0. (S5.3)

As 0 < m,µ

B

< 1, s > 0 and m

B

= m(1� µ

B

) + µ

B

(1�m) > 0, x satisfies the equation

R(x) = 0 with R(x) given in (36). As 0 < m

B

< 1 we have R(0) < 0, and as R(±1) > 0,

R(x) = 0 has two real roots, one positive and one negative. Observe that

R(1) = s+
⇥

2�m

B

(s+ 2)
⇤

� (1�m

B

) = (1�m

B

)(s+ 1) > 0 (S5.4)

and

R

✓

1

2

◆

=
s

4
+

1

2
·
⇥

2�m

B

(s+ 2)
⇤

� (1�m

B

) =
s

4
(1� 2m)(1� 2µ

B

) (S5.5)

as 1�2m
B

= 1�2m�2µ
B

+4mµ

B

= (1�2m)(1�2µ
B

). Therefore when 0 < m,µ

B

<

1

2

we have R( 1
2

) > 0 and 0 < x̄ <

1

2

.
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File S6

Proof of Result 6

In view of (33), the symmetric equilibrium (x̄, ȳ) is internally stable if

(1� 2µ)2(1 + s)2

(1 + sx̄)2
⇥

1 + s(1� x̃)
⇤

2

< 1, (S6.1)

as x̄ = ȳ and x̃ = ỹ, where, by (S5.1)

x̃ =

⇥

(s+ 1)(1�m

B

)�m

B

⇤

x̄+m

B

sx̄+ 1
. (S6.2)

Thus

1 + s(1� x̃) = (1 + s)� s ·
⇥

(1 + s)�m

B

(2 + s)
⇤

x̄+m

B

sx̄+ 1
. (S6.3)

Hence

(1 + sx̄)
⇥

1 + s(1� x̃)
⇤

= (1 + s)(1 + sx̄)� s

⇥

(1 + s)�m

B

(s+ 2)
⇤

x̄� sm

B

, (S6.4)

or

(1 + sx̄)
⇥

1 + s(1� x̃)
⇤

= (1 + s) + sm

B

⇥

(s+ 2)x̄� 1
⇤

. (S6.5)

For condition (S6.1) to be satisfied, since (1 + sx̄)
⇥

1 + s(1� x̃)
⇤

> 0, it is su�cient that

(1 + s) + sm

B

⇥

(s+ 2)x̄� 1
⇤

> (1 + s), (S6.6)

or that x̄ >

1

s+2

. But

R

✓

1

s+ 2

◆

=
s

(s+ 2)2
+
⇥

2�m

B

(s+ 2)
⇤ 1

s+ 2
� (1�m

B

), (S6.7)

or

R

✓

1

s+ 2

◆

=
s

(s+ 2)2
+

2

s+ 2
� 1 = �s(1 + s)

(s+ 2)2
< 0. (S6.8)

Thus R( 1

s+2

) < 0 and R(1) > 0, and so x̄ >

1

s+2

as desired.
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File S7

Proof of Result 7

As the transformation T of the population state is T = T

2

�T
1

, where T
i

corresponds

to phase i, with selection of type i, for i = 1, 2, and as x̃ = T

1

x̄, x̄ = T

2

x̃, following the

analysis for the case without cycles, the linear approximation matrix L

ex

becomes

L

ex

= L

2

ex

· L1

ex

, (S7.1)

where, as in (S4.1) and (S4.2), we have

L

1

ex

=

0

B

B

B

@

(1�m)Ā (1�m)B̄ mC̄ mD̄

(1�m)D̄ (1�m)C̄ mB̄ mĀ

mĀ mB̄ (1�m)C̄ (1�m)D̄

mD̄ mC̄ (1�m)B̄ (1�m)Ā

1

C

C

C

A

, (S7.2)

L

2

ex

=

0

B

B

B

B

@

(1�m) eA (1�m) eB m

e

C m

e

D

(1�m) eD (1�m) eC m

e

B m

e

A

m

e

A m

e

B (1�m) eC (1�m) eD

m

e

D m

e

C (1�m) eB (1�m) eA

1

C

C

C

C

A

, (S7.3)

and
(1 + sx̄)A = (1 + s)(1� µ

b

) + r(1� x̄)
⇥

(s+ 2)µ
b

� (s+ 1)
⇤

(1 + sx̄)B = (1 + s)rx̄+ µ

b

⇥

1� (s+ 2)rx̄
⇤

(1 + sx̄)C = (1� µ

b

) + rx̄

⇥

(s+ 2)µ
b

� 1
⇤

(1 + sx̄)D = (1 + s)µ
b

+ r(1� x̄)
⇥

1� (s+ 2)µ
b

⇤

,

(S7.4)

