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Schrenkiella parvula (formerly Thellungiella parvula), a close relative of Arabidopsis (Arabidopsis thaliana) and Brassica crop species,
thrives on the shores of Lake Tuz, Turkey, where soils accumulate high concentrations of multiple-ion salts. Despite the stark
differences in adaptations to extreme salt stresses, the genomes of S. parvula and Arabidopsis show extensive synteny. S. parvula
completes its life cycle in the presence of Na+, K+, Mg2+, Li+, and borate at soil concentrations lethal to Arabidopsis. Genome
structural variations, including tandem duplications and translocations of genes, interrupt the colinearity observed throughout the
S. parvula and Arabidopsis genomes. Structural variations distinguish homologous gene pairs characterized by divergent promoter
sequences and basal-level expression strengths. Comparative RNA sequencing reveals the enrichment of ion-transport functions
among genes with higher expression in S. parvula, while pathogen defense-related genes show higher expression in Arabidopsis.
Key stress-related ion transporter genes in S. parvula showed increased copy number, higher transcript dosage, and evidence for
subfunctionalization. This extremophyte offers a framework to identify the requisite adjustments of genomic architecture and
expression control for a set of genes found in most plants in a way to support distinct niche adaptation and lifestyles.

The sum of adaptations of an organism forecasts the
range of environments a given species can survive.
Schrenkiella parvula (formerly Thellungiella parvula and
Eutrema parvulum in the Brassicaceae), native to the
shores of Lake Tuz, is adapted to an extremely saline
habitat (Orsini et al., 2010). Lake Tuz, in central Anatolia,
Turkey, is one of the largest hypersaline lakes in the
world. The lake’s water composite ion content varies
seasonally to often exceed Na+ concentrations greater
than 6 times that of seawater. Its water also shows ex-
tremely high concentrations of other ions, including K+,

Li+, Mg2+, and borate (Helvaci et al., 2004). Not only the
lake water, but also soils around the shore where vege-
tation is found, contain extreme levels of cations as well
as sulfates and borates (Nilhan et al., 2008). Combined
with high ion concentrations, extreme aridity for most of
the year generates a unique habitat with a highly spe-
cialized flora. The Lake Tuz ecosystem is considered a
UNESCOworld heritage site partly because it represents
a refuge for wild relatives of crop species adapted to
multiple abiotic stresses. These species can serve as nat-
ural repositories of genetic resources for future crop im-
provement (http://whc.unesco.org/en/tentativelists/
5824/).S. parvula is a close relativeofBrassica cropspecies
(Cheng et al., 2013; Haudry et al., 2013) and thus has the
potential to provide unique genetic resources for crop
improvement.

The recently sequenced genome of S. parvula (Dassanayake
et al., 2011a) provides a powerful resource to study the
genomic basis underlying adaptations to multiple abiotic
stresses (Dittami and Tonon, 2012; Oh et al., 2012).
A comparison with the genome of Arabidopsis (Arabidopsis
thaliana) strengthens the validity of conclusions that
become possible (Oh et al., 2010; Dassanayake et al.,
2011b). The evolution into diverse lifestyles between
Arabidopsis and S. parvula is estimated to have taken
place within the last 12 million years, after the most recent
whole-genome duplication in the crucifer lineage (Oh
et al., 2010; Haudry et al., 2013). As the gene-rich regions
of the S. parvula genome show genome-wide macro-
synteny and extensive colinearity with Arabidopsis,
these enable informative cross-species comparisons.
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Gene copy number variation (CNV), observed within
closely related species, has now been recognized as a
major underlying principle in adaptation to new or
changing environments (Hanada et al., 2008; Bratlie
et al., 2010; Kondrashov, 2012). For example, the regu-
lation of flowering time, crucial for reproductive success
in a narrow seasonal window, has been associated with
copy numbers of FLOWERING LOCUS T1 (FT1) genes
in barley (Hordeum vulgare; Nitcher et al., 2013). In-
creased copy numbers of related genes or gene clusters
have conferred adaptive traits such as an enhanced
defense against pathogens (Keeling et al., 2008; Cook
et al., 2012) and metal ion tolerance (Hanikenne et al.,
2008; Craciun et al., 2012; Maron et al., 2013) in various
plant species. Additional copies of genes involved in
wax and abscisic acid biosynthesis pathways have
been suggested to support increased drought endur-
ance of an Arabidopsis-relative extremophyte, Eutrema
salsugineum (formerly Thellungiella salsuginea), when
compared with Arabidopsis (Wu et al., 2012).

