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The sensitivity of expansive growth to water deficit has a large genetic variability, which is higher than that of photosynthesis. It
is observed in several species, with some genotypes stopping growth in a relatively wet soil, whereas others continue growing
until the lower limit of soil-available water. The responses of growth to soil water deficit and evaporative demand share an
appreciable part of their genetic control through the colocation of quantitative trait loci as do the responses of the growth of
different organs to water deficit. This result may be caused by common mechanisms of action discussed in this paper
(particularly, plant hydraulic properties). We propose that expansive growth, putatively linked to hydraulic processes,
determines the sink strength under water deficit, whereas photosynthesis determines source strength. These findings have large
consequences for plant modeling under water deficit and for the design of breeding programs.

Evolution has selected plants that reduce leaf area
and seed number under water deficit, allowing pro-
duction of at least a few viable seeds, in such a way
that their alleles are not lost during dry years. Re-
ducing transpiration rate by decreasing leaf area saves
soil water during vegetative stages in favor of repro-
ductive stages and keeps plants at a better water status
(Boyer, 1985). It is safer than stomatal closure, which is
usually accompanied by an increase in leaf tempera-
ture (Guilioni et al., 2008). However, this conservative
strategy decreases carbon acquisition by plants, with
two drawbacks. First, it reduces seed number and
yield, crucial traits for agriculture but also for natural
environments because this reduces the number of po-
tential offspring. Second, conservative altruistic plants
may be outgrown by fast-growing plants in natural
environments and excluded from their niche (Gordon
and Rice, 2000).

As a consequence, opposite strategies can lead to
drought tolerance, depending on the drought scenario
(Tardieu, 2012). The conservative strategy fits most
severe and long drought scenarios. A spender strategy
involving maintenance of vegetative and reproductive
growth allows higher yields under milder drought
scenarios at a risk of reproductive failure under severe
stresses. Because most species have evolved in a wide
range of climatic conditions (Rebourg et al., 2003;
Sharbel et al., 2000; Fatichi et al., 2014), the tradeoffs
associated with the control of growth result in a wide

genetic variability of responses of growth to water
deficit. Indeed, a large genetic variability of growth
maintenance has been observed in several species: by
Tisné et al. (2010) in Arabidopsis (Arabidopsis thaliana),
Welcker et al. (2011) in maize (Zea mays), Parent et al.
(2010a) in rice (Oryza sativa), and Pereyra-Irujo et al.
(2008) in sunflower (Helianthus annuus).

We review here the genetic diversity and the po-
tential mechanisms associated with the control of
growth under water deficit and their consequences
for the modeling of plant growth and for breeding
strategies.

INCREASES IN PLANT BIOMASS AND VOLUME
DISPLAY DIFFERENT TIME COURSES, RESPOND
DIFFERENTLY TO WATER DEFICIT, AND HAVE
DIFFERENT GENETIC CONTROLS

Growth in biomass depends on the carbon balance
between photosynthesis and respiration. Expansive
growth, defined as an increase in organ volume through
water entry into growing cells, depends on the interplay
of cell wall extensibility, gradients of water potential,
and hydraulic conductance on the water pathway to
cells (Lockhart, 1965).

Carbon gain and expansive growth have essentially
opposite phases. Leaf photosynthesis and whole-plant
carbon balance follow changes in light intensity and
plant transpiration, with peak values close to midday
(Fig. 1; see also Escalona et al., 2003). Conversely, leaf
expansion rate corrected for the effect of temperature
(Parent et al., 2010b) follows the reciprocal of transpi-
ration rate in maize (Fig. 1), rice (Parent et al., 2010a),
and Arabidopsis during the autotrophic phase of
leaves (Pantin et al., 2011). The daytime depression of
leaf elongation rate is the highest during days with
high evaporative demand (high light intensity and
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vapor pressure deficit; Fig. 1) and increased by mild
water deficit (Parent et al., 2010a, Pantin et al., 2011,
Caldeira et al., 2014). However, the negative effect of
light intensity on expansive growth only applies when
the leaf is mature enough to sustain its own carbon
demand through photosynthesis. In Arabidopsis, the
expansion rate of very young leaves peaks during the
day and is minimal during the night until the leaf is
autotrophic (Pantin et al., 2012). This transition be-
tween a source-limited and sink-limited period (with
positive and negative effects of light, respectively) is
also observed in other dicotyledon species (Granier
and Tardieu, 1999; Christophe et al., 2008; Walter
et al., 2009). The source-limited phase is not observed
in monocotyledons, in which leaves are both source
and sink during most of their lifespan (Muller et al.,
2001, 2011).
Detailed analyses suggest a limited effect of mild

