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ABSTRACT Although there has been much interest in estimating histories of divergence and admixture from genomic data, it has
proved difficult to distinguish recent admixture from long-term structure in the ancestral population. Thus, recent genome-wide
analyses based on summary statistics have sparked controversy about the possibility of interbreeding between Neandertals and modern
humans in Eurasia. Here we derive the probability of full mutational configurations in nonrecombining sequence blocks under both
admixture and ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute maximum-
likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Neandertal genomes and compare the
relative support for a model of admixture from Neandertals into Eurasian populations after their expansion out of Africa against
a history of persistent structure in their common ancestral population in Africa. Our analysis allows us to conclusively reject a model of
ancestral structure in Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.427.3%) than
suggested previously. Using analysis and simulations we show that our inference is more powerful than previous summary statistics
and robust to realistic levels of recombination.

WHOLE-GENOME sequence data have made it feasible
to detect low levels of ancestral admixture between

recently diverged populations and species even from few
individuals. An increasing number of genome-wide analyses
are uncovering signatures of introgression between sister spe-
cies in a large range of taxa (Kulathinal et al. 2009; Lawniczak
et al. 2010; Heliconius Genome Consortium 2012; Cui et al.
2013; Eaton and Ree 2013; Martin et al. 2013), suggesting
that reticulations may be an ubiquitous feature of speciation.
Similar evidence for gene flow after divergence has been
found in hominid lineages (Patterson et al. 2006). A number
of recent studies analyzing the Neandertal genome have sug-
gested that admixture also occurred in the genus Homo (i.e.,
from Neandertals and other archaic lineages into modern
Eurasian populations) following the expansion of modern
humans out of Africa (Green et al. 2010; Sankararaman
et al. 2012; Yang et al. 2012).

To test for admixture between Neandertal and Eurasian
populations, Green et al. (2010) have developed a simple
summary statistic. The D statistic assesses the fit of a strictly
bifurcating species tree. For a triplet of African, Eurasian,
and Neandertal genomes, and an outgroup (chimpanzee),
in which the underlying species tree is [(African, Eurasian),
Neandertal], incomplete lineage sorting leads to two diag-
nostic site patterns. Denoting the ancestral state at a poly-
morphic site as A and the derived state as B, mutations
incongruent with the species tree may either be “ABBA”
(i.e., shared by Eurasian and Neandertal) or “BABA” (shared
by African and Neandertal). Given the inherent symmetry
of coalescence in the common ancestral population under
a null model of strict divergence without gene flow, the
ratio D = (NABBA 2 NBABA)/(NABBA + NBABA) is not
expected to be significantly different from 0 (Green et al.
2010; Durand et al. 2011). In contrast, an excess of either
ABBA or BABA sites cannot be explained by incomplete
lineage sorting, suggesting population structure or gene
flow (Figure 1).

Positive D has been found and interpreted as evidence for
gene flow not only in the Neandertal analysis (Green et al.
2010), but also in genome-wide studies of closely related
species of Heliconius butterflies [whose origin is thought
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to have involved the introgression of color pattern genes
(Heliconius Genome Consortium 2012; Martin et al. 2013)]
and an island radiation of pigs in Southeast Asia (Frantz et al.
2013).

However, D is a drastic summary of genetic variation and,
like other population genetic summary statistics such as FST,
is fundamentally limited in the sense that it is not diagnostic
of any specific historical scenario. In particular, Durand et al.
(2011) have compared the expectation of D under a model
of instantaneous unidirectional admixture (IUA) (Figure 1A)
and a different divergence model, involving structure in the
ancestral population (ancestral structure, AS) (Figure 1B).
The AS model assumes a genetic barrier (with gene flow of
M = 4Nem migrants per generation) that arises in the com-
mon ancestral population and persists until the most recent
split (Durand et al. 2011). Under this model, increasing
barrier strength leads to increasing topological asymmetries
(Slatkin and Pollack 2008) and hence positive D. Thus a key
finding of the Durand et al. (2011) analysis is that it is
impossible to distinguish between gene flow after diver-
gence and structure in the ancestral population using D.
Although Green et al. (2010) argue that admixture from
Neandertals into Eurasians is the most plausible history, they

conclude that “we cannot currently rule out a scenario in
which the ancestral population of present-day non-Africans
was more closely related to Neandertals than the ancestral
population of present-day Africans due to ancient substruc-
ture within Africa” (Green et al. 2010, p. 722). This has led
to recent controversy about the genomic signature of Nean-
dertal admixture. In particular, Eriksson and Manica (2012)
have used approximate Bayesian computation to show
that D values identical to those observed in the Neandertal–
Eurasian–African triplets can be generated under stepping-
stone type models of colonization and structure without ad-
mixture and recommend caution in inferring admixture from
geographic patterns of shared polymorphisms. While recent
studies examining patterns of linkage disequilibrium
(Sankararaman et al. 2012) and allele frequency spectra
of modern human populations (Yang et al. 2012) provide
qualitative support for Neandertal admixture, a rigorous
statistical comparison of these alternative scenarios of
human history is lacking.

D captures the information contained in the mean length
and frequency of two types of genealogical branches. How-
ever, given the randomness of the coalescent process, much
of the signal about population history is contained in the
higher moments of the distribution of branch lengths. An
obvious strategy for exploiting this information is to parti-
tion the genome into short sequence blocks within which
recombination can be ignored and to maximize the joint
likelihood across blocks (Nielsen and Wakeley 2001; Yang
2002; Zhu and Yang 2012). Because the space of possible
genealogies grows superexponentially with the number of
sampled individuals, multilocus inference methods are gen-
erally computationally intensive and often rely on Markov
chain Monte Carlo methods (Nielsen and Wakeley 2001) or
simulations. However, for small samples of individuals an
analytic solution to the likelihood is possible (Yang 2002;
Wilkinson-Herbots 2008; Wang and Hey 2010; Lohse et al.
2011), making inference from whole-genome data feasible.