Variations in genome structure and gene copy number,
in turn, affect the transcriptomes via modifications of
regulatory sequences (Harewood et al., 2012) and, often,
by subfunctionalization of duplicated genes (Duarte
et al., 2006; Freeling, 2009). Comparative transcriptomics
have demonstrated that different basal-level expression
strengths of homologous genes support niche adaptation.
This has been highlighted for metal hyperaccumulators
such as Arabidopsis halleri (Becher et al., 2004), Alyssum
lesbiacum (Ingle et al., 2005), and Thlaspi caerulescens (van
de Mortel et al., 2006) among the Brassicaceae, when
compared with their respective less-adapted species.
Modules of coexpressed genes with different expression
strengths in the salt-adapted species E. salsugineum
were identified compared with Arabidopsis, even in
the absence of salt (Gong et al., 2005). Indeed, varia-
tions in basal or constitutive expression strengths of
stress-related genes have been recently recognized as a
recurring theme in the adaptation to changing envi-
ronments in studies on various species encompassing
all kingdoms of life (Juenger et al., 2010; Geisel, 2011;
Barshis et al., 2013; Bedulina et al., 2013). However,
studies are scarce that link variations in genome struc-
tures to transcriptome profiles and phenotypes showing
adaptations to distinct habitats and lifestyles.

In this study, we identify the intrinsic capacity of
S. parvula to tolerate multiple-ion stress, enabled by its
genome structure and transcriptome variations, which
bring about ecological niche adaptations, compared with
Arabidopsis. We demonstrate the capacity in S. parvula to
grow and complete its life cycle in the presence of high
concentrations of a number of ions all lethal to Arabi-
dopsis. Using RNA sequencing (RNA-seq), we compared
transcriptomes of root and aerial tissues of S. parvula and
Arabidopsis and identified genes and pathways with
significantly different basal expression strengths. Many
stress-related ion transporter genes in S. parvula showed
increased copy numbers and basal expression strengths
compared with Arabidopsis, with evidence of sub-
functionalization. These results provide a blueprint for

mechanisms of plant ion stress tolerance as well as
potential genetic resources for crop improvement in
closely related species.

RESULTS

S. parvula Completes Its Life Cycle in the Presence of High
Na+, K+, Li+, Mg2+, and Borate at Concentrations Lethal
to Arabidopsis

The competence of S. parvula to survive high con-
centrations of various ions was compared with that of
Arabidopsis. Pairs of 4-week-old plants from each
species were supplied with 200 mM NaCl, 200 mM KCl,
30 mM LiCl, 50 mM MgCl2, or 10 mM H3BO3 for
2 weeks. While all Arabidopsis plants tested (n = 12,
repeated three times) turned yellow and eventually
died within 2 weeks, all S. parvula plants continued to
grow, completed their life cycle, and produced seeds
(Fig. 1A). Root growth of S. parvula seedlings was main-
tained or even enhanced by the addition of ions at these
concentrations. This is contrasted by the inhibition of
primary root growth of Arabidopsis seedlings at the
same concentrations of ions (Fig. 1, B and C).

E. salsugineum, another Arabidopsis-related extrem-
ophyte, exhibited root growth comparable to S. parvula in
the presence of NaCl but showed sensitivity to LiCl and
high concentrations of KCl (Supplemental Fig. S1). Replacing
MgCl2 with MgSO4 produced the same results, indica-
ting that the root growth phenotypes (Fig. 1, B and C)
were caused by cations rather than Cl2 (Supplemental
Fig. S2A). Unlike alkali cations, treatment with heavy
metal ions including Ni2+, Zn2+, and Fe2+ inhibited
S. parvula root growth more severely compared with
Arabidopsis at micromolar concentrations (Supplemental
Fig. S2B).

Ion contents of leaf tissues were measured in S. parvula
and Arabidopsis treated with NaCl, KCl, LiCl, and
MgCl2 from plants grown as in Figure 1A. When
treated with lower concentrations that are not stressful
to either species, S. parvula accumulated slightly higher
amounts of Na+ and K+ and a lower amount of Li+

than Arabidopsis. However, the differences were not
statistically significant. Arabidopsis accumulated signifi-
cantly higher amounts of Mg2+ in the leaves, compared
with S. parvula (Supplemental Fig. S3).

Identification of Differently Expressed Homologous Gene
Pairs between S. parvula and Arabidopsis

Using RNA-seq, we compared the basal-level expression
strengths from nonstressed plants between homologous
gene pairs in S. parvula and Arabidopsis. Supplemental
Figure S4 summarizes the RNA-seq data-processing
pipeline and statistical analysis. RNA samples were
prepared from the entire root and shoots of 4-week-old
plants. Illumina reads of 100 nucleotides with a total
average yield of 51 million reads per sample were gen-
erated for three biological replicates. RNA-seq Unified
Mapper was used for aligning the reads to the genome

2124 Plant Physiol. Vol. 164, 2014

Oh et al.