water deficit on carbon metabolism. This effect has
been best documented in Arabidopsis, in which water
deficit increases the concentrations of most sugars in
rosettes and does not affect the activities of 30 enzymes
belonging to various pathways of carbon metabolism
(Hummel et al., 2010). Consistently, transcriptome
analyses in Arabidopsis plants subjected to long and
moderate water deficit show a surprisingly low change
in transcript abundance of genes involved in metabo-
lism (Baerenfaller et al., 2012). The same applies to
young ovules of maize, in which sugar concentrations
and enzyme activities are essentially unaffected by
water deficit (V. Oury, Y. Gibon, F. Tardieu, and O. Turc,
unpublished data). In the same way, the young ca-
pitulum of sunflower reduces its area and ovule
number without noticeable change in carbon status
(Dosio et al., 2011). Hence, we propose that plants
coordinate the decreases in expansive growth rate and

photosynthate flux to growing organs in such a way
that the carbon metabolism is not disrupted. This re-
quires an early determinism of seed abortion to avoid
carbon stress in remaining ovules. Consistently, it is
only under very severe water stresses that sugar
deprivation directly causes seed abortion in maize
and is relieved by sugar feeding (McLaughlin and
Boyer, 2004).

New evidences support different genetic controls for
biomass accumulation and expansive growth (Fatichi
et al., 2014). In a panel of 350 maize accessions under
water deficit, strong negative correlations were ob-
served between ear or silk weight and Suc content at
flowering time (Setter et al., 2011). This finding sug-
gests a dilution process, in which the photosynthate
amount would be similar in the considered accessions
but diluted by a larger water volume in accessions
with the highest growth rates. The quantitative trait
loci (QTLs) for photosynthesis under water deficit
detected by Pelleschi et al. (2006) in a population of
recombinant inbred lines (RILs) of maize do not
colocalize with QTLs of growth maintenance detected
in the same population by Welcker et al. (2011). The
same applies to QTLs of photosynthesis and growth
maintenance detected in a tropical maize population of
RILs by Fracheboud et al. (2002) and Welcker et al.
(2011), respectively.

Hence, expansive growth and biomass gain are al-
most entirely uncoupled over days. The coupling be-
tween them occurs over longer timescales through
feedbacks but is far from tight in case of water deficit
(Muller et al., 2011; Tardieu et al., 2011). Our view is
summarized in Figure 2, in which expansive growth
(vegetative and reproductive) and photosynthesis are
considered to have largely independent environmental
and genetic controls.

Figure 1. Leaf elongation rate and biomass ac-
quisition have opposite diurnal trends in maize.
A to C, Light intensity (photosynthetic photon flux
density [PPFD]), transpiration rate, and leaf
elongation rate in three typical climatic scenarios.
Red, Sunny days with high transpiration; blue,
intermediate days; green, cloudy days with low
transpiration (Caldeira et al., 2014). D and E, Light
intensity and whole-plant photosynthesis in a
canopy gas exchange platform (redrawn from
Fig. 4 in Kim et al., 2007).
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A LARGE GENETIC VARIABILITY OF SENSITIVITIES
OF EXPANSIVE GROWTH TO WATER DEFICIT OR
HIGH EVAPORATIVE DEMAND