In this study we compute maximum-likelihood estimates
of parameters under the AS and IUA models from three
genomes. We first show how the generating function (GF) of
branch lengths can be used to derive the probability of full
mutational configurations in short sequence blocks under
both models. We then investigate the power of this new
method to distinguish between IUA, AS, and a null model of
strict divergence and compare it with that of the D statistic.
We apply the method to triplet samples of contemporary
human genomes from Africa and Eurasia and the Neandertal
genome sequenced by Green et al. (2010) and quantify the
relative support for alternative models. Finally, we use sim-
ulations to demonstrate the robustness of our inferences to
recombination.

Models and Methods

We consider a history of three populations A, B, and C that
are related to each other via two divergence events.

Figure 1 Models of divergence between three populations with either
(A) a recent instantaneous, unidirectional admixture event (IUA model) or
(B) persistent structure in the ancestral population (AS model). Both his-
tories lead to an excess of incongruent genealogies characterized by an
internal branch tab (in green). However, the distribution of branch
lengths, in particular that of the external branch ta (in red), differs be-
tween the IUA and AS models (Figure 2).
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Populations B and C split from each other at time T1, and
their common ancestral population in turn split from popu-
lation A at a previous time T2 . T1. The IUA model further
assumes an instantaneous IUA event that transfers a fraction
f of lineages from population A into population B (forward in
time) at a more recent time Tgf , T1 (Figure 1A). Alterna-
tively, the AS model assumes a barrier in the population
ancestral to B and C, which persists into the common ances-
tral population (Figure 1B). While Durand et al. (2011)
assume symmetric migration across the barrier and an ad-
ditional time parameter at which the barrier arises, we con-
sider a slightly simpler model with a permanent barrier
(Slatkin and Pollack 2008) and unidirectional gene flow
(with M/2 migrants per generation).

Going backward in time, we can describe the history of
a sample X = {a, b, c} as a discrete-time Markov chain. We
need to trace both the location and the coalescence of the
sample as well as the merging of the three populations back-
ward in time (corresponding to splits forward in time). Fix-
ing the order of populations as A, B, and C and using / to
separate them, we can denote the initial state at the time of
sampling (*a/b/c) (where the asterisk indicates that the
admixture event is still pending). Under the IUA model,
there are a further 10 states: (a, b/∅/c), ({a, b}/∅/c),
(a, b/c), ({a, b}/c), (a/b, c), (a/{b, c}), (a, {b, c}), (b,
{a, c}), (c, {a, b}), and (a, b, c). We use {a, b} to denote
a new lineage generated by a coalescence event between
a and b and (a, b/∅/c) to denote a state where population
B is empty (because lineage b has traced back to population A).

Assuming an infinite-sites mutation model and an out-
group to polarize mutations, the polymorphism information
in a sample of sequences X can be summarized by counting
the number of mutations on each possible genealogical
branch as a vector k with entries kS, where S 4 X. For
X = {a, b, c} there are six mutation types: k = {ka, kb, kc,
kab, kac, kbc}, where ka is the number of mutations found
only in sample a, kab is the number of mutations shared by
a and b, and so on. Shared derived mutations uniquely de-
fine a topology: all genealogies have a terminal branch con-
tributing to ka, but only genealogies with topology Gab

contribute to kab. We are interested in computing P½ k|Q�,
the probability of a mutational configuration k given param-
eter values Q under either the IUA or the AS model. P[k|Q]
can be interpreted as the likelihood of the model. In princi-
ple, this can be found as

P
�
k
��Q� ¼ Z ​

P
�
t
��Q�3 P

�
k
�� t;m�d t; (1)

where P[t|Q] is the joint distribution of genealogical
branches and P½ k|t, m� the probability of a mutational con-
figuration given a genealogy t and mutation rate m. This
decomposition of the likelihood was first outlined by Felsenstein
(1988) and has been used to derive likelihoods for minimal
samples under a number of models: Yang (2002) studies
a divergence model involving three populations and Wilkin-

son-Herbots (2008) and Wang and Hey (2010) study
a model of isolation with migration between two popula-
tions. P½ t|Q� can be found as a convolution of the waiting
times between all successive sample states. However, this
direct approach quickly gets out of hand given the large
number of possible histories of the sample that need to be
considered and because the integral in Equation 1 has as
many dimensions as there are genealogical branches and
so is hard to solve.

Here we use the GF or Laplace transform of P½ t � to derive
P½k � under the IUA and AS models. The general approach
has been described in detail by Lohse et al. (2011). Below,
we give a brief summary of the main steps involved and
derive several genealogical quantities under the IUA and
AS model that help understand how these scenarios can
be distinguished.

Computing likelihoods from the generating function

The GF of the distribution of branch lengths P½ t � is defined
as c½v� = E½e2t�v�, where the vector of dummy variables v

corresponds directly to the branch lengths t and mutation
counts k. As Lohse et al. (2011) show, for a general class of
models in which the waiting times between successive states
in the history of a sample are exponentially distributed, the
GF has a simple recursive form that relates the sample state
at a particular time, V, to the state Vi before some event i
(which may be coalescence, population divergence, or ad-
mixture) (Lohse et al. 2011, equation 4):

c½V� ¼
P

ilic½Vi�P
ili þ

P
jSj¼1vS

: (2)

The denominator is given by the total rate of events
P

ili
plus the sum of dummy variables vS corresponding to the
genealogical branches that increase during this interval.
For the first event, these are the “leaves” of the genealogy,
i.e., |S| = 1. The numerator is a sum of the GFs of all
possible previous states, each weighted by the rate of the
corresponding event li.

To be able to apply this recursion to the IUA model, we
initially assume that the intervals between population split
and admixture times (t1, t2, and Tgf in Figure 1A) are ex-
ponentially distributed with rates L1, L2, and Lgf. The GF
equations for this continuous analog of the IUA model are
easy to write down and (using Mathematica) solve. For in-
stance, consider the GF for the initial state of the sample
(*a/b/c). The only possible event is admixture (which
occurs with rate Lgf). This leads either to state (a, b/∅/c)
if the lineage in population B traces back to population A
(with probability f) or to state (a/b/c) if it remains in pop-
ulation B (with probability 1 2 f ). The GF term is

c½*a=b=c� ¼ Lgf�
Lgf þ va þ vb þ vc

�
3 ðfc½a; b=∅=c� þ ð12 f Þc½a=b=c�Þ:
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Once admixture has occurred, we allow for the merging of
populations B and C (at rate L1) and finally the merging of
population A and the population ancestral to B and C (at
rate L2). The GF terms for all sample states under the IUA
model and their solution are given in the Appendix.

