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ABSTRACT Inference of individual ancestry coefficients, which is important for population genetic and association studies, is
commonly performed using computer-intensive likelihood algorithms. With the availability of large population genomic data sets, fast
versions of likelihood algorithms have attracted considerable attention. Reducing the computational burden of estimation algorithms
remains, however, a major challenge. Here, we present a fast and efficient method for estimating individual ancestry coefficients based
on sparse nonnegative matrix factorization algorithms. We implemented our method in the computer program sNMF and applied it to
human and plant data sets. The performances of sNMF were then compared to the likelihood algorithm implemented in the computer
program ADMIXTURE. Without loss of accuracy, sNMF computed estimates of ancestry coefficients with runtimes �10–30 times
shorter than those of ADMIXTURE.

INFERENCE of population structure from multilocus geno-
type data is commonly performed using likelihood meth-

ods implemented in the computer programs STRUCTURE,
FRAPPE, and ADMIXTURE (Pritchard et al. 2000a; Tang
et al. 2005; Alexander et al. 2009). These programs compute
probabilistic quantities called ancestry coefficients that repre-
sent the proportions of an individual genome that originate
from multiple ancestral gene pools. Estimation of ancestry
proportions is important in many respects, for example in
delineating genetic clusters, drawing inference about the
history of a species, screening genomes for signatures of
natural selection, and performing statistical corrections in
genome-wide association studies (Pritchard et al. 2000b;
Marchini et al. 2004; Price et al. 2006; Frichot et al. 2013).

Individual ancestry coefficients can be estimated using
either supervised or unsupervised statistical methods. Su-
pervised estimation methods use predefined source popula-
tions as ancestral populations. Classical supervised estimation
approaches were based on least-squares regression of allele
frequencies in hybrid and source populations (Roberts and

Hiorns 1965; Cavalli-Sforza and Bodmer 1971). Unsupervised
approaches attempt to infer ancestral gene pools from the
data, using likelihood methods. An undesired feature of likeli-
hood methods is that they can be computer intensive, with
typical runs lasting several hours or more. With the use of
dense genomic data and increased sample sizes, reducing
the time lag necessary to perform estimation is a major chal-
lenge of population genetic data analysis.

A fast approach to the estimation of ancestry coefficients
is by using principal component analysis (PCA) (Patterson
et al. 2006). PCA is an exploratory method that describes
high-dimensional data, using a small number of dimensions,
and makes no assumptions about sampled and ancestral pop-
ulations. Using PCA can lead to results surprisingly close to
likelihood methods, and connections between methods have
been intensively investigated during recent years (Patterson
et al. 2006; Engelhardt and Stephens 2010; Frichot et al.
2012; Lawson et al. 2012; Lawson and Falush 2012). But
a drawback of PCA is that interpretation in terms of ancestry
is often difficult, as it can be confounded by demographic
factors or irregular sampling designs (Novembre and Stephens
2008; McVean 2009; François et al. 2010).

In this study, we introduce computationally fast algorithms
that lead to estimates of ancestry coefficients comparable
to those obtained with STRUCTURE or ADMIXTURE. The
algorithms were implemented in the computer program sNMF
based on sparse nonnegative matrix factorization (NMF) and
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least-squares optimization (Lee and Seung 1999; Kim and
Park 2007; Kim and Park 2011). Like PCA, NMF algorithms
are flexible approaches that are robust to departures from
traditional population genetic model assumptions. In addition,
NMF algorithms produce estimates of ancestry proportions
with runtimes that are much shorter than those of STRUCTURE
or ADMIXTURE. This study assesses the utility of NMF algo-
rithms when analyzing population genetic data sets and com-
pares the performances of the algorithms implemented in
sNMF with those implemented in ADMIXTURE on the basis
of human and plant data.

Materials and Methods

To provide statistical estimates of ancestry proportions using
multilocus genotype data sets, we implemented sparse NMF
least-squares optimization algorithms in the computer pro-
gram sNMF.

Modeling ancestry coefficients

We considered allelic data for a sample of n multilocus geno-
types at L loci representing single-nucleotide polymorphisms
(SNPs). The data were stored into a genotypic matrix (X),
where each entry records the number of derived alleles at
locus ℓ for individual i. For autosomes in a diploid organism,
the number of derived alleles at locus ℓ is then 0, 1, or 2. In our
algorithm, we used 3 bits of information to encode each 0, 1,
or 2 value as an indicator of a heterozygote or a homozygote
locus. In other words, the value 0 was encoded as 100, 1 was
encoded as 010, and 2 as 001. The use of a binary coding
warrants that the entries sum up to L for each row of the
transformed data matrix.