http://www.plantphysiol.org/cgi/content/full/pp.113.233551/DC1
http://www.plantphysiol.org/cgi/content/full/pp.113.233551/DC1
http://www.plantphysiol.org/cgi/content/full/pp.113.233551/DC1
http://www.plantphysiol.org/cgi/content/full/pp.113.233551/DC1
http://www.plantphysiol.org/cgi/content/full/pp.113.233551/DC1
http://www.plantphysiol.org/cgi/content/full/pp.113.233551/DC1
http://www.plantphysiol.org/cgi/content/full/pp.113.233551/DC1
http://www.plantphysiol.org/cgi/content/full/pp.113.233551/DC1


and gene models of S. parvula and Arabidopsis. On
average, 93.4% and 96.0% of all reads were uniquely
mapped, covering 38.4% and 40.0% of the genome se-
quences of S. parvula and Arabidopsis, respectively. Less
than 5% of reads were mapped to multiple gene models.
The number of uniquely mapped reads to a gene model
becomes a weak proxy for the true expression counts for
certain gene models that carry repetitive sequences.
Therefore, in our downstream analysis, we excluded
gene models with a ratio of nonuniquely mapped reads
to those uniquely mapped higher than 20%.
We defined homologous gene pairs between S. parvula

and Arabidopsis based on sequence identity using
OrthoMCL and reciprocal BLAST searches as described
in “Materials and Methods.” For each homologous gene
pair, expression strengths of S. parvula and Arabidopsis
homologs were compared using DESeq. Among 20,005
homologous gene pairs tested, 3,918 showed signifi-
cantly different expression between homologs from the
two species, either in root or shoot tissues, with a false
discovery rate (FDR) smaller than 5%, based on the
three biological repeats. These were considered as dif-
ferently expressed gene pairs (DEGPs).

Genome Structural Variations and Repetitive Sequences
Are Overrepresented among DEGPs

We identified differences between S. parvula and
Arabidopsis genome structures that possibly contribute

to the differences in expression strengths of homologous
genes. While the two genomes show extensive genome-
wide colinearity, genomic structural variations including
tandem duplication (TD) and translocation (Tlc) events
disrupt local synteny between the two species, as exem-
plified in Figure 2A. We tested whether these structural
variations affected the promoter sequences of homol-
ogous gene pairs. We used LASTZ to align the promoter
sequences of each Arabidopsis and S. parvula homologous
gene pair and calculated promoter sequence similarity
(see “Materials and Methods”). Homologous gene pairs
that underwent TD or Tlc showed clearly lower promoter
sequence similarity compared with homologous gene
pairs with no TD or Tlc (Fig. 2B). Out of 20,005 S. parvula-
Arabidopsis homologous gene pairs, we could not
detect any sequence similarity between promoters in
2,574 gene pairs, of which 1,848 (71.8%) were associated
with TD or Tlc events (Fig. 2B, top). We tested whether
genes affected by TD and Tlc were overrepresented
among DEGPs. Additionally, we included insertion of
a transposable element or repetitive sequences within
1 kb of the open reading frame (ORF) in the test (Table I).
Only 19.6% of the total S. parvula-Arabidopsis homol-
ogous gene pairs were identified as DEGPs. However,
among S. parvula-Arabidopsis homologous gene pairs
associated with TD and Tlc, the proportions of DEGPs
were significantly higher, at 37.4% and 37.2%, respec-
tively. This shows a significant enrichment (P , 1024,
x2 test) of DEGPs among homologous genes involved in

Figure 1. Treatment of S. parvula and Arabidopsis with high concentrations of various salts. A, Four-week-old Arabidopsis (At) and
S. parvula (Sp) plants were treated with the indicated concentrations of salts for 2 weeks. Shown are representative examples from three
biological replicates (12 plants per species in each replicate) with the same result. B and C, Two-week-old seedlings of Arabidopsis and
S. parvula, grown on modified Murashige and Skoog medium as described in “Materials and Methods,” were transferred to the same
medium supplementedwith the indicated concentrations of salts. Photographs were taken after 10 d of incubation (B), during which root
growth of the seedlings was recorded (C). Error bars indicate SD of four measurements. [See online article for color version of this figure.]
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structural variations. Containing a transposable element
or a repeat longer than 100 nucleotides, within 1 kb of
the ORF in either of the two genomes, increased the
chance of the homologous gene pair being a DEGP
(P = 0.0036, x2 test). In contrast, homologous gene pairs
located next to a TD or Tlc event did not show significant
enrichment among DEGPs (Table I).

Gene Ontology Enrichment Analysis in DEGP Groups

We identified four groups within DEGPs based on
differential expression in root and shoot tissues (Fig. 3,
A and B) and identified Gene Ontology (GO) terms
enriched in each DEGP group, as described in “Materials
and Methods.” Figure 3A presents DEGPs included in
each group in M-A (fold change versus average expres-
sion level) plots (Yang et al., 2002) representing the re-
sults of RNA-seq analyses comparing root and shoot

samples of S. parvula and Arabidopsis. Groups SpR and
SpS, which included 954 and 981 members, had DEGPs
with higher expression strength of the S. parvula ho-
molog than the Arabidopsis homolog, in root and shoot
tissues, respectively. Similarly, groups AtR and AtS
included 978 and 1,065 DEGPs with higher expression
strengths of the Arabidopsis homolog than the S. parvula
homolog, in the tissues compared (Fig. 3A; Supplemental
Data S1). Numbers of homologous gene pairs that belong
to more than one DEGP group are given as a Venn
diagram in Figure 3B. DEGP groups SpS and SpR
shared 421 gene pairs, while DEGP groups AtS and AtR
had 436 gene pairs in common. However, gene pairs
shared between SpS and AtR or between SpR and AtS
were rare at 15 and 20 gene pairs, respectively (Fig. 3B).