We denote the GF for the original model with discrete
population split and admixture times P½v �. Noting that
c½v� ¼ R L1L2Lgf P½v�e2L :Td T (Lohse et al. 2011, 2012),
P½v � can be obtained by multiplying c½v � by (LgfL1L2)21

and inverting once for each event with respect to the corre-
sponding L parameter.

We can partition P½v � into contributions from the three
different topologies by setting GF terms in the recursion that
involve branches that are incompatible with a particular to-
pology to zero. Note that P½v � = P½v, Gbc � + P½v, Gac � +
P½v, Gab � (Lohse et al. 2011). This is convenient because the
GF for a particular topology depends only on the intervals
between the two coalescence events. For example, for topol-
ogy Gab we can define corresponding dummy variables v3 =
va + vb + vc and v2 = vc + vab (labeled by the number
of lineages during each interval). Using this simplification
gives relatively compact expressions (Equation A1, Appendix).

Lohse et al. (2011) show that under an infinite-sites mu-
tation model with a uniform mutation rate u/2 = 2Nem, the
probability of a particular mutational configuration can be
found by taking successive derivatives of the GF (Equation
A1) with respect to the relevant v variables (Lohse et al.
2011, 2012). Specifically, the probability of k3 and k2 muta-
tions in the two coalescence intervals is

p½k3; k2;Gi� ¼ ð21Þk2þk3 u
k2 ð3u=2Þk3
k2!k3!

 
@k2þk3P½v2;v3;Gi�

@vk2
2 vk3

3

!
v2 ¼ u

v3 ¼ 3u=2

:

(3)

We can compute P½k � from the above by considering the
possible ways the mutations on each branch can fall into
the two coalescent intervals (Lohse et al. 2011). For exam-
ple, for topology Gab, we have

P½kab; kc; ka þ kb�

¼ Pkc
j¼0

 
ka þ kb þ kc2 j

kc 2 j

!
1
3

kc2j 2
3

kaþkb
 
kab þ j

j

!
1
2

kabþj

3  p½kab þ j; ka þ kb þ kc 2 j;Gab�:
(4)

This uses the fact that, for a given topology, mutations on
the two shorter external branches (e.g., ka and kb for Gab)
can be combined because the underlying branches have the
same length.

The logarithm of the likelihood (lnL) for a data set
consisting of an arbitrary number of sequence blocks is
simply the sum of lnL across blocks. The joint lnL can be
maximized using the Mathematica function FindMaxi-
mum, which takes a few minutes on a modern personal
computer. We restricted the computation of exact proba-

bilities to configurations that involve up to a maximum of
km = 3 mutations on any one genealogical branch. The
probabilities of rare configurations with more than km
mutations on one or several branches can also be calcu-
lated from the GF by considering the relevant marginal
probabilities (see Supporting Information, File S1). Code
for the likelihood computation for the IUA and AS models
is implemented in Mathematica (Wolfram Research 2010)
(File S1).

Genealogical properties

We can use the GF to derive several useful genealogical
quantities under the IUA and AS model. First, the proba-
bility of each topology can be found by setting all v terms
in Equation A1 (Appendix) to 0. For the IUA model this
gives

p½Gbc� ¼
1
3
ð32 3f þ e2t12t2ð2et1ð f 2 1Þ þ f ÞÞ

p½Gab� ¼
1
3
ðe2t12t2ð2et1ð f 2 1Þ2 2f Þ þ 3f Þ

p½Gac� ¼ 1
3
e2t12t2ð2et1ð f 2 1Þ þ fÞ:

(5)

An alternative derivation of Equation 5 can be made using
discrete-time transition matrices (analogous to Slatkin and
Pollack 2008; Lohse 2010).

Second, the moments of the length of a particular
branch can be found from the GF by taking derivatives
with respect to the corresponding v variable. For
example, the expected lengths of the two incongruent
branches are E½tab� ¼ 2ð@P½v;Gab�=@vabÞ

���
vab¼0

and E½tac� ¼
2ð@P½v;Gac�=@vacÞ

���
vac¼0

: Multiplying by u/2 gives the

expected number of the two incongruent types of shared de-
rived mutations kab and kac. These are Pr(ABBA) and Pr(BABA)
in the notation of Durand et al. (2011, equations 3 and 4).

Finally, to find the length distribution for a particular
branch, we invert the GF with respect to the corresponding
v variable (using Mathematica). Figure 2 contrasts the dis-
tributions of branches tab, tac, and ta under the IUA and AS
models.

Power analyses

For ease of comparison, we focus on the IUA history
previously studied by Durand et al. (2011): Tgf = 2500,
T1 = 3000, T2 = 12,000, and f = 0.04. Assuming Ne =
10,000 (fixed for all populations) these roughly match the
history previously inferred for Neandertals and African and
Eurasian Homo sapiens by Green et al. (2010). All time
parameters are in generations; corresponding values scaled
in 2Ne generations are given in Table S1.

Given j possible mutational configurations kj and a true
history Q1, the expected difference in support, i.e., E[D lnL]
between the true model Q1 and an alternative history Q2,
can be computed as
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E½DlnL� ¼
X
j

�
lnL
�︹
Q1
��kj�2 lnL

�︹
Q2
��kj�
�
3 P
�
kj
��Q1

�
; (6)

where
︹
Q denotes the set of parameter values that maximize

lnL under a particular model. Analogously, the accuracy of
the likelihood method to estimate a particular model param-
eter u can be quantified using Fisher information, which is
defined as I ¼ 2ð@2   lnL=@u2Þ and measures the sharpness
of the lnL curve near the maximum (Edwards 1972). The
average information about a parameter contained in a se-
quence block is given by summing I over all mutational
configurations j weighted by their probability:

E½I� ¼
X
j

2
@2   lnL

�︹
Q
��k j
�

@u2
3 P

�
kj
��︹Q�: (7)

The expected information in a data set consisting of n se-
quence blocks is simply n 3 E[I]. Assuming parameter val-
ues are away from the boundaries, the inverse of I gives
a lower bound on the variance (and covariance) of param-
eter estimates (Rao 1945).