Admixture models generally suppose that the genetic
data originate from the admixture of K ancestral popula-
tions, where K is unknown a priori. Given K populations,
the probability that individual i carries j derived alleles at
locus ℓ can be written as

piℓð jÞ ¼
XK
k¼1

qikgkℓðjÞ; j ¼ 0; 1; 2; (1)

where qik is the fraction of individual i’s genome that origi-
nates from the ancestral population k, and gkℓ(j) represents the
homozygote (j = 0, 2) or the heterozygote (j = 1) frequency
at locus ℓ in population k. Since it makes no assumption about

Hardy–Weinberg equilibrium, the above framework is appro-
priate to deal with inbreeding and outbreeding in ancestral
populations. Using our binary coding, Equation 1 writes as

P ¼ QG; (2)

where P = (piℓ) is an n 3 3L matrix, Q = (qik) is an n 3 K
matrix, and G = (gkℓ( j)) is a K 3 3L matrix. The Q matrix
records ancestry proportions for each individual in the sam-
ple. Although the focus of the above framework is on esti-
mating ancestry estimates for each sampled individual, it
can be easily modified to provide ancestry estimates based
on allele frequencies in population samples.

Least-squares estimates of ancestry proportions

We approached the inference of ancestry coefficients by
using least-squares (LS) optimization algorithms (Engelhardt
and Stephens 2010). Estimates of the Q and G matrices were
obtained after minimizing the least-squares criterion

LSðQ;GÞ ¼ ��jX2QGj��2F   ; (3)

where ||M||F denotes the Frobenius norm of a matrix M
(Berry et al. 2007). Without constraints on Q and G, the
solutions of the LS problem are given by the singular value
decomposition of the matrix X, and the resulting matrices Q
and G contain the scores and loadings of a PCA. To obtain
ancestry coefficients, the matrices Q and G must have non-
negative entries such that

XK
k¼1

qik ¼ 1  ;
X2
j¼0

gkℓð jÞ ¼ 1: (4)

With the constraints of Equation 4, estimating ancestry
coefficients and genotypic frequencies is equivalent to
performing NMF of the data matrix, X. NMF was previously
applied to gene expression data (Kim and Park 2007), and
algorithms for NMF were surveyed and compared in Kim
and Park (2011). In sNMF, estimates of Q and G were com-
puted using the alternating nonnegativity-constrained least-
squares (ANLS) algorithm with the active set (AS) method
(Berry et al. 2007; Kim and Park 2011). We modified the
ANLS-AS algorithm as follows.

Our algorithm begins with the initialization of the Q
entries with nonnegative values. Then it iterates the follow-
ing cycles until convergence. The first step of an algorithm

Table 1 Data sets used in this study

Data set Sample size No. SNPs Reference

HGDP00778 934 78,000 Patterson et al. (2012)
HGDP00542 934 48,500 —

HGDP00927 934 124,000 —

HGDP00998 934 2,600 —

HGDP01224 934 10,600 —

HGDP-CEPH 1,043 660,000 Li et al. (2008)
1000 Genomes 1,092 2,200,000 1000 Genomes Project Consortium (2012)
A. thaliana 168 216,000 Atwell et al. 2010)
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cycle consists of computing a nonnegative matrix G that-
minimizes the quantity

LS1ðGÞ ¼
��jX2QG j��2F   ; G$ 0: (5)

The G matrix was obtained by setting all negative entries to
zero, after solving classical linear regression equations. The
obtained solution was then normalized so that its entries
satisfy Equation 4.

Given G, the second step of the cycle consists of comput-
ing a nonnegative matrix Q that minimizes the quantity

LS2ðQÞ ¼
�����
����
�

GTffiffiffi
a

p
  e13K

�
Q2
�

XT

013n

� ����
�����
2

F

; (6)

where e13K is a row vector having all entries equal to 1, 013n is
a vector of length n with all entries equal to 0, and a is a non-
negative regularization parameter. This minimization problem
was solved using the block principal pivoting method proposed
by Kim and Park (2011). The obtained solution, Q, was then
normalized so that the row entries sum up to 1. Iterations were
stopped based on a stationarity criterion derived from the
Karush–Kuhn–Tucker conditions (Kim and Park 2011) and
when the relative difference between two successive values of
the criterion was less than a tolerance threshold of e = 1024.

For a . 0, the algorithm amounts to performing sparse
NMF for the data matrix X. We tested values a . 0 because
they can reduce the variance of Q and G estimates for the
smaller data sets, force irrelevant estimates to zero, and
improve the numerical behavior the ANLS minimization al-
gorithm. In addition, the programming structures used in
sNMF optimized the time spent in memory access. Several
algorithmic methods were also used to accelerate computa-
tion of matrix products. While we evaluated sNMF runtimes
using a single computer processor unit (2.4 GHz, 64 bits,
Intel Xeon), a multithreaded version of the sNMF program
was also developed for multiprocessor systems.

Data sets

Ancestry inference and runtime analyses were performed on
six worldwide samples of genomic DNA from 52 populations
of the Human Genome Diversity Project–Centre d’Etude du
Polymorphisme Humain (HGDP-CEPH). Five panels were
extracted from the Harvard HGDP-CEPH database. These pan-
els were given identification nos. HGDP00778, HGDP00542,
HGDP00927, HGDP00998, and HGDP01224 and contained
precisely ascertained genotypes of n = 934 individuals. The
genotypes were specifically designed for population genetic
analyses (Patterson et al. 2012). Each marker was ascertained
in individuals of Han, Papuan, Yoruba, Karitiana, and Mongo-
lian ancestry, and the data matrices included 78,253, 48,531,
124,115, 2635, and 10,664 SNPs, respectively (Patterson et al.
2012, Table 1). A sample of 1043 individuals from the HGDP-
CEPH Human Genome Diversity Cell Line Panel was also an-
alyzed. The genotypes were generated on Illumina 650K
arrays (Li et al. 2008), and the SNP data were filtered to

remove low-quality SNPs included in the original files. In ad-
dition, we used data from the 1000 Genomes Project. The
1000 Genomes Project data contain the genomes of 1092
individuals from 14 populations, constructed using a combina-
tion of low-coverage whole-genome and exome sequencing
[phase 1 data (1000 Genomes Project Consortium 2012)].
The data matrix included 2.2 million polymorphic sites across
the human genome (Table 1).