⇥

1 + s(1� x̃)
⇤

e

A = (1� µ

b

) + r(1� x̃)
⇥

(2 + s)µ
b

� 1
⇤

⇥

1 + s(1� x̃)
⇤

e

B = (1 + s)µ
b

+ rx̃

⇥

1� (s+ 2)µ
b

⇤

⇥

1 + s(1� x̃)
⇤

e

C = (1 + s)(1� µ

b

) + rx̃

⇥

(s+ 2)µ
b

� (s+ 1)
⇤

⇥

1 + s(1� x̃)
⇤

e

D = µ

b

+ r(1� x̃)
⇥

(s+ 1)� (s+ 2)µ
b

⇤

.

(S7.5)

When we multiply L

2

ex

by L

1

ex

we find that the product L
ex

has the following structure:

L

ex

=

0

B

@

a e h d

b f g c

c g f b

d h e a

1

C

A

, (S7.6)
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where
a = (1�m)2 eAA+ (1�m)2 eBD +m

2

e

CA+m

2

e

DD

b = (1�m)2 eDA+ (1�m)2 eCD +m

2

e

BA+m

2

e

AD

c = m(1�m)
h

e

AA+ e

BD + e

CA+ e

DD

i

d = m(1�m)
h

e

DA+ e

CD + e

BA+ e

AD

i

e = (1�m)2 eAB + (1�m)2 eBC +m

2

e

CB +m

2

e

DC

f = (1�m)2 eDB + (1�m)2 eCC +m

2

e

BB +m

2

e

AC

g = m(1�m)
h

e

AB + e

BC + e

CB + e

DC

i

h = m(1�m)
h

e

DB + e

CC + e

BB + e

AC

i

.

(S7.7)

Let D(�) = det(L
ex

� �I) be the characteristic polynomial of L
ex

. From (S7.6), D(�)

factors into 2⇥ 2 determinants:

D(�) =

�

�

�

�

�

�

�

a+ d� � e+ h 0 0
b+ c f + g � � 0 0
c g f � g � � b� c

d h e� h a� d� �

�

�

�

�

�

�

�

. (S7.8)

Therefore D(�) can be written

D(�) = D

1

(�)D
2

(�), (S7.9)

where

D

1

(�) = �

2 � (a+ d+ f + g)�+ (a+ d)(f + g)� (b+ c)(e+ h)

D

2

(�) = �

2 � (a� d+ f � g)�+ (a� d)(f � g)� (b� c)(e� h).
(S7.10)

As 0 < m < 1 and A,B,C,D and e

A,

e

B,

e

C,

e

D are all positive, the matrix L

ex

is a positive

matrix and its largest eigenvalue in magnitude is positive. Observe that the discriminant

of D
1

(�) is

(a+ d+ f + g)2 � 4
⇥

(a+ d)(f + g)� (b+ c)(e+ h)
⇤

, (S7.11)

which is positive and equal to

[(a+ d)� (f + g)]2 + 4(b+ c)(e+ h). (S7.12)

In addition, (a+d+f +g) is positive. Therefore D
1

(�) has real roots, and its largest root

in magnitude is positive. Thus this positive root is less than 1 if D
1

(1) > 0 and D

0
1

(1) > 0.
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As the largest eigenvalue of L
ex

is positive, for stability of (x̄, ȳ) we require that if the

eigenvalues associated with D

2

(�) are real and at least one is positive, they are both less

than 1. Again the conditions for this are D

2

(�) > 0 and D

0
2

(1) > 0. Observe that

D

0
1

(1) = 2� (a+ d+ f + g)

D

0
2

(1) = 2� (a� d+ f � g) = D

0
1

(1) + 2(d+ g) > D

0
1

(1).
(S7.13)

In view of (S7.13), for the largest eigenvalue of L
ex

to be less than one, we require

D

1

(1) > 0, D

0
1

(1) > 0, D

2

(1) > 0. (S7.14)

We now compute the constant terms of D
1

(�) and D

2

(�). We already know, based on the

properties of the matrices L1

ex

and L

2

ex

that the constant terms of both D

1

(�) and D

2

(�)

are the same and are equal to

(1� 2m)2
�

AC �BD

�

⇣

e

A

e

C � e

B

e

D

⌘

. (S7.15)