Application to human–Neandertal data

We downloaded BAM files (short-read alignment) of the
three Vindija bones (SLVi33.16, SLVi33.25, and SLVi33.26)

that were aligned to the human genome (hg18), from the
University of California, Santa Cruz (UCSC) genome
browser (http://genome.ucsc.edu/Neandertal). We used
only sites with a minimum mapping quality of 90 and a se-
quence quality of 40 and, to avoid potential duplicates, fil-
tered out positions that were covered by more than three
reads, as the genome-wide average depth of coverage was
�1.5-fold (Green et al. 2010). We further excluded the first
and last 5 bp of every read, as these positions are enriched
for sequencing errors (Green et al. 2010). We also excluded
transitions from the analysis to limit the effect of ancient
DNA damage (Briggs et al. 2007) and used only autosomal
chromosome sequence. We obtained genotype files for a Euro-
pean (CEU) (Coriell ID: NA06985), a Han (CHB) (Coriell ID:
NA18526), and a Yoruba (YRI) (Coriell ID: NA18501) individ-
ual from complete genomics (ftp://ftp2.completegenomics.
com, release 1.2). We analyzed two triplet combinations,
Neandertal/Eurasian/Yoruba, where the Eurasian genome is
either CEU or CHB. For the outgroup sequences, we extracted
the genotype of the chimpanzee (Pan troglodytes) and the hu-
man–chimp ancestor sequence reconstruction (available from
the four primates Euredo Pecan Ortheus (EPO) alignment pro-
vided by Ensembl release 54) in 1:1 human–chimp ortholo-
gous regions for each site that was covered in the Neandertal
genome. Sites were polarized (ancestral vs. derived) using the
sequence reconstruction of the human–chimp ancestor. We

Figure 2 The length distribution of the internal branches tab (colored in green in Figure 1) and tac that specify genealogies that are incongruent with the
order of population divergence and the shorter external branch ta (colored in red in Figure 1) under (A) the admixture (IUA) model or (B) a model of
ancestral structure (AS) (Figure 1). Branch length distributions for genealogies with topologies tab (the frequency of which is increased by admixture or
population structure) are shown as solid lines and those for the alternative incongruent topology tac as dashed lines. A is based on the parameters of
Durand et al. (2011) with high admixture (f = 0.2); the parameters in B are chosen to give the same expected D value.
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partitioned the human genome into 5-, 10-, and 20-kb fixed
length blocks. For each block, we sampled the first 2, 4, or 8 kb
of sequence covered in all samples (three humans sequences,
both outgroups, and the Neandertal) and discarded any block
with lower coverage.

The three human genomes are from a single diploid
individual, and the Neandertal genome is based on a
sample of three individuals. To meet the assumption of the
likelihood method of a single haploid sample per popula-
tion, we phased blocks at random. Although this may seem
drastic (given that only 35% of polymorphic sites are
homozygous in all individuals), the potential for phasing
error is small for the block length we consider for two
reasons. First, there is no phasing ambiguity for blocks that
contain less than two heterozygous sites in all individuals,
which is true for 75% of 2-kb blocks. Second, the majority
(68%) of heterozygous sites are unique to one sample but
invariable in all others and so due to mutations on external
branches (shown in red and green in Figure S4). Erroneous
phasing of such unique heterozygous sites cannot affect the
number of shared derived mutations (i.e., kab, kac, and kbc).
Furthermore, with minimal sampling, the two alleles in an
individual often trace back to a common ancestor via two
external branches (see mutations in green in Figure S4),
which have the same length. In this case, random phasing
error cannot bias the number of mutations on external
branches.

Violations of the four-gamete criterion within a block can
arise due to recombination, back mutation, or phasing error,
all of which are incompatible with our assumptions. We
therefore excluded blocks that contained more than one
type of shared derived mutation from the analysis (1.5%,
4.9%, and 14.2% in the 2-, 4-, and 8-kb data sets,
respectively). Applying the interblock distance and filtering
steps described above to the entirety of the human auto-
somes yielded 291,620, 146,281, and 71,940 blocks of 2, 4,
and 8 kb length, respectively (File S2).

While the analysis of Green et al. (2010) focuses on
shared derived sites, our likelihood computation uses all
polymorphic sites. In fact, our analytic results show that
much of the information to distinguish between the IUA
and AS models is contained in the distribution of external
branches (Figure 2). This presents a problem in practice:
given the low sequence coverage of the Neandertal
(1.5-fold), the vast majority of sites affected by postmortem
DNA damage will be visible as (spurious) Neandertal sin-
gletons. To address this, we made a simple error correc-
tion based on the symmetry of genealogical branches.
Assuming that sequencing error in the modern human
data can be ignored and that the mutation rate and gen-
eration time are the same for Neandertals and modern
humans, the expected proportion of true Neandertal sin-
gletons can be estimated from the difference in the total
number of derived sites in the modern human and the
Neandertal genome. We estimated the proportion of true
Neandertal singletons as 35% and randomly subsampled

Neandertal singletons in each block with this probability.
Note that both this correction and our models assume that
the root–tip distance is the same for all samples (ignoring
the fact that Neandertals died out) and are consistent with
each other. To check whether this correction could bias
model and parameter estimates, we reran likelihood analy-
ses without the Neandertal singletons (see Sensitivity
analyses).