To examine the robustness of sNMF to departures from
classical population genetic hypotheses, additional analyses
were performed on a sample of n = 168 European acces-
sions of the plant species Arabidopsis thaliana. A. thaliana is
a widely distributed self-fertilizing plant known to harbor
considerable genetic variation and complex patterns of
population structure and relatedness (Atwell et al. 2010).
We analyzed 216,130 SNPs spread across the genome of
A. thaliana (Atwell et al. 2010, Table 1).

Comparisons with ADMIXTURE

The computer program ADMIXTURE (version 1.22) esti-
mates ancestry coefficients based on the likelihood model
implemented in STRUCTURE. In ADMIXTURE, the assump-
tion of Hardy–Weinberg equilibrium in ancestral popula-
tions translates into a binomial model for allele counts at
each locus. Considering unrelated individuals, the logarithm
of the likelihood can thus be computed as

LðQ; FÞ
¼P

i

P
ℓ

 
xiℓlog

 P
k
qikfkℓ

!
þ ð12 xiℓÞlog

 P
k
qikð12 fkℓÞ

!!

up to an additive constant that does not influence estimation
algorithms. In this formula, Q = (qik) represents the matrix

Figure 1 Correlation between sNMF and ADMIXTURE estimates. Shown
is squared correlation (coefficient of determination, R2) between the an-
cestry coefficients estimated by each program. For each number of clus-
ters (K), the result corresponds to the maximum correlation over five runs,
averaged over values of the regularization parameter ,1000 and over six
HGDP data sets. The shaded area corresponds to a 95% confidence in-
terval displayed for each value of the regularization parameter, a.

Superfast Inference of Population Structure 975



of ancestry coefficients for all individuals, and F = ( fkℓ) rep-
resents a matrix of allele frequencies for all loci. The F ma-
trix can be converted to a G matrix comparable to the one
computed by sNMF, using the binomial model, gkℓ(0) =
(1 2 fkℓ)2, gkℓ(1) = 2fkℓ(12 fkℓ), and gkℓð2Þ ¼ f2kℓ: ADMIXTURE
provides numerical estimates of Q and F that maximize the
quantity L(Q, F). The local optimization algorithm relies on
a block relaxation scheme, using sequential quadratic pro-
gramming for block updates, coupled with a quasi-Newton
acceleration of convergence.

A difficulty with optimization algorithms used by
ADMIXTURE and sNMF is that the solutions produced
can be dependent on the initial values used for Q, F, or
G. To enable comparisons with estimates obtained with
ADMIXTURE, the clusters output by runs of each program
was permuted using CLUMPP (Jakobsson and Rosenberg
2007). Differences in ancestry estimates obtained with
ADMIXTURE (QADM) and with sNMF (QsNMF) were assessed
by two measures. The first measure was defined as the root
mean-squared error (RMSE) between the matrices QADM and
QsNMF obtained from each program,

RMSE ¼
 

1
nK

Xn
i¼1

XK
k¼1

�
qADMik 2qsNMF

ik
�2!1=2

  :

Although Gmatrices could be mainly considered as nuisance
parameters for our estimation problem, a similar RMSE cri-
terion was defined for comparing them. The second measure
was defined as the squared Pearson correlation coefficient
(R2) between the matrices QADM and QsNMF. When simula-
tions with known Q matrices were analyzed, one of the two
matrices was replaced by the true Q matrix used to generate
the simulated data.

Runs of ADMIXTURE and sNMF were performed for
values of the number of clusters set to K= 2210, 15, and 20
for human data sets and set to K = 227 for A. thaliana. For

sNMF, the values of the regularization parameter (a) ranged
between 0 and 10,000, using a log10 scale (5 values). Each
run was replicated five times for a total of 1410 experi-
ments. Missing data imputation was initially performed after
resampling missing genotypes from empirical frequencies at
each locus. The missing values were updated using predic-
tive probabilities after 20 sweeps of the algorithm (see
below).