In three mapping populations of maize, the most
sensitive RILs stopped leaf elongation in a relatively
wet soil (soil water potential of 20.5 MPa), whereas
the less sensitive RILs grew in a soil as dry as 21.3
MPa (Welcker et al., 2011). A large range has also been
observed between rice lines with different origins
(Parent et al., 2010a). Genetic variations of sensitivity
have been observed in dicotyledons, although the ge-
netic analysis is made more complex in this case, be-
cause leaf expansion rate largely varies during the day
(Poiré et al., 2010) and between days (Granier and
Tardieu, 1998; Granier et al., 2002; Walter et al., 2009).
The fraction of soil water reserve that causes a decrease
in expansion rate of sunflower leaves ranges from 0.15
(dry soil) for the least sensitive hybrids to 1.0 (close to
retention capacity) for the most sensitive ones (Casadebaig
et al., 2008). The rosette area of Arabidopsis plants
subjected to a moderate water deficit is reduced by 20–
60%, with high heritability, depending on accessions
or RILs (Aguirrezabal et al., 2006; Tisné et al., 2010;
Vile et al., 2012). Reductions in final leaf area are partly
caused by a genetic variability in the sensitivity to
water deficit of leaf expansion rate in Arabidopsis
(Aguirrezabal et al., 2006) and sunflower (Pereyra-
Irujo et al., 2008). However, this variability does not
always translate into changes in final leaf area because
of large and genetic-dependent differences in the du-
ration of expansion in monocotyledons.

The genetic control of the sensitivities of leaf growth
is largely common to the effects of evaporative de-
mand and soil water deficit. In a meta-analysis of
QTLs in three mapping populations and four intro-
gression libraries, 75% of QTLs were common when
leaf elongation rate was measured in plants subjected

to either a range of evaporative demands in well-
watered conditions or a range of soil water potentials
under low evaporative demand (night periods; Welcker
et al., 2011). A genetic correlation was also observed in
rice between sensitivities to soil water deficit and
evaporative demand (Parent et al., 2010a).

The genetic control of expansive growth is also
partly shared between several organs of a plant. Tight
genetic correlations have been observed between ro-
sette area and total root length in an Arabidopsis
population of RILs (Bouteillé et al., 2012). Among eight
genomic regions harboring QTLs of rosette area, seven
of them also involve QTLs of primary root length or
total root length. In the same way, among nine con-
sensus QTLs of leaf elongation rate of maize, five of
them colocate with QTLs of the growths of other
leaves, shoots, roots, or young reproductive organs
with consistent allelic effects (Dignat et al., 2013).
Colocation of QTLs also applies to the sensitivity of
growth of several organs to water deficit, with com-
mon QTLs for the sensitivities of leaf and silk growth
to water deficit (Welcker et al., 2007).

For Figure 2 overall, the above paragraphs suggest
(1) a large genetic variability for the sensitivity of the
growth of several organs to water deficit, (2) a partly
common genetic control of growth and sensitivity be-
tween organs, and (3) a largely common genetic con-
trol for the responses of leaf growth to soil water
deficit and evaporative demand.

A LARGE RANGE OF POTENTIAL MECHANISMS
ARE INVOLVED IN THE REDUCTION IN LEAF
GROWTH WITH SOIL WATER DEFICIT OR HIGH
EVAPORATIVE DEMAND

Cell turgor pressure causes an irreversible stretch of
the cell wall when it exceeds a threshold (Bunce, 1977;