GO terms enriched in the four SpR, SpS, AtR, and AtS
DEGP groups were further analyzed (see “Materials and
Methods”). To describe the large numbers of GO terms, we
built networks of enriched GO terms based on parent-child

Figure 2. Genome structural variation influences promoter sequence divergence between homologous genes. A, A 50-kb
S. parvula genome segment was aligned with its colinear Arabidopsis genome segment, showing examples of synteny and
structural variations involving TD and Tlc of homologous genes. Exons of S. parvula and Arabidopsis gene models are shown as
red and blue boxes, respectively. Arrows connect homologous gene pairs between S. parvula and Arabidopsis. B, Histograms
showing the distribution of promoter sequence similarity between S. parvula and Arabidopsis genes in homologous gene pairs
with and without TD and Tlc events, respectively. Sequence similarity of the upstream 1-kb sequences of S. parvula and
Arabidopsis genes was calculated for each homologous gene pair, using LASTZ as described in “Materials and Methods.” ND
denotes no detectable sequence similarity. [See online article for color version of this figure.]
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relationships in the GO classification. Figure 3C shows
representative networks of GO terms enriched in DEGP
groups SpR and AtR. A summary of all networks of GO
terms enriched in each DEGP group is presented in
Supplemental Tables S1 and S2. Compared in Supplemental
Table S1 are networks of GO terms enriched in DEGP
groups SpR and AtR. Similarly, networks of GO terms
enriched in DEGP groups SpS and AtS are shown in
Supplemental Table S2. The full list of genes within
each GO term is given as Supplemental Data S2. A few
patterns emerged.
(1) Enrichment exists for the different child GO terms

“transporter activity” and “transport” processes in the
DEGP group SpR (higher in S. parvula roots) compared
with DEGP groups with higher expression in Arabidopsis
(AtR and AtS). SpR was enriched for “monovalent cation
transporter activity” (Supplemental Table S1, SpR-1F),
while AtR and AtS were enriched for GO terms related
to “nitrate transport” and “metal ion transport” processes
(Supplemental Tables S1 [AtR-1P] and S2 [AtS-3P]).
(2) Defense-related GO terms were overrepresented

in both AtR (Supplemental Table S1, AtR-2P) and AtS
(Supplemental Table S2, AtS-1P). However, no observable
symptoms of disease were found for either species in any
of the plant batches grown for the three biological repeats
(data not shown). PATHOGENESIS-RELATED genes and
other marker genes related to disease symptoms did not
show significantly different basal-level expression be-
tween the two species. Rather, the observed enrichment
of defense-related GO terms is based on higher basal-level
expression of specific gene families in Arabidopsis. This
was represented by enrichment of TOLL/INTERLEUKIN1
RECEPTOR-LIKENUCLEOTIDEBINDING SITE LEUCINE-
RICH REPEAT (TIR-NBS-LRR) gene families. The GO
term “ADP binding,” enriched in the DEGP groups AtR
(Supplemental Table S1, AtR-6F) and AtS (Supplemental
Table S2, AtS-5F), almost exclusively consisted of genes
of the TIR-NBS-LRR family (Supplemental Data S2).
(3) Different GO subgroups “catalytic activity” and

“secondary metabolic process” were enriched in SpR,
compared with AtR. The child GO term catalytic ac-
tivity enriched in SpR included “esterase activity” and
“acyltransferase activity,” while AtR was enriched for

“glycosyltransferase activity.” SpR and AtR also showed
enrichment of different child GO terms “oxidoreductase
activities” (Supplemental Table S1, SpR-3F and AtR-3F).
Notably, “heme binding” was overrepresented only in
the Arabidopsis DEGP groups AtR (Supplemental Table
S1, AtR-7F) and AtS (Supplemental Table S2, AtS-8F).
More than half of genes included in this GO term en-
code cytochrome P450 family proteins (Supplemental
Data S2). In addition, the GO term “ligand-gated channel,”
which almost exclusively consisted of glutamate receptors,
was overrepresented in the group AtS (Supplemental
Table S2, AtS-9F; Supplemental Data S2).

Ion Transporter Family Genes in S. parvula
and Arabidopsis

Supplemental Table S3 lists Arabidopsis loci that are
associated with salt stress or other ion toxicity-related
phenotypes, and their homologs in S. parvula show
different basal-level expression or gene copy number.
The majority of the stress-related genes found in a DEGP
group encode for ion transporters. The few exceptions are
ABA INSENSITIVE5, D1-PYRROLINE-5-CARBOXYLATE
SYNTHASE1, REPRESSOR OF SILENCING1, and CAL-
CINEURIN B-LIKE10 (CBL10), whose S. parvula homologs
show either increased copy numbers or basal-level ex-
pression (Supplemental Table S3).