With the same technique used to compute (S4.10), we deduce that

(1 + sx)2
�

AC �BD

�

= (1� 2µ
b

) (1 + s)(1� r), (S7.16)

and similarly

[1 + s (1� x̃)]2
⇣

e

A

e

C � e

B

e

D

⌘

= (1� 2µ
b

)(1 + s)(1� r). (S7.17)

Therefore the constant terms of both D

1

(�) and D

2

(�) are the same and are equal to

(1� 2m)2 (1� 2µ
b

)2 (1 + sx̄)�2 [1 + s (1� x̃)]�2 (1 + s)2 (1� r)2 , (S7.18)

which is positive, and so D

1

(�) has two positive roots. Also, as a, b, c, d are all positive,

D

2

(1) = 1� (a� d+ f � g) + (a� d)(f � g)� (b� c)(e� h)

> 1� (a+ d+ f + g) + (a+ d)(f + g)� (b+ c)(e+ h) = D

1

(1).
(S7.19)

Hence for the symmetric equilibrium to be externally stable, we require that D

1

(1) and

D

0
1

(1) are both positive.

14 SI text



Now from (S6.5) we know that

(1 + sx̄)
⇥

1 + s(1� x̃)
⇤

= (1 + s) + sm

B

⇥

(s+ 2)x̄� 1
⇤

. (S7.20)

As x̄ >

1

s+2

we have

(1 + sx̄) [1 + s (1� x̃)] > (1 + s). (S7.21)

Thus the equal constant terms of D
1

(�) and D

2

(�) given in (S7.18) are positive and less

than 1. As a result it is impossible for the two positive roots of D
1

(�) to both be larger

than 1, and they are both less than 1 provided D

1

(1) > 0. Hence the external stability of

the symmetric equilibrium requires that

D

1

(1) = 1� (a+ d+ f + g) + (a+ d)(f + g)� (b+ c)(e+ h) (S7.22)

is positive (the last summand in (S7.22) is given in (S7.18)). We now compute a+d+f+g.

Computation of (a+ d+ f + g)

We have

(a+ d+ f + g) =
h

(1�m)2 e

A+m

2

e

C +m(1�m)
⇣

e

B + e

D

⌘i

A

+
h

(1�m)2 eC +m

2

e

A+m(1�m)
⇣

e

B + e

D

⌘i

C

+
h

(1�m)2 e

B +m

2

e

D +m(1�m)
⇣

e

A+ e

C

⌘i

D

+
h

(1�m)2 e

D +m

2

e

B +m(1�m)
⇣

e

A+ e

C

⌘i

B.

(S7.23)

As A,B,C,D and also e

A,

e

B,

e

C,

e

D given in (S7.4) and (S7.5), respectively, are all linear

functions of µ
b

, where 0  µ

b

 1, we can represent them as A = (1� µ

b

)A
0

+ µ

b

A

1

, etc.

Hence
(1 + sx̄)A

0

= (1 + s) [1� r (1� x̄)] = (1 + sx̄)D
1

(1 + sx̄)B
0

= (1 + s)rx̄ = (1 + sx̄)C
1

(1 + sx̄)C
0

= 1� rx̄ = (1 + sx̄)B
1

(1 + sx̄)D
0

= r(1� x̄) = (1 + sx̄)A
1

,

(S7.24)

[1 + s (1� x̃)] eA
o

= 1� r (1� x̃) = [1 + s (1� x̃)] eD
1

[1 + s (1� x̃)] eB
o

= rx̄ = [1 + s (1� x̃)] eC
1

[1 + s (1� x̃)] eC
o

= (1 + s) [1� rx̃] = [1 + s (1� x̃)] eB
1

[1 + s (1� x̃)] eD
o

= (1 + s)r (1� x̃) = [1 + s (1� x̃)] eA
1

.

(S7.25)
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Since
m

b

= m+ µ

b

� 2mµ

b

= m(1� µ

b

) + µ

b

(1�m)

1�m

b

= 1�m� µ

b

+ 2mµ

b

= (1�m)(1� µ

b

),
(S7.26)

we can write

(a+ d+ f + g) =
h

(1�m)(1�m

b

) eA
0

+ (1�m)m
b

e

D

0

+m(1�m

b

) eB
0

+m ·m
b

e

C

0

i

A

+
h

(1�m)(1�m

b

) eC
0

+ (1�m)m
b

e

B

0

+m(1�m

b

) eD
0

+m ·m
b

e

A

0

i

C

+
h

(1�m)(1�m

b

) eB
0

+ (1�m)m
b

e

C

0

+m(1�m

b

) eA
0

+m ·m
b

e

D

0

i

D

+
h

(1�m)(1�m

b

) eD
0

+ (1�m)m
b

e

A

0

+m(1�m

b

) eC
0

+m ·m
b

e

B

0

i

B.