We computed maximum-likelihood estimates of param-
eters under the IUA model (with one or two ancestral Ne

parameters), the AS model, and a null model of strict di-
vergence. Given that the likelihood computation assumes
that blocks are statistically independent, the effect of phys-
ical linkage between blocks must be accounted for. One
could subsample blocks that are separated by some thresh-
old distance lmin over which the effect of statistical associa-
tions can be ignored and then average lnL estimates over all
such subsampled data sets. This is equivalent to rescaling
likelihoods obtained from all the data by a factor (l/lmin),
where l is the block length. We assumed that the effect of
physical linkage between blocks separated by a distance
.100 kb can be ignored (Sankararaman et al. 2012). This
threshold was chosen to be conservative and so our confi-
dence in model and parameter estimates gives a lower
bound to linkage-aware estimates. We note that the scaling
argument above can be used to adjust our results for any
level of linkage.

Results

Power analyses

Our comparison of the likelihood method and the D statistic
highlights several advantages of the maximum-likelihood
scheme. First and as shown in Figure 3, the likelihood
method can distinguish between admixture (IUA) and AS
models regardless of which scenario is true. Second, maxi-
mum-likelihood computation from sequence blocks has
greater power (as measured by E[D lnL]) to distinguish be-
tween the IUA history (when true) and a null model of strict
divergence than D calculated from unlinked SNPs. This is
true even if we set the length of blocks such that they con-
tain a single SNP on average (Figure S1A). Finally, we can
use Fisher information to quantify how informative se-
quence data are about a particular model parameter and
hence how accurate one can expect parameter estimates to
be. Under the IUA history, there is much more information
about the admixture fraction f than about the time of ad-
mixture Tgf (Table S1). E.g., given a sample of 10,000 blocks
of 2 kb length, one would expect a standard deviation (SD)
of 0.0145 for estimates of f, but 0.178 for Tgf (Table S1).
Note that in contrast to the D statistics that have been used
to derive a lower bound on f (Durand et al. 2011), the
maximum-likelihood estimate of f is unbiased provided the
assumption of no recombination within blocks is met (see
Sensitivity analyses below).
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As expected, increasing the length of sequence blocks
sharpens the likelihood surface (Figure S1) and so increases
the power to distinguish alternative models (Figure S1A) and
the accuracy of parameter estimates (Table S1, Figure S1B).

Application to human–Neandertal data

We found that a history of recent admixture from Nean-
dertals into Eurasians (IUA model) is better supported by
both the CEU and CHB data than a null model of divergence
without gene flow or a model of ancestral structure (AS,
Table 1). The estimated differences in support (D lnL) be-
tween the null model and the IUA model were highly sig-
nificant, assuming a x2-distribution, which is conservative
(Zhu and Yang 2012). Likewise, the increase in support
for the IUA and the IUA2 model relative to the AS model
was substantial. Allowing the size of the ancestral popula-
tion between T1 and T2 to differ from that of the common
ancestral population further improved the fit of the admix-
ture model (i.e., the IUA2 model) (Table 1).

To convert estimated divergence times (scaled in 2Ne

generations) into absolute values, we followed Green et al.
(2010) and assumed an average gene divergence time be-
tween chimps and humans of 6.5 MY and a generation time
of 25 years. Given this calibration, we estimated that Nean-
dertals diverged from the ancestor of modern humans 329–
349 KYA (T2). The divergence between modern African and
non-African human populations (T1) occurred 122–141
KYA. Estimates for T1 and T2 generally agreed well between
the CEU and CHB analyses (Table 2, Table S2). We inferred
a fraction of Neandertal admixture (f) of 5.9% and 5.3% in
the CHB and CEU analyses, respectively, with 95% C.I.
broadly overlapping between the two analyses (Figure
S2). There was little information about the time of admix-
ture and the 95% C.I. for this parameter included T1 in all
analyses (Table 2, Table S2).

Sensitivity analyses

In practice, the assumption of no intralocus recombination
limits multilocus analyses to relatively short blocks. Thus,

the usefulness of our method clearly depends on the relative
rates of recombination and mutation and the heterogeneity
of both processes along the genome. There is a trade-off
between power and bias: if blocks are too short, they contain
little additional information compared to SNP frequency
spectra. Making blocks excessively long on the other hand
potentially biases parameter estimates because recombina-
tion within blocks reduces the variance in inferred branch
lengths (Hudson and Kaplan 1985) and blocks with detect-
able recombination breakpoints (four-gamete criterion) are
excluded. We investigated the effect of intralocus recombi-
nation on parameter estimates in two ways.

First, we repeated all analyses with longer (4 and 8 kb)
blocks. Reassuringly, increasing block length did not change
the relative support for alternative models (Table 1). How-
ever, as expected from the analytic results (Table S1 and
Figure S1), using longer blocks increased power (Table 1).
Although in general, parameter estimates were little af-
fected by block length (Table 1, Table S2, and Figure S2),
we observed some subtle shifts that are consistent with the
known effects of recombination (Wall 2003): estimates of
divergence and admixture times increased, whereas ances-
tral Ne decreased with block length (Table S2). However,
some of these shifts may at least be partially due to phasing
error (which also increases with block length). Second, we
quantified the bias in parameter estimates due to intralocus
recombination by testing the maximum-likelihood method
on data simulated with realistic levels of recombination. We
used ms (Hudson 2002) to simulate data under the best-
fitting model (estimated from the 2-kb CEU data, Table 2)
for varying block lengths (1–8 kb) and assuming a recombi-
nation rate of 1.3 cM/Mb. Our robustness analyses con-
firmed that ignoring recombination within loci resulted in
a slight upward bias of divergence times and a downward
bias of ancestral Ne, as expected (Wall 2003). Importantly,
however, these effects were small for the block sizes consid-
ered (Figure S3).

To investigate the effect of our correction for Neandertal
singletons, we reran the likelihood inference without

Figure 3 (A) The expected difference in support (E[D lnL]) between the IUA model and the AS model (thick solid curve) and between the IUA and a null
model of strict divergence (dashed curve), when IUA is true plotted against the admixture fraction f. B shows analogous results for E[D lnL] against barrier
strength (1/M) when the AS model is true. Plots are based on analytic results for the likelihood and assuming 10,000 sequence blocks, u = 3, and the
time parameters of Durand et al. (2011, table 6).
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Neandertal singletons (by removing them from the data and
setting the mutation rate on the Neandertal branch to zero).
Reassuringly, this did not alter our main finding of greater
support for the IUA compared to the AS model (Table S3).
In fact, the difference in support (D lnL) between these mod-
els increased slightly. Likewise, parameter estimates were
little affected (Table S4). However, we found that without
Neandertal singletons, there was virtually no information to
estimate Tgf. This is perhaps unsurprising given that the
ability to estimate this most recent event should be dispro-
portionally influenced by the removal of an external branch
and because there is already very little information on this
parameter in the full data set.