To gain detailed insights on the basis of the multiple-ion
tolerance of S. parvula, we focused on the ion transporter
family, comparing S. parvula and Arabidopsis. We iden-
tified 381 and 372 gene models in S. parvula and Arabi-
dopsis, respectively, that encoded ion transporters from
27 subfamilies, as described byMaathuis et al. (2003). The
unequal pairing between S. parvula and Arabidopsis gene
models was due to different duplication events present in
each species. Supplemental Table S4 summarizes the ion
transporter subfamilies in the two species. The complete
list of homologous gene pairs encoding ion transporters
is given in Supplemental Data S3. Out of the 27 ion
transporter subfamilies, S. parvula had nine and Arabi-
dopsis had seven gene families higher in gene copy
number as the result of duplications (Supplemental

Table I. Enrichment DEGPs among homologous gene pairs showing genome structural variations between S. parvula and Arabidopsis

Categories Total DEGPsa DEGPs per Total Pb

%

All S. parvula-Arabidopsis homologous gene pairs 20,005 3,918 19.6 Background
TDc 3,082 1,153 37.4 ,1024

Tlcc 2,384 886 37.2 ,1024

TD or Tlcc 4,866 1,776 36.5 ,1024

Neighboring TD or Tlc to the 59 sidec 4,531 907 20.0 0.51
Neighboring TD or Tlc to the 39 sidec 4,535 896 19.8 0.99
Near a repetitive sequenced 3,363 732 21.8 0.0048
TD, Tlc, or near a repetitive sequencec 7,154 2,113 29.5 ,1024

aDEGPs are based on RNA-seq results (FDR , 0.05). bTwo-tailed x2 test (Yates correction) for enrichment of DEGPs in each category, with all
S. parvula-Arabidopsis homologous gene pairs as the background. cEither the S. parvula or Arabidopsis homolog. dEither the S. parvula or
Arabidopsis homolog contains a transposable element or repetitive sequence larger than 100 nucleotides, within 1 kb of the ORF.
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Table S4). The homologous gene pairs encoding ion
transporters that were included in at least one of the four
DEGP groups were 18.3%, or 66 out of 360 cases
(Supplemental Tables S4 and S5). Gene families encoding
aquaporins, K+ channels, Na+-H+ antiporters, cation-H+

antiporters, and sulfate transporters contained higher
number of DEGPs in groups SpR and SpS. In contrast,
nitrate transporters, metal transporters, and P-type pump
gene families showed more DEGPs in groups AtR and
AtS (Supplemental Table S4).

Figure 3. DEGPs between S. parvula
(Sp) and Arabidopsis (At). A, M-A plots
showing means (x axis) and log2 ratios
(y axis) of expression strengths of
S. parvula and Arabidopsis homologous
gene models, based on normalized
uniquely mapped RNA-seq read counts.
DEGPs were identified based on
FDR, 0.05 (Benjamini-Hochbergmultiple
testing adjustment) using DESeq (Anders
and Huber, 2010). Groups SpR, AtR,
SpS, and AtS include DEGPs showing
stronger expression in S. parvula and
Arabidopsis, in root and shoot tissues,
respectively, identified with consider-
ation for duplicated genes, as described
in “Materials andMethods.” The complete
DESeq result is listed in Supplemental
Data S1. B, Venn diagram presenting
overlaps among the four DEGP groups.
C, Examples of networks representing
GO terms enriched in DEGP groups
SpR and AtR. Enriched GO terms were
identified using PlantGSEA and visual-
ized with Cytoscape, as described in
“Materials and Methods.” GO terms are
connected based on their ancestor-
child relationships. Colors of circles
indicate log FDR (Fisher’s test with
Yekutieli correction) of enrichment. The
size of circles represents the size of GO
terms in the background The Arabi-
dopsis Information Resource 10 anno-
tation. The complete networks and lists
of enriched GO terms are summarized
in Supplemental Tables S1 and S2. [See
online article for color version of this
figure.]
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We could detect increased copy numbers due to dupli-
cations leading to different outcomes at the transcriptome
level. In some cases, increased copy numbers resulted
in overall higher expression strengths, with expression
observed for all duplicates, as exemplified by the K+

EFFLUX ANITIPORTER1 (KEA1), K+ UPTAKE PER-
MEASE9 (KUP9), and ARABIDOPSIS VACUOLAR H+-
PYROPHOSPHATASE1 (AVP1) homologs of S. parvula
(Supplemental Table S5). In other duplication events,
such as those involving HIGH-AFFINITY K+ TRANS-
PORTER (HKT1) and Na+/H+ EXCHANGER8 (NHX8),
subfunctionalization was observed, where duplicates
exhibit compartmentalized expression between root
and shoot tissues (Supplemental Table S5).