Figure 2. Effect of decreased water availability
and increased evaporative demand on expansive
growth of vegetative and reproductive organs, gas
exchanges, and integrated variables. [asterisk],
Genetic variability of the response of the con-
sidered trait to decreased water deficit (red) or
increased evaporative demand (blue); [question
mark], unknown effect or genetic variability;
green or purple signs, size and direction of the
effect of one trait on another trait; red or blue
signs, size and direction of the effect of soil water
deficit or evaporative demand on the considered
trait. Variables with a common color are consid-
ered to have a genetic control that is largely
common. Numbers refer to generalist references
on the topic: 1, Lobell et al., 2011; 2, Lobell et al.,
2013; 3, Boyer, 1996; 4, Tardieu et al., 2011;
5, Blum, 2009 and Condon et al., 2004; and 6,
Caldeira et al., 2014.
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Bouchabké et al., 2006; Ehlert et al., 2009; Zhang et al.,
2011). Cell wall relaxation would cause a decrease in
turgor and growth without a concomitant water
transfer from the xylem to growing cells (Matyssek
et al., 1991). Hydraulic processes are therefore essen-
tial. Chemical compounds that reversibly affect hy-
draulic conductance through aquaporin activity have
large effects on both turgor and leaf elongation rate,
with similar effects of acid load, anoxia, and H2O2
treatments (Ehlert et al., 2009). The plasma membrane
intrinsic protein aquaporins probably play a crucial
role in view of their distributions in growing leaves
(Hachez et al., 2008). Indeed, genetic manipulation
of hydraulic conductance results in changes in leaf
expansion rate in Arabidopsis (Martre et al., 2002)
and maize (Parent et al., 2009), especially during soil
rehydration.
Cell wall plasticity is controlled by several wall en-

zymes (Cosgrove, 2005; Park and Cosgrove, 2012) as-
sociated with changes in expansive growth (Cho and
Cosgrove, 2000; Wu and Cosgrove, 2000; Muller et al.,
2007). It decreases with water deficit (Nonami and Boyer,
1990a, 1990b), consistent with the abundance of expansin
transcripts and proteins in leaves (Muller et al., 2007;
Harb et al., 2010) or roots (Wu and Cosgrove, 2000). Cell
wall peroxidase activity and caffeate O-methyltransferase
abundances increase in the elongating region of
monocotyledonous leaves under water deficit, thereby
stiffening cell walls (Bacon et al., 1997; Vincent et al.,
2005; Zhu et al., 2007). These changes in cell wall
properties are, in part, mediated by abscisic acid (ABA),
possibly combined with ethylene (Sobeih et al., 2004),
apoplastic pH (Thompson et al., 1997; Wilkinson and
Davies, 2008), or reactive oxygen species (Sharp, 2002;
Liszkay et al., 2003).
We have argued elsewhere (Granier and Tardieu,

2009; Tardieu et al., 2011) that the changes in cell divi-
sion rate with water deficit may follow those changes in
expansion rate, without a crucial contribution.

A CENTRAL ROLE FOR HYDRAULIC PROCESSES IN
THE CONTROL OF EXPANSIVE GROWTH?

The commonality of QTLs presented above chal-
lenges the view that sensitivities to soil water deficit
and evaporative demand depend on different mecha-
nisms. Sensitivity to evaporative demand is widely
believed to depend on hydraulic signals and effectors,
whereas sensitivity to soil water deficit is often con-
sidered to depend on cell wall properties, themselves
under the control of chemical signals. We are not
aware of published genetic analyses of plant hydraulic
properties or cell wall mechanical properties, which
would allow one to compare QTLs of these mecha-
nisms with QTLs of the sensitivity of expansion rate to
water deficit. No QTL of sensitivity of expansive
growth to water deficit has been cloned yet (Collins
et al., 2008), and therefore, the ways of action of poly-
morphisms are not precisely known. The hydraulic

mechanism that has been best analyzed genetically is
osmotic adjustment (Blum et al., 1999; Zhang et al.,
1999). However, the common practice is to measure it
in mature tissues, which may not reflect the genetic
variability of osmotic adjustment in growing tissues.