(S7.27)

Substitute into (S7.27)

A = (1� µ

b

)A
0

+ µ

b

D

0

, B = (1� µ

b

)B
0

+ µ

b

C

0

,

C = (1� µ

b

)C
0

+ µ

b

B

0

, D = (1� µ

b

)D
0

+ µ

b

A

0

,

(S7.38)

to obtain

(a+ d+ f + g) = (1�m

b

)2
h

e

A

0

A

0

+ e

B

0

D

0

+ e

C

0

C

0

+ e

D

0

B

0

i

+m

b

(1�m

b

)
h⇣

e

B

0

+ e

D

0

⌘

�

A

0

+ C

0

�

+
⇣

e

A

0

+ e

C

0

⌘

�

B

0

+D

0

�

i

+m

2

b

h

e

A

0

C

0

+ e

B

0

B

0

+ e

C

0

A

0

+ e

D

0

D

0

i

.

(S7.29)

Equation (S7.29) can also be written as

(a+ d+ f + g) = (1� 2m
b

)
h

e

A

0

A

0

+ e

B

0

D

0

+ e

C

0

C

0

+ e

D

0

B

0

i

+m

b

h⇣

e

B

0

+ e

D

0

⌘

�

A

0

+ C

0

�

+
⇣

e

A

0

+ e

C

0

⌘

�

B

0

+D

0

�

i

+m

2

b

h⇣

e

A

0

+ e

C

0

⌘

�

A

0

+ C

0

�

+
⇣

e

B

0

+ e

D

0

⌘

�

B

0

+D

0

�

�
⇣

e

A

0

+ e

C

0

⌘

�

B

0

+D

0

�

+
⇣

e

B

0

+ e

D

0

⌘

�

A

0

+ C

0

�

i

,

(S7.30)

or as

(a+ d+ f + g) = (1� 2m
b

)
h

e

A

0

A

0

+ e

B

0

D

0

+ e

C

0

C

0

+ e

D

0

B

0

i

+m

b

h⇣

e

B

0

+ e

D

0

⌘

�

A

0

+ C

0

�

+
⇣

e

A

0

+ e

C

0

⌘

�

B

0

+D

0

�

i

+m

2

b

⇣

e

A

0

+ e

C

0

� e

B

0

� e

D

0

⌘

�

A

0

+ C

0

�B

0

�D

0

�

.

(S7.31)
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From (S7.24) and (S7.25),

(1 + sx̄)[1 + s(1� x̃)]
h

e

A

0

A

0

+ e

B

0

D

0

+ e

C

0

C

0

+ e

D

0

D

0

i

=

= (1 + s)
⇥

2(1� r) + r

2

⇤

+ r

2

s(s+ 1)x̄� r

2

sx̃� r

2

s

2

x̄x̃, (S7.32)

(1 + sx̄)[1 + s(1� x̃)]
h⇣

e

B

0

+ e

D

0

⌘

�

A

0

+ C

0

�

+
⇣

e

A

0

+ e

C

0

⌘

�

B

0

+D

0

�

i

=

= 2r2(1 + sx̄)[1 + s(1� x̄)] + r(1� r)(s+ 2) [(s+ 2) + s (x̄� x̃)] ,(S7.33)

(1 + sx̄)[1 + s(1� x̃)]
⇣

e

A

0

+ e

C

0

� e

B

0

� e

D

0

⌘

�

A

0

+ C

0

�B

0

�D

0

�

=

= (s+ 2)2 (1� r)2 . (S7.34)

Remember that by (S7.18)

(1 + sx̄)2 [1 + (1� x̃)]2 [(a+ d)(f + g)� (b+ c)(e+ h)] =

= (1� 2m)2 (1� 2µ
b

)2 (s+ 1)2 (1� r)2 .
(S7.35)

But

(1� 2m)(1� 2µ
b

) = 1� 2(m+ µ

b

� 2mµ

b

) = 1� 2m
b

. (S7.36)