Our analysis ignores mutational heterogeneity across
loci. To test whether this could affect inference, we
partitioned 2-kb blocks into 10 bins of equal size according
to their relative distance to the chimpanzee. Incorporating
relative mutation rates for each bin resulted in lower
support overall but little change in parameter estimates
(not shown).

To check how well the data fitted the inferred history
overall, we compared the observed distribution of the total
number of mutations (S) in each topology class with its
expectation. Table S5 shows a close match between ob-
served and expected frequencies of blocks. The only notable
disagreements are a slight excess of topologically resolved
blocks (2%) and a subtle excess of blocks that have an
incongruent topology {e.g., [YRI, (N, CEU)] or [CEU,
(N, YRI)]} and a shallow genealogy in the real data (see
S= 1 in Table S5). This may be a result of selective constraints
on some sequences, which are not captured by our method.

Discussion

We have developed a method to fit alternative models of
divergence between three populations with either recent
gene flow or ancient structure to genomic data. We show
that partitioning the genome into short blocks within which
recombination can be ignored gives an efficient way to
compute genome-wide maximum-likelihood estimates un-
der these models. The robustness of this approach to
recombination is highlighted both by our sensitivity tests
on simulated data (Figure S4) and by the agreement of

parameter estimates across a range of block sizes (Table
S2). The latter also suggest that the potential effects of
phasing error (which increases with block size) are small
for the block sizes we consider. Clearly, treating nearby SNPs
as linked over short distances is a realistic approximation
that adds substantial information to historical inference.

Our maximum-likelihood scheme has several advantages
over the D statistic (Green et al. 2010; Durand et al. 2011):
first, it is statistically optimal in the sense that all available
information is used and therefore has greater power. Sec-
ond, instead of testing a null model, one obtains joint esti-
mates of all relevant parameters under a set of alternative
models. This constitutes an improvement over previous ge-
nomic analyses that generally have estimated divergence
and admixture parameters separately and using different
approaches. Finally, and in contrast to the assertion of
Durand et al. (2011, p. 2250) that distinguishing between
ancestral admixture (IUA) and population structure (AS)
“[. . .] will require using more than one sample per popula-
tion”, our analysis shows that the two scenarios can be dis-
tinguished using minimal samples. Considering the difference
in the length distribution of branches between these models
(Figure 2), it is clear where the signal comes from. While the
length distribution of internal branches differs only subtly
between the two models, there is a marked difference in
the distribution of external branches: incongruent genealo-
gies with short external branches (i.e., ta , T1) are possible
under the IUA model, but not under the AS model (compare
Figure 2A and B).

Conclusions About Human History

Our analysis of human–Neandertal data provides strong sta-
tistical support for the IUA model and confirms previous
claims that Neandertals contributed genetically to contem-
porary Eurasian populations (Green et al. 2010; Sankararaman
et al. 2012; Yang et al. 2012). However, in contrast to previous
studies we can conclusively reject long-term population
structure in the ancestral African population as an alterna-
tive explanation for the excess sharing of derived mutations
by Neandertals and Eurasians.

The parameter estimates we infer agree well with a num-
ber of recent population genomic studies on human history
(Green et al. 2010; Sankararaman et al. 2012; Yang et al.
2012; Wall et al. 2013). For example, our population diver-
gence times match those of Green et al. (2010) and the an-
cestral population size is close to the average Ne inferred by Li
and Durbin (2011) during that period (120–500 KY). Simi-
larly, our inference of a slightly higher fraction of Neandertal
admixture in the Han compared to the European genome
(Table 2 and Table S2) mirrors recent findings based on
comparing average D in Asian and European individuals
(Wall et al. 2013).

It is notable that we infer a larger fraction of Neandertal
admixture (3.4% . f . 7.9%) than previous studies [1–6%
(Green et al. 2010; Durand et al. 2011)]. However, this

Table 1 Support D lnL relative to the best-fitting model (IUA2) for
alternative models of history

Data set, kb IUA2 (5) IUA (4) AS (4) Null (3)

CEU, 2 0 0.142 9.13 9.13
CHB, 2 0 0.249 6.49 9.45
CEU, 4 0 6.67 15.3 33.7
CHB, 4 0 5.17 16.8 33.1
CEU, 8 0 28.0 34.3 82.4
CHB, 8 0 27.9 37.8 87.0

Shown are strict divergence (Null), divergence with admixture (IUA), and ancestral
population structure (AS). The IUA2 model allows for two different ancestral Ne. The
best supported model is indicated in boldface type.
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difference is to be expected given that the D-based estimator
is a lower bound of f (Durand et al. 2011). While our explo-
ration of simulated data shows that ignoring recombination
within blocks slightly biases f estimates upward, potentially
leading to larger f estimates for longer blocks (Figure S3),
we observe little such bias in the Neandertal analysis (Figure
S2 and Figure S3). We also reiterate the point made by
Durand et al. (2011) that f estimates are rather sensitive
to assumptions about the effective population sizes of Nean-
dertals. We have followed Durand et al. (2011) in assuming
that the Ne of Neandertals equals that of the common an-
cestral population. It will be interesting to incorporate in-
formation about the Ne of Neandertals into such analyses in
the future.

Although in principle our method allows us to estimate
the time of admixture Tgf and our estimates for this param-
eter encompass those of Sankararaman et al. (2012) (37–86
KY), our power analysis shows that multilocus data contain
very little information about this parameter (Table S1). This
makes intuitive sense, considering that only mutations that
arise between Tgf and T1 contribute information about this
parameter. Methods that use information contained in pat-
terns of linkage (Sankararaman et al. 2012; Ralph and Coop
2013) are more informative over such recent timescales.