Cross-entropy criterion

We employed a cross-validation technique based on impu-
tation of masked genotypes to evaluate the prediction error
of ancestry estimation algorithms (Wold 1978; Eastment
and Krzanowski 1982). The procedure partitioned the geno-
typic matrix entries into a training set and a test set. To build
the test set, 5% of all genotypes were randomly selected and
tagged as missing values. The occurrence probabilities for
the masked entries were computed using the program out-
puts obtained from training sets according to the formula

pprediℓ ð jÞ ¼
XK
k¼1

qikgkℓðjÞ; j ¼ 0; 1; 2  : (7)

ADMIXTURE predicts each masked value by
E½xiℓjQADM; FADM� ¼ 2

P
kq

ADM
ik fADMkℓ and the prediction error

is estimated by averaging the squares of the deviance resid-
uals for the binomial model (Alexander and Lange 2011).
Extending the approach employed by ADMIXTURE to our
nonparametric approach, the predicted values were com-
pared to the masked values, xiℓ, by averaging the quantity
defined as 2 logpprediℓ ðxiℓÞ over all SNPs in the test set. In
statistical terms, our criterion provides an estimate of the
quantity

H
�
psample; ppred

	
¼ 2

X2
j¼0

psampleð jÞlog pprediℓ ð jÞ  ; j5 0; 1; 2: (8)

Figure 2 Runtimes for sNMF and
ADMIXTURE runs. Averaged time
elapsed before the stopping criterion
of the sNMF (blue) and ADMIXTURE
(orange) programs is met. Time is
expressed in unit of hours. (A) Run-
time analysis for Harvard HGDP
panel 01224 (10,600 SNPs). (B) Run-
time analysis for Harvard HGDP
panel 00778 (78,000 SNPs). (C) Run-
time analysis for the HGDP-CEPH
data (660,000 SNPs).
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This quantity corresponds to the sum of the Kullback–Leiber
divergence between the sampled (psample) and predicted
(ppred) allelic distributions and the Shannon entropy of the
sample distribution. It also corresponds to the cross-entropy
between psample and ppred. The number of ancestral gene
pools (K) and the regularization parameter (a) were chosen
to minimize the cross-entropy criterion. In general, smaller
values of the criterion indicate better algorithm outputs and
estimates. The standard error of the cross-entropy criterion
is of order 1=

ffiffiffiffiffi
nL

p
; where nL is the number of masked gen-

otypes. For data sets including 1000 individuals genotyped
at .20,000 SNPs, the third digit of the cross-entropy crite-
rion can be significant.

Simulated data analysis

We adopted a simulation approach to compare RMSEs
between the Q matrix computed by ADMIXTURE or by sNMF
and a known matrix used to generate the simulated data. In
addition, we assessed whether the correct value of K could be
identified by sNMF, using the cross-entropy criterion.

In a first series of simulations, we used the 1000 Genomes
Project data set to generate artificial data showing various
levels of admixture. As ancestral populations, we chose the
Han Chinese (CHB), British (GBR), and Yoruba (YRI) samples
(1000 Genomes Project 2012). We considered 50,000 SNPs in
linkage equilibrium, exhibiting no missing genotypes. The
allele frequencies observed in our three ancestral populations
were used as the true values for the F matrix. The genotypic
matrix was constructed according to the binomial model used
by ADMIXTURE. For 1000 individuals in each simulated data
set, a Q matrix was simulated from a Dirichlet probability
distribution, and several parameters were explored. Our
experiments reproduced the parameters used for evaluating
the accuracy of ADMIXTURE in a previous study (Alexander
et al. 2009). Runs of sNMF were performed for values of the
number of clusters set to K = 225 (a = 0), and the choice
of K was made on the basis of the cross-entropy criterion.
For K = 3, the values of the regularization parameter (a)
were varied between 0 and 100.

Additional data sets were created to mimic the population
structure of European populations of A. thaliana, using
10,000 SNPs (168 individuals). To define ancestral frequen-
cies, we used the western European populations, grouping

samples from the United Kingdom, Belgium and France (23
individuals); central European populations, grouping samples
from the Czech Republic (24 individuals); and northern Eu-
ropean populations, grouping samples from Finland and
Northern Sweden (13 individuals). ADMIXTURE and sNMF
grouped these samples within three well-separated clusters
exhibiting low levels of admixture with other plant populations.
The empirical frequencies computed from the three populations
were considered as the true frequencies for a generative model
with K = 3 ancestral populations. From empirical frequencies,
we computed genotypic frequencies, fkℓ, using four distinct val-
ues of population inbreeding coefficient, FIS = 25–100%, that
corresponded to moderate and strong levels of inbreeding. For
168 individuals, 10,000 genotypes were simulated using the
sampling equation pðxiℓ ¼ jÞ ¼PkqikgkℓðjÞ; where qik corre-
sponds to the Q matrix computed from the full empirical data
set (216,000 SNPs). In addition, simulated data sets were gen-
erated with or without missing data (0 or 20%). Fifty replicates
were created for each value of the inbreeding coefficient and for
each value of the ratio of missing data.

Results

We used the program sNMF to implement nonnegative matrix
factorization algorithms and to compute least-squares esti-
mates of ancestry coefficients for worldwide human popula-
tion samples and for European populations of the plant species
A. thaliana. As in the likelihood model implemented in the
computer programs STRUCTURE and ADMIXTURE, sNMF
supposes that the genetic data originate from the admixture
of K parental populations, where K is unknown, and it returns
estimates of ancestry proportions for each multilocus genotype
in the sample (Pritchard et al. 2000a; Alexander et al. 2009).
To estimate ancestry coefficients, sNMF solves a constrained
least-squares minimization problem, using an alternating al-
gorithm based on a block principal pivoting method (Kim and
Park 2011) (see Materials and Methods).