Genomic Structural Variation and Expression Strengths of
Stress-Related Ion Transporters

TD and Tlc events among ion transporter genes sup-
port the S. parvula multiple-ion tolerance phenotypes.
We characterized these events and their effects on gene
expression by comparing colinear genomic regions
(Figs. 4 and 5).
The K+ and Li+ transporters KEA1, NHX8, and HKT1

exemplify TD events that resulted in different expres-
sion strengths in the two species (Fig. 4; Supplemental
Table S6). The genomic regions surrounding KEA1 loci
showed extensive colinearity and very similar RNA-seq
coverage between S. parvula and Arabidopsis homolo-
gous gene pairs. SpKEA1;2/Sp1g00500, which showed
higher similarity with AtKEA1 among duplicates, had
similar expression strengths with AtKEA1. The other du-
plicate, SpKEA1;1/Sp1g00490, was expressed significantly
higher in root tissue compared with AtKEA1 (Fig. 4A;
Supplemental Table S6). While AtNHX8 showed sub-
stantially weaker expression compared with adjacent
genes, TD in S. parvula resulted in NHX8 copies with
significantly higher expression strengths both in S. parvula
shoots (SpNHX8;1; Fig. 4B; Supplemental Table S6) and
roots (SpNHX8;3; Fig. 4B; Supplemental Table S6). The
neighboring colinear genes presented similar expression
strengths between Arabidopsis and S. parvula, except
for an Arabidopsis-specific TD of genes of unknown
function located next to AtNHX8 (Fig. 4B; Supplemental
Table S6). Genomic regions near HKT1 are characterized
by extensive structural variations between S. parvula and
Arabidopsis (Fig. 4C). In S. parvula, putative transposons
(Fig. 4C, red arrows) and two tandemly duplicated
copies of CBL10 homologs (Fig. 4C, blue arrows) were
inserted near the tandemly duplicated SpHKT1;1 and
SpHKT1;2. While AtHKT1 showed a stronger expression
in the roots compared with shoots, the expression of
both SpHKT1;1 and SpHKT1;2was significantly lower in
roots. SpHKT1;1 was expressed specifically in the shoots
(Fig. 4C; Supplemental Table S6).
AVP1 and BORON TRANSPORTER5 (BOR5) rep-

resent Tlc events that were detected together with
differential gene expression between S. parvula and
Arabidopsis (Fig. 5; Supplemental Table S7). AtAVP1,

encoding a vacuolar proton transporter, is homologous
to two nontandem putative AVP1 genes in S. parvula
(Fig. 5A). Genomic regions surrounding SpAVP1;1/
Sp1g13990 and AtAVP1/At1g15690 showed extensive
colinearity, with no significant differences between
colinear homologous gene pairs. Both SpAVP1;1 and
AtAVP1 are strongly expressed, with a mean normalized
RNA-seq read count higher than those of 99.5% of the
entire S. parvula and Arabidopsis genes, respectively.
AtAVP1 showed higher sequence similarity with its co-
linear homolog, SpAVP1;1, with which it also showed
similar expression (Supplemental Table S7). Similarly, the
genomic region around SpAVP1;2/Sp5g35350 in S. parvula
chromosome 5 showed similar expression strengths
with the colinear region in Arabidopsis chromosome 1,
with one exception. The genomic locus in Arabidopsis
chromosome 1 corresponding to SpAVP1;2 was replaced
by two Helitron family transposon sequences (Fig. 5A,
red arrows). SpAVP1;2 showed substantial expression
both in root and shoot, although weaker than that of
SpAVP1;1 and AtAVP1 (Fig. 5A; Supplemental Table S7).

In the case of the BOR5 loci encoding a putative boron
transporter family protein, the immediate 59 upstream
region including the promoter of SpBOR5 was found
with an insertion of about 15 kb (Fig. 5B). The sequence
insertion in the S. parvula genome harbors a transposon
of the Mutator family and an expressed gene (Fig. 5B)
showing partial sequence similarity with an isopropyl-
malate dehydrogenase gene (Supplemental Table S7).
While the adjacent colinear genes showed similar
RNA-seq expression strength and patterns, SpBOR5
was expressed significantly higher than AtBOR5. This
is one of the largest fold differences observed for all
homologous gene pairs between the two species
(Fig. 5B; Supplemental Table S7).