In conclusion, we show that maximum-likelihood calcu-
lations on blocks of sequences allow for a joint estimation of
divergence times, ancestral effective population sizes, and
the fraction and time of admixture. This approach has
greater power than summary statistics and can distinguish
between subtly different scenarios of admixture and ances-
tral population structure. Our results allow us to conclu-
sively reject the ancestral structure model and demonstrate
that secondary admixture from Neandertals into Eurasians
took place after the expansion of modern humans out of
Africa. This has important implications for our understand-
ing of human evolution. Future studies, based on ancient
and/or modern DNA, will likely shed light on the frequency
at which such reticulation events took place in the hominin
lineage. Because our approach maximizes the information
contained in individual genomes, it will be particularly
useful for revealing the history of rare and extinct species
and populations for which samples are limited. Another
advantage of considering minimal samples is that it renders
inferences of ancestral parameters robust to the details of

more recent demographic events that would otherwise need
to be modeled explicitly. Given that the analytic basis of our
method is not restricted to any particular model (Lohse et al.
2011), it should be possible to develop analogous calcula-
tions for other histories and incorporate recombination or
useful approximations such as the sequential Markov coa-
lescent (McVean and Cardin 2005) in these inferences in the
future.
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Appendix
Using recursion Equation 2 we can write down the GF equations for the continuous analog of the IUA model where the times
between population divergence and admixture events (i.e., Tgf, t1 and t2, Figure 1A) are exponentially distributed. The terms
for the four sample states that arise as a result of the admixture event are

c½*a=b=c� ¼ Lgf�
Lgf þ va þ vb þ vc

� ð fc½a; b=∅=c� þ ð12 f Þc½a=b=c�Þ

c½a; b=∅=c� ¼ 1
ð1þ L1 þ va þ vb þ vcÞ ðc½fa; bg=∅=c� þ L1c½a; b=c�Þ

c½fa; bg=∅=c� ¼ L1c½fa; bg=c�
L1 þ vab þ vc

c½fa; bg=c� ¼ L2

L2 þ vab þ vc

�
1

1þ va þ vab

�
:

The remaining states and their GF terms are identical to those in the divergence model without admixture (see equation 1 in
Lohse et al. 2012, appendix, with b = 1):

c½a=b=c� ¼ 1
L1 þ va þ vb þ vc

L1c½a=b; c�

c½a=b; c� ¼ 1
1þ L2 þ va þ vb þ vc

ðL2c½a; b; c� þ c½a=fb; cg�Þ

c½a=fb; cg� ¼ L2

ðL2 þ va þ vbcÞð1þ va þ vbcÞ

c½a; b; c� ¼ 1
3þ va þ vb þ vc

�
1

1þ va þ vab
þ 1
1þ vb þ vac

þ 1
1þ vc þ vbc

�
:

Using Mathematica, this set of equations is easily solved. Although the expression is cumbersome (see File S1), decomposing
it into the contributions from the three different topologies (Lohse et al. 2011) yields relatively compact formulae:

P½v2;v3;Gbc� ¼
e2ðt1þTgfÞv3

�
e2v2t2ðf 2 1Þð3þ v3Þ þ e2t12ð1þv3Þt2�et1ðf 2 1Þð2þ v2Þ þ f ð12v2 þ v3Þ

ð1þ v2Þð3þ v3Þð12v2 þ v3Þ

P½v2;v3;Gab� ¼
e2Tgfv3

�
e2v2ðt1þt2Þf ð3þ v3Þ þ e2ð1þv3Þðt1þt2Þ�2 f ð2þ v2Þ2 et1ð f 2 1Þð12v2 þ v3Þ

ð1þ v2Þð3þ v3Þð12v2 þ v3Þ

P½v2;v3;Gac� ¼ e2t1ð1þv3Þ2t22v3ðt2þTgfÞð2et1ð f 2 1Þ þ f Þ
ð1þ v2Þð3þ v3Þ :

(A1)

The above uses the fact that the GF for each topology depends only on the intervals between the two coalescence events with
corresponding dummy variables v3 and v2. Note also that t1 and t2 are the times between admixture and divergence events
(Figure 1A). The corresponding times from the present are T1 = Tgf + t1 and T2 = Tgf + t1 + t2.

Without admixture (i.e., f / 0 and Tgf / 0) Equation A1 above reduces to equations 3 and 4 in Lohse et al. (2012). For
simplicity, the model described above assumes that both ancestral populations are of the same size. To relax this assumption
we define a rate a of pairwise coalescence in the population ancestral to A and B (the IUA2 model, see File S1), giving

c½a=b; c� ¼ 1
aþ L2 þ va þ vb þ vc

ðL2c½a; b; c� þ ac½a=fb; cg�Þ: (A2)

Using Equation 2, the GF for a model of AS can be derived analogously (see File S1).
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Figure S1   (A) The expected information (E[ΔlnL]) to distinguish the IUA model (Durand et al. (2011) parameters) from a null model of strict divergence. The dotted line shows 

the information contained in 10,000 unlinked SNPs. The grey line corresponds to 10,000 blocks each containing a single SNP on average analysed using maximum likelihood. 

Black, green and red show results for 2kb, 4kb and 8kb blocks respectively. {B) The expected standard deviation (E[SD]) of f for the likelihood method plotted against block 

length.
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Figure S2   ΔlnL plotted against the admixture proportion f (from Neandertals into Eurasians) inferred from the 2 kb 

(black), 4kb (green) and 8kb data (red) for the CEU (dashed lines) and the CHB (solid) triplets. 95% confidence 

intervals are given by the horizontal line.  
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Figure S3   Expected estimates of parameters from data simulated with recombination (1.3 cM/Mb) plotted against 

block length. The parameter estimates from the 2, 4 and 8kb analyses of the CEU dataset (assuming no intra‐locus 

recombination) are shown as black dots. 
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Figure S4   An example of a genealogy underlying sequence data from three diploid individuals (a, b, and c). 