Comparison of ancestry estimates for HGPD data sets

First we evaluated the ability of ADMIXTURE estimates to be
accurately reproduced by sNMF for five Harvard HGDP
panels and for the HGDP-CEPH data set (Li et al. 2008;
Patterson et al. 2012). For each run of ADMIXTURE, we

Table 2 Runtime summary for sNMF and ADMIXTURE: Average values and their 95% confidence intervals

K = 5 K = 10 K = 20

Data set (no. SNPs) Time unit sNMF ADMIXTURE sNMF ADMIXTURE sNMF ADMIXTURE

HGDP01224 min 0.68 4.4 0.8 11 1.7 48
(10,600) [0.1, 1.6] [3.4, 4.9] [0.18, 1.7] [9.9, 12] [1.3, 1.8] [41, 55]
HGDP00778 hr 0.087 0.61 0.12 1.5 0.25 6.2
(78,000) [0.03, 0.15] [0.55, 0.66] [0.044, 0.12] [1.3, 1.5] [0.14, 0.34] [3.8, 9.4]
HGDP-CEPH hr 0.9 3.7 0.92 12 2.1 38
(660,000) [0.33, 1.3] [3, 4.3] [0.38, 1.5] [11, 12] [1.3, 3.0] [29, 45]
1000 Genomes Project hr 2.8 (19) 4.6 (59) — —

(2,200,000) [1.1, 4.7] — [1.5, 8.3] — — —

Terms in brackets represent 95% confidence intervals. Terms in parentheses represent values obtained from a single program run.
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computed a maximum squared correlation coefficient (R2)
and a minimum RMSE over runs of sNMF performed with
the same number of clusters (K). For K ranging from 5 to 10,
squared correlation coefficients remained .0.96 across all
runs (480 runs, Figure 1). Average values of the RMSE
remained ,5.5% across all runs (Supporting Information,
Table S1). These results provided evidence that sNMF esti-
mates closely reproduce those obtained with ADMIXTURE
across the six HGDP data sets.

Runtime analysis

Next we performed runtime analyses for ADMIXTURE and
for sNMF, using the 1000 Genomes Project phase 1 data in
addition to the previous HGDP data sets. The runtimes were
averaged over distinct random seed values for each value of
K. Runtimes increased with the number of SNPs in the data
set and with the number of clusters in each algorithm (Fig-
ure 2, Table 2, Figure S1). For data set HGDP01224 (10,600
SNPs), it took on average 0.8 min (1.7 min) for sNMF to
compute ancestry estimates for K = 10 (K = 20) clusters.
For ADMIXTURE, the runtime was on average 11 min
(48 min) for K = 10 (K = 20) clusters. For panel HGDP00778
(78,000 SNPs), it took on average 7.2 min (15 min) for sNMF
to compute ancestry estimates for K = 10 (K = 20) clusters.
For ADMIXTURE, the average runtime was 1.5 hr (6.2 hr) for
K = 10 (K = 20) clusters. For the CEPH-HGDP data sets
(660,000 SNPs), it took on average 55 min (2.1 hr) for sNMF
to compute ancestry estimates for K = 10 (K = 20) clusters.
For ADMIXTURE, the average runtime was 12 hr (38 hr)
for K = 10 (K = 20) clusters. Runtimes increased in a qua-
dratic fashion with K for ADMIXTURE whereas they in-
creased linearly for sNMF (Figure 2). For the values of K
used in our analyses, sNMF ran 5–30 times faster than
ADMIXTURE when these programs were applied to HGPD
data sets. Regarding the 1000 Genomes Project phase 1 data
set, the average runtimes of sNMF were �2.8 hr (4.6 hr)
for K = 5 (K = 10) clusters. The ADMIXTURE runs led to

similar estimates of Q, but a single run on the phase 1 data
set took .19 hr for K = 5 (59 hr for K = 10).

Prediction of masked genotypes

To decide which program options could provide the best
estimates, we employed a cross-validation technique based on
the imputation of masked genotypes (Wold 1978; Alexander
and Lange 2011). The cross-validation method partitions
the genotypic matrix entries into a training set and a test
set that are used for estimation and validation sequentially.
To build test sets, 5% of the genotypic matrix entries were
tagged as missing values. The masked entries were then
predicted using estimates obtained from training sets. Pre-
dictions were assessed using a cross-entropy criterion that
measured the capability of an algorithm to correctly impute
masked genotypes (see Materials and Methods). Lower val-
ues of the cross-entropy criterion generally indicate better
predictive capabilities of an algorithm.