DISCUSSION

S. parvula, Adapted to Multiple-Ion Stresses

Mirroring its hypersaline natural habitat, S. parvula
completes its life cycle in the presence of a variety of ions
at levels that Arabidopsis cannot tolerate (Fig. 1). In fact,
the extreme concentrations of sodium, potassium, lith-
ium, magnesium, and boron ions that this plant en-
counters are high enough to prevent the growth of most
plants. High concentrations of sodium ions in the soil
limit water uptake and inhibit potassium uptake (Munns
and Tester, 2008; Kronzucker and Britto, 2011). Lithium
ions can be toxic at even low millimolar concentrations
by directly inhibiting the functions of various enzymes
(Quiroz et al., 2004). While potassium functions as an
essential nutrient for plant growth, excessive amounts of
K+ can retard growth by causing energy-consuming fu-
tile cycles of ion transport and impairing the acquisition
of other nutrients (Wang et al., 1996; Britto and Kron-
zucker, 2006; ten Hoopen et al., 2010). Finally, borates
can cause leaf chlorosis at a concentration that does not
constitute an osmotic stress (Miwa and Fujiwara, 2010).
S. parvula is prepared to tolerate high concentrations of
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Figure 4. TD of ion transporter genes in S. parvula. RNA-seq read coverage landscapes and homologous gene pairs are shown
for colinear genomic regions of Arabidopsis (top) and S. parvula (bottom) around AtKEA1 (At1g01790) and SpKEA1;1
(Sp1g00490)/SpKEA1;2 (Sp1g00500; A), AtNHX8(At1g14660) and SpNHX8;1 (Sp1g13020)/SpNHX8;2 (Sp1g13030)/SpNHX8;2
(Sp1g13040; B), and AtHKT1 (At4g10310) and SpHKT1;1 (Sp6g07110)/SpHKT1;2 (Sp6g07120; C) loci. Gray histograms in-
dicate normalized genome coverage by RNA-seq reads for shoot and root samples. Gene and putative transposon models are
presented in blue below each histogram. For each gene in S. parvula and Arabidopsis, dashed arrows connect the homologous
gene with the best BLASTN hit scores among all gene models in the genome of the other species. Ion transporter genes
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these ions combined to survive in its natural habitat
(Helvaci et al., 2004; Nilhan et al., 2008).
Studies on the salt-tolerant species S. parvula and

E. salsugineum (previously T. parvula and T. salsuginea)
have revealed higher basal-level expression of a couple
of stress-related ion transporters even in the absence of
salt stress, compared with their salt-sensitive relative
Arabidopsis (Dassanayake et al., 2011b; Wu et al., 2012).
Perturbing the basal-level expression of these ion trans-
porters in E. salsugineum resulted in salt sensitivity of the
naturally halophytic species (Oh et al., 2009; Ali et al.,
2012). The increased basal-level expression of genes and
pathways that are known to be stress related in func-
tional studies using the model plant Arabidopsis sug-
gests an adaptation strategy of modifying transcriptome
profiles in species evolved to ecological niches distinct
from the model plant (Juenger et al., 2010; Dassanayake
et al., 2011b; Geisel, 2011). By comparing the transcriptomes
of S. parvula and Arabidopsis grown simultaneously
at similar developmental stages under stress-neutral
experimental conditions, we identified homologous
genes and pathways whose basal-level expression
show significant differences between the two species.
Utilizing gene models derived from the S. parvula and
Arabidopsis genomes (Arabidopsis Genome Initiative,
2000; Dassanayake et al., 2011a) and RNA-seq data,
our approach provides greater resolution, especially in
characterizing the expression divergence of duplicated
genes that were unable to be resolved in previous
studies relying on microarrays or partial transcriptome
sequencing. Moreover, the genomic basis and evolu-
tionary mechanisms that resulted in the observed di-
versification of gene expression could be explored by
focusing on differences in genome architecture and
sequence complexity between the two species.

The Transcriptomes of S. parvula and Arabidopsis Suggest
Distinct Niche Adaptation

Our analyses began with the careful identification of
homologous gene pairs based on sequence similarity
(Supplemental Fig. S4). OrthoMCL was used to cluster
S. parvula and Arabidopsis gene models into homolo-
gous gene groups, and reciprocal BLASTN was used to
identify best matching gene pairs within the homol-
ogous gene groups, as detailed in “Materials and
Methods.” We include RNA-seq analyses on root and
shoot tissues, since adaptation to ionic stress in plants
has been suggested to require distinct responses from
both belowground and aboveground tissues (Maathuis
et al., 2003; Munns and Tester, 2008). Normalized ex-
pression levels were compared between homologous

genes in S. parvula and Arabidopsis to identify DEGPs.
With consideration for duplicated genes (see “Mate-
rials and Methods”), four groups, SpR, AtR, SpS, and
AtS, were identified within DEGPs (Fig. 3, A and B),
signifying homologous gene pairs with higher ex-
pression in either of species in either root and shoot
tissues. We identified networks of GO terms enriched
in each of the four DEGP groups, SpR, AtR, SpS, and
AtS (Supplemental Tables S1 and S2; Supplemental
Data S2), as detailed in “Materials and Methods.”