Homozygous sites (filled circles) or single heterozygous sites in an individual (white square on the branch leading to 

b1) present no phasing problem. Random phasing of unique heterozygous sites (green and red squares) does not 

affect the inferred topology of an a, b, c  triplet alignment which is uniquely determined by shared derived mutations 

which may be homozygous (black circles) or complex heterozygous sites (yellow square). Similarly, random phasing of 

unique heterozygous sites does not introduce biases if the branches of the underlying genealogy have the same 

length (green squares).
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Files S1‐S2 

Available for download as .zip files at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.162396/‐/DC1 
 

File S1   Supporting Mathematica notebook  

File S2   Contains .txt files of mutational configurations (after filtering and correcting for the excess of Neandertal 
singletons) in 2kb, 4kb and 8kb autosomal blocks for two triplets: (CEU, YRI, Nean) and  (HAN, YRI, Nean). More 
information can be found in the READ_ME file included. 
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Table S1   The expected information on parameters in the IUA model. The second row gives the expected standard 

deviation of parameter estimates based on 10,000 blocks for the parameter values assumed by Durand et al. (2011) 

(bottom row in bold). Results are shown for 2kb and 4kb blocks. 

2kb 4kb 
Parameter T1 T2 Tgf f T1 T2 Tgf f 
E[I] 0.733 0.701 0.003 0.477 1.27 1.22 0.008 0.838 
E[SD] 0.0117 0.0119 0.178 0.0145 0.00886 0.0091 0.112 0.011 
 0.125 0.15 0.60 0.04     
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Table S2   Maximum likelihood estimates of parameters under the IUA2 model. Time parameters are scaled in generations; the second row (in bold) gives absolute values, i.e. 

effective population sizes in individuals and divergence in KY. 95% confidence intervals are shown in brackets. 

Data θ (Ne) θ (Ne) T1 T2 Tgf f 
CEU, 4kb 0.71 0.98 0.411 1.28 0.411 0.065, (0.050–0.080) 
 5,910, (5,840–5,990) 8,180, (7,790–8,600) 121, (115–128) 377, (369–385) 121, (79.9– T1)   
CHB, 4kb 0.71 0.97 0.418 1.26 0.418 0.069, (0.054–0.084) 
 5,970, (5,880–6,030) 8,080, (7,700–8,500) 125, (118–131) 376, (368–383) 125, (81.6– T1)   
CEU, 8kb 1.17 1.84 0.411 1.27 0.411 0.056, (0.045, 0.067) 
 4,870, (4,820–4,920) 7,680, (7,360–8,040) 137, (132–142) 399, (393–405) 137, (111– T1)   
CHB, 8kb 1.17 1.86 0.415 1.26 0.415 0.059, (0.048–0.070) 
 4,890, (4,840–4,930) 7,750, (7,520–8,000) 137, (132–145) 401, (395–407) 137, (112– T1)   
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Table S3     Support ΔlnL relative to the best fitting model (IUA) for alternative models of history. Strict divergence 

(Null), divergence with admixture  (IUA) or ancestral population  structure  (AS). The  IUA2 model allows  for different 

effective sizes in the two ancestral populations. The  number of model parameters is shown in brackets. Models were 

estimated without the Neandertal singletons 

 
Dataset IUA2 (5) IUA (4) AS (4) Null (3) 
CEU, 2kb 0 2.6 13.7 13.7 
CHB, 2kb 0 1.9 13.9 13.9 
CEU, 4kb 0 3.2 29.9 29.9 
CHB, 4kb 0 3.4 32.9 32.9 
CEU, 8kb 0 17.4 53.3 53.3 
CHB, 8kb 0 18.2 52.7 52.7 
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Table S4   Maximum likelihood estimates of parameters under the divergence with admixture (IUA) model. 

Neandertal singletons are excluded from the analysis. Time parameters are scaled in generations and measured from 

the present. The second row (in bold) gives absolute parameter values, i.e. effective population sizes in individuals 

and divergence in KY. 95% confidence intervals (in brackets) were calculated assuming that LD between blocks >100kb 

apart can be ignored. 

 

 
Dataset θ (Ne) T1 T2 Tgf f 
CEU, 2kb 0.425 0.367 0.924 n/a 0.055, (0.036–0.073) 
 7,100, (6950–7250) 136, (131–141) 342, (336–349) n/a   
CHB, 2kb 0.423 0.370 0.930 n/a 0.057, (0.039–0.076) 
 7,070, (6930–7210) 136, (130–141) 341, (334–347) n/a   
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Table S5   Expected (top half) and observed (bottom half) frequencies of blocks with a total numbers of mutations S for each of the four topology classes. The expectation is 

derived assuming the model that provided the best fit to the 2kb (N/YRI/CEU) data (Table 2) and closely fits the observed frequencies.  
S 0 1 2 3 4 5 6 7 8 Total 
(N,(YRI,CEU)) n/a 0.046 0.043 0.024 0.0099 0.0036 0.0012 0.00039 0.00012 0.13 
(YRI,(N,CEU)) n/a 0.012 0.013 0.0083 0.0040 0.0016 0.00058 0.00019 0.000062 0.039 
(CEU,(N,YRI)) n/a 0.0085 0.011 0.0071 0.0035 0.0014 0.00053 0.00018 0.000058 0.032 
Unresolved 0.36 0.28 0.12 0.037 0.0099 0.0023 0.00050 0.00010 0.000020 0.80 
(N,(YRI,CEU)) n/a 0.052 0.046 0.023 0.0097 0.0037 0.0013 0.00039 0.00014 0.14 
(YRI,(N,CEU)) n/a 0.015 0.015 0.0084 0.0038 0.0016 0.00059 0.00018 0.000052 0.045 
(CEU,(N,YRI)) n/a 0.013 0.013 0.0078 0.0036 0.0013 0.00054 0.00020 0.000045 0.040 
Unresolved 0.36 0.26 0.11 0.036 0.011 0.0027 0.00078 0.00024 0.000063 0.78 

  
Note that 80% of blocks are topologically unresolved. 

 