Using the cross-entropy criterion, we performed an exten-
sive analysis of sNMF program outputs to assess which values
of the number of clusters (K) and the regularization param-
eter (a) could provide the best prediction of masked geno-
types (Figure 3, Figure S2). For HGDP data sets with
moderate size (panels HGDP00998 and HGDP01224),
values of K � 7–8 provided the best predictive results.
For larger human data sets, cross-entropy values did not
stabilize for K # 10, indicating that .10 clusters were nec-
essary to describe population structure. Choices of regula-
rization parameter values .1000 were generally discarded
by the cross-entropy criterion. For panels of moderate size,
the best ancestry estimates were obtained for values�a = 100.
The influence of the regularization parameter was sub-
stantial for the smallest data sets, but for the largest ones
a wide range of values led to comparable imputation
results (Figure S2). Regardless of the value of the regula-
rization parameter, K = 5 clusters led to the best results
for the 1000 Genomes Project data set (Figure 3). This

Figure 3 Values of the cross-en-
tropy criterion for sNMF runs (hu-
man data sets). (A–G) Minimal
values of the cross-entropy crite-
rion over five runs of sNMF for
(A–E) five Harvard HGDP panels,
(F) HGDP-CEPH data, and (G) the
1000 Genomes Project data. The
number of clusters ranged from
2 to 10.
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last result is in accordance with the criteria used for
choosing populations included in the 1000 Genomes
Project.

Ancestry estimates

To compare ancestry estimates obtained from particular
runs of sNMF and ADMIXTURE, we displayed the Qmatrices
computed by each program for the Harvard HGPD panel
HGDP00778 (78,000 SNPs), the HGDP-CEPH data (660,000
SNPs), the 1000 Genomes Project phase 1 data (2.2 million
SNPs), and European populations of A. thaliana (216,000 SNPs).
Using K = 7 ancestral populations for the Harvard HGPD
panel HGDP00778, the cross-entropy criterion was 0.747
for the ADMIXTURE run, and it was 0.762 for the sNMF
run. The criterion favored ADMIXTURE in this case, but the
two runs led to very close estimates of the Qmatrix (R2 = 0.99,
Figure 4). When the programs were applied to the HGDP-
CEPH data (K = 7), the cross-entropy criterion was 0.691
for the ADMIXTURE run and 0.704 for sNMF (Figure 4). This
particular ADMIXTURE run identified clusters that separated
the African hunter–gatherer populations from the other
populations, whereas sNMF identified a unique cluster in
Africa. In the sNMF run, Middle East populations were
separated from European populations (Figure 4). The dif-
ferences between ADMIXTURE and sNMF results disap-
peared when additional runs were performed with distinct
random seeds. Using K = 5 for the 1000 Genomes Project
phase 1 data, sNMF identified clusters that correspond to
the main geographic regions of the world, similarly to
ADMIXTURE (Figure 5, cross-entropy = 0.5010). Substan-
tial levels of European ancestry in African-Americans,
Mexican-Americans, Puerto Ricans, and Colombians were
inferred by sNMF and by the other program. An interesting
case was with the application of ancestry estimation pro-
grams to European populations of A. thaliana, a selfing
plant characterized by high levels of inbreeding (Atwell

et al. 2010). Using K = 3, the cross-entropy criterion for
ADMIXTURE was 0.641 on average, while the average
value for sNMF was 0.483. The value of the criterion sug-
gests that sNMF estimates were more accurate than those
obtained from ADMIXTURE. The graphical output of the Q
matrix displayed clinal variation of ancestry coefficients
occurring along an East–West gradient separating two
clusters, and Northern Swedish accessions were grouped
into a separate cluster. These results supported previous
estimates based on sequence data (Figure S3) (François
et al. 2008).

Simulated data analysis

To further ascertain the accuracy of sNMF estimates and to
compare those estimates with ADMIXTURE, we employed
computer simulations based on the 1000 Genomes Project
and A. thaliana data sets. We also assessed the ability of the
cross-entropy criterion to correctly identify the value of K
when it is known.

In a first series of simulations, we used the 1000 Genomes
Project data to generate genotypes showing various levels
of admixture. As our ancestral populations, we chose the
CHB, GBR, and YRI samples (1000 Genomes Project 2012),
and true Q matrices were created using several parameter-
izations of the Dirichlet distribution (Table 3). Genotypic
matrices were simulated according to the binomial model
used by ADMIXTURE. In this context, ADMIXTURE esti-
mates are thus expected to be more accurate than sNMF
estimates. For the range of parameters explored in the sim-
ulations, root mean-squared errors comparing the estimated
and true values of the Q matrix remained ,2% for both
programs (Table 3). For moderate levels of admixture, differ-
ences in statistical errors were,1% regardless of the value of
the regularization parameter, a, used in sNMF. This result
indicated that sNMF estimates are generally accurate and that
relatively small values of a do not influence sNMF outputs

Figure 4 Graphical representation of ancestry estimates obtained for HGDP data sets (K = 7). (A) HGDP00778 panel (78,000 SNPs). Shown are
estimated ancestry coefficients using ADMIXTURE (top, cross-entropy = 0.747) and sNMF (bottom, cross-entropy = 0.762 and a = 100). (B) HGDP-
CEPH data set (660,000 SNPs). Shown are estimated ancestry coefficients using ADMIXTURE (top, cross-entropy = 0.691) and sNMF (bottom, cross-
entropy = 0.704 and a = 100).
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for data sets of size comparable to those used in simulations.
Root mean-squared errors comparing the estimated and true
values of the G matrix were slightly lower for ADMIXTURE
than for sNMF (Table 3). This could be explained as we
simulated from a binomial model (unrelated individuals)
and as the number of degrees of freedom in sNMF is twice
the number of degrees of freedom in ADMIXTURE. Regard-
ing the choice of the number of clusters, the cross-entropy
criterion was minimal for K = 3 for every simulated data
set (Table S2).