Another method for identifying causal chains is a
careful characterization of time constants of changes in
leaf expansion rate compared with time constants of
potential mechanisms. Leaf elongation rate of mono-
cotyledons changes in less than 30 min, rapidly stabi-
lizes, and returns to its original value when light is
switched on in a growth chamber (Munns et al., 2000)
or, in the early morning in natural conditions (Caldeira
et al., 2014). This is also the case when evaporative
demand increases via a change in air vapor pressure
deficit with constant light (Sadok et al., 2007) when salt
or manitol is added to a nutrient solution (Munns
et al., 2000), when droughted plants are rehydrated
(Hsiao et al., 1970), or when plants are subjected to a
sudden anoxia (Ehlert et al., 2009). Such short time
constants are compatible with only a few mechanisms,
particularly hydraulic processes that occur over sec-
onds to minutes (Ye and Steudle, 2006; Tang and
Boyer, 2008; Parent et al., 2009), osmotic adjustment,
which can be equally rapid (Frensch and Hsiao, 1994),
or posttranslational protein modifications, such as
phosphorylation/dephosphorylations (Novak et al.,
2010; Bonhomme et al., 2012). Cell wall stiffening in
growing leaves is observed over minutes in response
to a rapid decrease in root water potential with an
osmoticum (Chazen and Neumann, 1994), potentially
involving posttranslational protein modifications prob-
ably with a hydraulic signaling between roots and
leaves. Short time constants are also compatible with
the transfer of a plant hormone, such as ABA, over
short distances from the apoplast to the symplast
(Hartung et al., 2002) but probably not with de novo
synthesis of hormones, changes in cell wall composi-
tion, or changes in the cell cycle duration (Granier and
Tardieu, 1998; Granier et al., 2000). The time course of
osmotic adjustment in growing cells is controversial.
Several experiments show that leaf growth is inhibited
by water deficit or salt stress despite a maintained
turgor in growing tissues as a result of osmotic ad-
justment (Tang and Boyer, 2002). However, the op-
posite behavior has also been observed (Shackel et al.,
1987; Hsiao and Xu, 2000; Bouchabké et al., 2006).

Recent evidence leads us to argue in favor of the
dominance of hydraulic mechanisms for changes in
expansion rate. In maize, the morning decline of leaf
elongation rate has a time constant that (1) varies with
allelic values at QTLs of sensitivity to evaporative
demand (Sadok et al., 2007) and (2) differs in trans-
genic lines that present contrasting root hydraulic
conductivities and stomatal controls after an un-
derproduction or overproduction of ABA (Caldeira
et al., 2014).

The overall coordination between expansive growth
and biomass accumulation over long timescales can be
interpreted if one considers that expansive growth
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determines the future sink strength as presented in
Figure 2. Organs would expand through hydraulic- or
cell wall-related mechanisms and then, rapidly need
carbon and energy for structural growth (Dale, 1988;
Pantin et al., 2011). Expansion would, therefore, de-
termine the sink strength for assimilates, thereby in-
creasing the final organ weight (Minchin et al., 1993;
Marcelis, 1996; Fatichi et al., 2014).

CONSEQUENCES FOR PHENOTYPING AND
BREEDING IN DROUGHT-PRONE ENVIRONMENTS

The coordination between controls of the growth of
several organs could explain unexpected genetic cor-
relations between traits observed in a phenotyping
platform and the field (Tuberosa et al., 2002; Chapuis
et al., 2012). In the former study, the sensitivity of
maize grain number to water deficit was determined
individually in maize hybrids in a network of field
experiments as the slope of the relationship between
grain number and the mean soil water potential
around flowering time. Surprisingly, a high genetic
correlation was observed between the sensitivity to
water deficit of grain number and the sensitivity of leaf
elongation rate in a phenotyping platform. This cor-
relation may be partly caused by a common genetic
control for the sensitivities of leaf and silk growths to
water deficit (Welcker et al., 2007). Silk growth largely
determines the anthesis-silking interval (Fuad-Hassan
et al., 2008), itself clearly linked to grain number
(Bolaños and Edmeades, 1996). We cannot exclude an
effect of pollen or ovule fertility, which is largely af-
fected by water deficit, high temperature, and evapo-
rative demand in maize and wheat (Saini and Aspinall,
1982; Saini et al., 1984; Fonseca and Wesgate, 2005),
although the genetic link with the sensitivity of leaf
elongation rate to water deficit would be less straight-
forward in this case than the link with silk growth. In
any case, this result has large implications for pheno-
typing at early stages in a platform.