Therefore

(1 + sx̄)2 [1 + (1� x̃)]2 [(a+ d)(f + g)� (b+ c)(e+ h)] =

= (1� 2m
b

)2 (s+ 1)2 (1� r)2 .
(S7.37)

Combining all of this, we get that D
1

(1) = 1�(a+d+f+g)+(a+d)(f+g)�(b+c)(e+h),

which we compute as

1� (1� 2m
b

)
(1 + s)

⇥

2(1� r) + r

2

⇤

+ r

2

s(s+ 1)x̄� r

2

sx̃� r

2

s

2

x̄x̃

(1 + sx̄)[1 + s(1� x̃)]

�m

b

2r2(1 + sx̄)[1 + s(1� x̃)] + r(1� r)(s+ 2)[(s+ 2) + s(x̄� x̃)]

(1 + sx̄)[1 + s(1� x̃)]

�m

2

b

(s+ 2)2 (1� r)2

(1 + sx̄)[1 + s(1� x̃)]

+
(1� 2m

b

)2 (s+ 1)2 (1� r)2

(1 + sx̄)2 [1 + s (1� x̃)]2
.

(S7.38)

Observe that

r

2[(1 + s) + s(s+ 1)x̄� sx̃� s

2

x̄x̃] = r

2(1 + sx̄)[1 + s(1� x̃)], (S7.39)
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so (S7.38) simplifies to

1� r

2 � (1� 2m
b

)
2(1 + s)(1� r)

(1 + sx̄)[1 + s(1� x̃)]
�m

b
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�m

2

b

(s+ 2)2 (1� r)2

(1 + sx̄)[1 + s(1� x̃)]
+

(1� 2m
b

)2 (s+ 1)2 (1� r)2

(1 + sx̄)2 [1 + s (1� x̃)]2
.

(S7.40)

Clearly D

1

(1) of (S7.40) has a factor of (1� r), and in fact

D

1

(1) = (1� r)f(r), (S7.41)

where f(r) is a linear function of r, for 0  r  1. Now

f(1) = 2� (1� 2m
b

)
2(1 + s)

(1 + sx̄)[1 + s(1� x )]
�m

b

(s+ 2)[(s+ 2) + s(x̄� x̃)]

(1 + sx̄)[1 + s(1� x̃)]
. (S7.42)

Following (S6.7) we have

(1 + sx̄)[1 + s(1� x̃)] = (1 + s) + sm

B

[(s+ 2)x̄� 1]. (S7.43)

We also have an equivalent expression for (S7.43) in terms of x̃, namely

(1 + sx̄)[1 + s(1� x̃)] = (1 + s) + sm

B

[(s+ 1)� (s+ 2)x̃]. (S7.44)

Also, whereas x̄ >

1

s+2

, we have x̃ <

s+1

s+2

. Applying all of this to (S7.42) and using the

fact that

(1 + sx̄)[1 + s(1� x̃)] = (1 + s) +
1

2
sm

B

[s+ (s+ 2)(x̄� x̃)], (S7.45)

we get that

(1 + sx̄)[1 + s(1� x̃)]f(1) = 2(s+ 1) + sm

B

[s+ (s+ 2)(x̄� x̃)]

� 2(1� 2m
b

)(s+ 1)�m

b

(s+ 2)[(s+ 2) + s(x̄� x̃)]

= s

2

m

B
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i
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B
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(S7.46)

Thus

(1 + sx̄)[1 + s(1� x̃)]f(1) = s(m
B

�m

b

)[s+ (s+ 2)(x̄� x̃)]. (S7.47)
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But as (s+ 2)x̄ > 1, (s+ 2)x̃ < (s+ 1),

s+ (s+ 2)(x̄� x̃) = [(s+ 2)x̄� 1] + [(s+ 1)� (s+ 2)x̃] > 0. (S7.48)

It follows that the sign of f(1) is the same as the sign of (m
B

�m

b

).