To evaluate the relative impact of linkage disequili-
brium (LD) on sNMF and ADMIXTURE ancestry estimates,
we considered subsets of SNPs sampled from the 1000
Genomes Project data set. We compared ancestry estimates
computed by each program for data sets containing blocks
of .30 SNPs spaced ,20 kb apart and for data sets con-
taining SNPs separated by .20 kb (20,000 SNPs, 20 repli-
cates). Using linked blocks of SNPs, the average value of
the RMSE over all runs was 0.0859 (0.0297 for unlinked
SNPs) for sNMF whereas it was 0.0976 for ADMIXTURE
(0.257 for unlinked SNPs). Our results show that LD had
an impact on the accuracy of ancestry estimates regardless
of the program used and that the magnitude of the effect
was similar for ADMIXTURE and sNMF (Figure S4).

We used another series of simulated data to evaluate
the sensitivity of ADMIXTURE and sNMF estimates to the
presence of related individuals and inbreeding in the sample.
Based on empirical data, we used simulation models that
mimicked the population structure of European populations
of A. thaliana. First, we verified that the true value of the
number of ancestral populations was correctly recovered by
the sNMF program, using the cross-entropy criterion (K= 3).
Next, we evaluated statistical errors for ADMIXTURE and
sNMF estimates of the Q matrix. RMSEs remained ,4% for
both programs. These results showed that the two programs
produced accurate estimates of the Q matrix in the presence
of inbreeding and missing data (Figure 6).

ADMIXTURE estimates were robust to the inclusion of
moderate levels of inbreeding in the sample. When the values
of the inbreeding coefficient were 0.2520.5, ADMIXTURE
ancestry estimates were more accurate than sNMF estimates.
When the values of the inbreeding coefficient were .0.5

and for fully inbred lines, sNMF produced better estimates
than ADMIXTURE (Figure 6). The cross-entropy criterion
was smaller for sNMF than for ADMIXTURE, showing that
sNMF produced better prediction of masked genotypes
than ADMIXTURE (Figure S5). This result can be explained
by a more accurate estimation of genotypic frequencies for
sNMF than for ADMIXTURE in the presence of strong levels
of inbreeding.

Discussion

We applied the computer program sNMF to the estimation
of individual ancestry coefficients, using large population
genetic data sets for humans and for A. thaliana, and com-
pared the program performances to those of ADMIXTURE.
For six HGDP data sets, ancestry estimates obtained with
sNMF and ADMIXTURE strongly agreed with each other.
In addition, the sNMF program was able to analyze the
1000 Genomes Project phase 1 data set within a few hours,
using a standard computer processing unit. Without signif-
icant loss of accuracy, sNMF computed estimates of admix-
ture proportions within runtimes that were �10–30 times
faster than those of ADMIXTURE.

The approach used by sNMF is based on theoretical
connections between likelihood approaches, PCA, and NMF
methods (Ding et al. 2008; Engelhardt and Stephens 2010;
Lawson et al. 2012; Parry and Wang 2013). Several methods
can be applied to computing NMF estimates, including the
multiplicative update algorithm, the projected-gradient
method, and the alternating least-squares algorithm (Brunet
et al. 2004; Berry et al. 2007; Kim and Park 2011). For pop-
ulation genetic data, we found that alternating least-squares
algorithms coupled with the active set method provided the
best trade-off between speed and accuracy and improved per-
formance significantly over other NMF implementations (Kim
and Park 2011).

To decide which algorithm yielded the best estimates, we
introduced a predictive criterion based on the computation
of cross-entropy and the imputation of masked genotypes.
For HGDP data sets, the cross-entropy criterion discarded
large values of the sNMF regularization parameter (.1000).
For the large data sets, a wide range of values of the

Figure 5 Graphical representation of ancestry estimates obtained for the 1000 Genomes Project data set. (A) Estimated ancestry coefficients using
sNMF with K = 5 and a = 10,000 (cross-entropy = 0.5010). (B) Estimated ancestry coefficients using sNMF with K = 6 and a = 10,000 (cross-entropy =
0.5011) (FIN, Finnish; GBR, British; IBS, Spanish; CEU, CEPH Utah residents; TSI, Tuscan; CHS, Southern Han Chinese; CHB, Han Chinese; JPT, Japanese;
YRI, Yoruba; LWK, Luhya; ASW, African-American; PUR, Puerto Rican; CLM, Colombian; MXL, Mexican-American).
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regularization parameter reached similar predictive values.
For data sets having ,10,000 SNPs, we found that parsi-
mony (i.e., large values of a) could improve estimation of
ancestry coefficients. We observed that a likelihood ap-

proach could benefit the analysis of modest-sized data sets
or data containing a large number of missing genotypes. For
larger data sets and missing ,20% genotypes, sNMF ances-
try estimates were statistically close to those obtained with

Table 3 Statistical errors for ADMIXTURE and sNMF on simulated data sets

Ancestry estimation Dir(1, 1, 1) Dir(0.5, 0.5, 0.5) Dir(0.1, 0.1, 0.1) Dir(0.2, 0.2, 0.05) Dir(0.2, 0.2, 0.5) Dir(0.05, 0.05, 0.01)

Q matrix
ADMIXTURE 0.023 0.012 0.004 0.006 0.010 0.003
sNMF a = 0 0.020 0.011 0.007 0.007 0.013 0.009
sNMF a = 100 0.024 0.014 0.006 0.006 0.014 0.006

G matrix
ADMIXTURE 0.029 0.022 0.016 0.022 0.022 0.022
sNMF a = 0 0.034 0.027 0.021 0.028 0.028 0.028
sNMF a = 100 0.034 0.027 0.021 0.028 0.028 0.028

Dir: Dirichlet distribution used to simulate “true” admixture coefficients, using three ancestral populations.