Breeding strategies for drought tolerance and the
architecture of crop models can be influenced by the
coordination proposed here. Both of them consider
traits individually for identifying most promising
ideotypes (Reynolds et al., 2012) or simulating growth
in a range of genotypes and environmental condi-
tions (Hammer et al., 2010). If growth and sensitivity
of several organs are coordinated through a partly
common genetic control, this considerably reduces
the degrees of freedom for an ideotype and causes
correlations between model parameters involved in
the vegetative and reproductive phases. This coordi-
nation has been indirectly observed in a modeling
exercise of the effect of QTLs on leaf growth sensi-
tivity (Chenu et al., 2008; Chenu et al., 2009). Indeed,
the dimension of the parameter space was consider-
ably smaller in observed data than in a random dis-
tribution because of a genetic correlation between
parameters.

CROP MODELS FOR IDENTIFYING WHICH ALLELES
FOR GROWTH SENSITIVITY ARE SUITED TO
WHICH ENVIRONMENTS?

Crop models allow one to test the value of a given
trait in a large range of scenarios representing the di-
versity of climates in a continent (Chenu et al., 2013)
for tens of years of current and future climates (Harrison
et al., 2014). This potentially allows one to test the
value of alleles over climatic series (Chapman et al.,
2002; Hammer et al., 2006; Messina et al., 2011). This
exercise has been done for simulating the effect on
yield of QTLs affecting the sensitivity of maize leaf
growth to water deficit and evaporative demand
(Chenu et al., 2009), with the output that a given QTL
of leaf sensitivity has different impacts on yield in
mild drought scenarios and terminal drought scenarios.
This potentially allows one to identify the agronomic
value of a combination of QTLs over a long series of
climatic data in a mesh of sites covering the considered
geographic area (Tardieu and Tuberosa, 2010; Harrison
et al., 2014). This approach is still in its infancy but has a
large potential for model-assisted breeding.

CONCLUSION

The view presented in this paper (Fig. 2) assumes
largely independent controls of photosynthesis and
expansive growth and partly common controls for the
expansive growth of different organs under water
deficit (this review) or high temperature (Parent and
Tardieu, 2012). The genetic variability of these controls
is probably larger than that of photosynthesis and
largely common for the responses to soil water deficit
and evaporative demand. Expansive growth of several
organs would determine the sink strength and largely,
seed number. Sink strength and photosynthesis would
interact at this stage by determining plant biomass and
yield, but also via a feedback of sink strength on
photosynthesis. Noteworthy, (1) in Figure 2, yield has
a greater genetic variability than biomass under water
deficit, consistent with the large effect of seed number
on yield. (2) Both water deficit and evaporative de-
mand cause yield loss (Boyer, 1996; Lobell et al., 2013)
in addition to other environmental cues, such as high
temperature. Mechanisms of action of evaporative
demand on grain number and the genetic variability of
the resulting sensitivity are largely unknown to our
knowledge. They are difficult to analyze because of the
confusion of effects between light intensity per se
(positive effect on biomass accumulation and yield)
and evaporative demand per se (presumably nega-
tive effect but highly correlated with light intensity).
(3) Stomatal conductance has a dual effect on growth:
positive on photosynthesis rate and negative on leaf
expansion rate because of decreased leaf water po-
tential (Caldeira et al., 2014).

The view in Figure 2 is based on the literature re-
view presented in this paper, but many points remain
to be clarified (in particular, the extent of the genetic
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variability of the response of expansive growth traits
in several species and the mechanisms of action that
cause this variability). Another question is how to
reconcile the short-term mechanisms of control that are
presented here with potential longer term controls. The
latter may be emergent properties derived from short-
term controls (our favorite hypothesis) or may involve
independent long-term mechanisms. We believe that
these views and questions, and their applications in
plant modeling may have a large impact on strategies
of breeding for drought tolerance.
Received December 1, 2013; accepted February 24, 2014; published February
25, 2014.
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