We now compute f(0):

f(0) = 1� (1� 2m
b

)
2(1 + s)
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�m

2

b
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(S7.49)

Using the expression (S7.43) for the product of the two mean fitnesses, we get

(1 + sx̄)2 [1 + s (1� x̃)]2 f(0) = {(1 + s) + sm

B

[(s+ 2)x̄� 1]}2

� 2(1� 2m
b

)(s+ 1) {(1 + s) + sm
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B
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b

)2 (s+ 1)2 .
(S7.50)

In (S7.50) we replace the x̄

2 term using the equilibrium equation (36) to give

(1 + sx̄)2 [1 + s(1� x̃)]2 f(0) = (m
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b

)s
n
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b
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(S7.51)

The right-hand side of (S7.51) is (m
B

�m

b

)s multiplied by

m

b

s(s+1)+m

B

(s+ 2)2 (m
B

+m

b

)[x̄(s+2)�1]+m

B

(s+1)[(s+4)�4x̄(s+2)]. (S7.52)

We will show that (S7.52) is always positive. In fact, (S7.52) is equal to

m

b

s(s+ 1) +m

B

·m
b
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(S7.53)

From the equilibrium equation (36) we get that

m

B

⇥

(s+ 2)x̄� 1
⇤

= sx̄

2 + 2x̄� 1. (S7.54)
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Hence (S7.53) is equal to

m

b

s(s+ 1) +m
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·m
b
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(S7.55)

The last two terms have a factor m
B

that multiplies

(s+ 1)(s+ 4)� (s+ 2)2 + (s+ 2)2 x̄(2 + sx̄)� 4x̄(s+ 1)(s+ 2) =
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,

(S7.56)

which is positive. To sum up, f(0) also has the same sign of (m
B

�m

b

), and so

D

1

(1) = (1� r)s(m
B

�m

b

)�(r), (S7.57)

where �(r) is a linear function of r that is positive for all 0  r  1. As (m
B

�m

b

) =

(1� 2m)(µ
B

� µ

b

), this proves the following result.
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File S8

Proof of Result 8

i. In a constant environment, the mean fitness w⇤ at the symmetric equilibrium (x̄⇤
, ȳ

⇤)

is w⇤ = 1+sx

⇤, and it is a decreasing function of µ
B

if @x
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@µB
is negative, or equivalently

if @x

⇤
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is negative (sincem

B

= m+µ

B

(1�2m) and 0  m <

1

2

). Using the equilibrium

equation (14),
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. (S8.1)

As x⇤
>

1

s+2

, in order for @x

⇤

@mB
to be negative, it is su�cient that

x

⇤
>

s�m

B

(s+ 2)

2s
. (S8.2)

This follows easily from the fact that Q(x) of (14) satisfies Q(0) < 0, Q(x⇤) = 0, and

Q

⇣

s�mB(s+2)

2s

⌘

< 0.

ii. With a fitness cycle of period 2, the mean fitness w̄ at the symmetric equilibrium

(x̄, ȳ) is

w̄ = (1 + s) + sm

B

⇥

(s+ 2)x̄� 1
⇤

. (S8.3)

w̄ is an increasing function of µ
B

if @w̄

@µB
> 0 or equivalently if @w̄

@mB
> 0. Now
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Thus @w̄

@mB
> 0 provided @x̄

@mB
> 0. Using the equilibrium equation R(x) = 0 for x̄,

we have
@x̄

@m

B

=
x̄(s+ 1)� 1

2sx̄+
⇥

2�m
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. (S8.5)

Since
⇥

x̄(s+ 1)� 1
⇤

> 0, we conclude that @x̄

@mB
> 0 if

x̄ >

m

B

(s+ 2)� 2

2s
, (S8.6)

which follows from R(0) < 0, R(x̄) = 0, and R

⇣

mB(s+2)�2

2s

⌘

< 0.
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Figure S1. The evolutionarily stable switching rate as function of migration

and recombination rate, n = 3. The symmetric selection coe�cient s = 0.4. Recom-

bination rates shown in the legend. The stable switching rate for n = 3 is sensitive to

the interplay of recombination and migration rates, with sudden possible discontinuities

in the stable switching rate.
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Figure S2. The evolutionarily stable switching rate as function of migration

and environmental rate of change, n > 3 for di↵erent recombination rates. The

symmetric selection coe�cient s = 0.4. The rate of environmental change n shown in the

legend. The plotted curves represent a fit to the data using a generalized additive model

with penalized cubic regression splines. In panel A, r = 0. In panel B, r = 0.25. In panel

C, r = 0.5.
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Figure S3. The evolutionarily stable switching rate as function of migration

and symmetric selection coe�cient s. Recombination rate is r = 0. The environment

changes every n = 4 generations. The symmetric selection coe�cient s shown in the

legend. The plotted curves represent a fit to the data using a generalized additive model

with penalized cubic regression splines. The stable switching rate is invariant to the

strength of symmetric selection between the two demes.
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