Figure 6 Accuracy of ADMIXTURE and sNMF in the presence of related individuals. Shown are RMSEs between estimated Q matrices and a known
matrix used to generate simulated data. Simulations mimicked the population structure of European populations of Arabidopsis thaliana. (A and B)
Moderate levels of inbreeding, FIS = 25–50%. (C and D) Strong levels of inbreeding, FIS = 75–100%.
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ADMIXTURE, and both programs were equally efficient at
predicting masked genotypes. Statistical theory actually pre-
dicts that errors in evaluating the cross-entropy criterion are
of order Oð1= ffiffiffiffiffi

nL
p Þ; where nL is the number of masked gen-

otypes. For Harvard HGDP panels, differences between the
ADMIXTURE and sNMF results could be considered hardly
significant and estimates were statistically similar. The ex-
ample of the Harvard HGDP panels showed that the cross-
entropy criterion could also be used to discriminate among
program runs regardless of the program used.

The assumptions underlying STRUCTURE and ADMIXTURE
rely on simplified population genetic hypotheses. More
specifically, the assumptions include absence of genetic
drift and Hardy–Weinberg and linkage equilibrium in an-
cestral populations. The coding used by sNMF enabled the
estimation of homozygote and heterozygote frequencies
and avoided Hardy–Weinberg equilibrium assumptions. Al-
though ADMIXTURE analyses were robust to small depar-
tures from Hardy–Weinberg equilibrium in human data,
sNMF was more appropriate to deal with inbred lineages.
For European populations of A. thaliana, the values of the
cross-entropy criterion indicated better predictive results
for sNMF than for ADMIXTURE. The difference between
sNMF and ADMIXTURE predictions could be explained as
the binomial model of ADMIXTURE is not suited to the
high levels of inbreeding observed in A. thaliana popula-
tions (Atwell et al. 2010). As seen from Equation 1, an
implicit assumption underlying NMF predictions is that ge-
notypic frequencies can be formed according to instanta-
neous mixtures of ancestral frequencies without genetic
drift. Interpretations of admixture using estimates obtained
using likelihood and least-squares methods can be confounded
by the existence of phylogenetic relationships among pop-
ulation samples (see Patterson et al. 2012 for an alternative
approach) or by complex demographic scenarios such as
spatial range expansion (François et al. 2010).

Comparing the relative computational performances
of ADMIXTURE and sNMF was a difficult task because
runtimes are dependent on several factors. These factors
include the size and other characteristics of each data set,
the tolerance threshold used when stopping program
iterations, the use of multiprocessor algorithms, and the
initial values of the Q and G matrices. For example, run-
times could be shortened by using initial values obtained
after running the program on reduced data sets.

We explain the relative speed of the NMF algorithm by
looking at algorithmic complexity for each program. The
ANLS algorithm iterates cycles that solve linear regression
equations for Q and G. The complexity of a single cycle of
sNMF is of order O(KLn), where K is the number of clusters,
n the number of individuals, and L the number of loci. The
complexity of a single cycle of ADMIXTURE is of order O
(K2Ln) (Alexander et al. 2009). Since the default tolerance
threshold in this program implies that the program generally
runs a small number of cycles (e.g.,,40 cycles for the 78,000-
SNPs Harvard HGDP panel), we observed that least-squares

algorithms ran significantly faster than likelihood algorithms
when analyzing large population genomic data sets with large
values of K. The sNMF program can be downloaded from
http://membres-timc.imag.fr/Olivier.Francois/snmf.html.
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Table S1: Root mean square error (RMSE) for 6 HGDP data sets as a function of
the regularization parameter.

α 0 1 10 100 1000

RMSE
0.046 0.044 0.041 0.041 0.055

[0.035,0.064] [0.035,0.057] [0.035,0.052] [0.031,0.061] [0.033, 0.095]

2



Table S2: Choice of K for sNMF using the cross-entropy criterion (simulated data).

Dir(1, 1, 1) Dir(.5, .5, .5) Dir(.1, .1, .1) Dir(.2, .2, .05) Dir(.2, .2, .5) Dir(.05, .05, .01)
K = 2 0.713 0.703 0.682 0.662 0.706 0.645
K = 3 0.707 0.691 0.660 0.642 0.697 0.624
K = 4 0.708 0.692 0.661 0.644 0.699 0.626
K = 5 0.710 0.694 0.663 0.645 0.700 0.628

Dir: Dirichlet distribution used to simulate ”true” admixture coefficients using 3 ancestral popu-
lations.
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