The GO enrichment analysis suggested niche adap-
tation through the modification of basal-level expres-
sion of transcriptomes not only for S. parvula but also
for Arabidopsis. The enrichment of ion transporters
appears to support the multiple-ion tolerance of
S. parvula, as discussed below. It is not obvious why
the basal-level expression of homologous genes encod-
ing defense-related proteins, including TIR-NBS-LRR
receptor family genes, should be higher in Arabi-
dopsis compared with S. parvula. Arabidopsis colonized
the Eurasian continent after the last glacial period from
the Iberian peninsula to central Asia, including areas of
northern Africa (Shimizu and Purugganan, 2005). The
Arabidopsis ecotype Columbia-0 (Col-0) used in this
study is derived from a natural population in Limburg,
Germany (http://www.lehleseeds.com/). While the
evolutionary history of S. parvula at the tribal level has
yet to be established, the species distribution appears
to be confined to Turkey and parts of central Asia
(Al-Shehbaz, 2012). One possibility is that the habitat of
arid salt flats where S. parvula is found (Orsini et al.,
2010) shows relatively low pathogen density in com-
parison with Arabidopsis habitats in more temperate
and moist regions. Therefore, S. parvula may not have
had a strong evolutionary pressure to develop or sus-
tain resistance genes for biotic stresses compared with
Arabidopsis. It is also possible that S. parvula’s adap-
tation to an extreme environment had evolutionary
tradeoffs that did not favor equal adaptation to biotic
stress, in contrast to the resource partitioning favoring
defense against pathogens over abiotic stress in Arabi-
dopsis (Tian et al., 2003). The diversity of plant-microbe
interactions has been suggested as the driving force
behind the diversity in plant secondary metabolites
(Bednarek and Osbourn, 2009) and the evolution of
many lineage-specific metabolic pathway modules (Field
and Osbourn, 2008; Kliebenstein and Osbourn,
2012). The enrichment of GO terms including gene
families encoding P450s and glycosyltransferases in
DEGP groups AtR and AtS further suggests an em-
phasis on metabolic diversification related to defense
in Arabidopsis.

Figure 4. (Continued.)
tandemly duplicated in S. parvula are marked as red dashed boxes. Putative transposons and gene models unique to either
species are indicated by red and blue arrows, respectively. Detailed information on numbered homologous gene pairs, in-
cluding quantified expression values, is presented as Supplemental Table S6. [See online article for color version of this figure.]
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Figure 5. Comparison of Arabidopsis and S. parvula genome segments near AVP1 and BOR5 loci. Colinear genomic regions
including AtAVP1 (At1g05690) and SpAVP1;1 (Sp1g13990)/SpAVP1;2 (Sp5g35350; A) and AtBOR5 (At1g74810) and SpBOR5
(Sp5g29940; B) loci are compared, exemplifying Tlc events that affect ion transporter gene copy numbers and gene expression.
Arrows, boxes, and histograms were used in the same manner as in Figure 4. Detailed information on numbered homologous
gene pairs is presented as Supplemental Table S7. [See online article for color version of this figure.]
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Expression Strength of Ion Transporter Genes Geared for
Multiple-Ion Tolerance in S. parvula

Table II summarizes candidate ion transporter genes
showing variations in copy number and basal-level
expression strength between S. parvula and Arabi-
dopsis. The increased basal-level expression of many
of the ion transporters in S. parvula that had a func-
tionally characterized, well-defined homolog in Ara-
bidopsis supports the plant’s multiple-ion tolerance
phenotypes. Increased copy numbers via duplication
and subfunctionalization provide further diversifica-
tion of gene functions. The observed correlation be-
tween phenotype and the nature and expression of ion
transporters provides grounds for testable hypotheses
to further our understanding of the functions and evo-
lution of ion-transporter gene families.
The lithium tolerance of S. parvula (Fig. 1; Supplemental

Fig. S1) is supported by increased copy numbers ofNHX8
(Fig. 4B). TD at the NHX8 loci is unique to S. parvula and
not observed in close relatives (Supplemental Fig. S5)
or any other species analyzed so far. In Arabidopsis,
loss of the single-copy AtNHX8 increased sensitivity,
while overexpression improved tolerance, specifically
to lithium (An et al., 2007). The three tandem dupli-
cates of SpNHX8 demonstrate subfunctionalization of
their expression pattern. SpNHX8;1 and SpNHX8;3 are
significantly higher in basal-level expression compared
with AtNHX8 in the shoot and root tissues, respec-
tively (Fig. 4B; Supplemental Table S6). The expression
strength of SpNHX8;2 was lower than that of the other
copies but was induced by treatment with LiCl in the
roots (Supplemental Fig. S6).
Many studies have associated high AVP1 and SALT

OVERLY SENSITIVE1 (SOS1) expression levels with in-
creased salt tolerance (Park et al., 2005; Gao et al., 2006;
Oh et al., 2009). AVP1 exist as two copies in S. parvula,
with their combined expression higher than AtAVP1
(Table II). The duplication of AVP1 is conserved in
E. salsugineum at the same genomic locus as in S. parvula
(Supplemental Fig. S7). Both the Arabidopsis and
Arabidopsis lyrata genomes contain a single AVP1,
while the locus colinear to SpAVP1;2 has been replaced by
transposable elements or deleted (Fig. 5A; Supplemental
Fig. S7). Salt stress did not significantly alter the expression
of SpAVP1 (Supplemental Fig. S8). In yet another example,
compared with Arabidopsis, the higher expression of
SOS1 is shared by both S. parvula and E. salsugineum.
While no obvious structural variation was observed
near the SOS1 loci in Arabidopsis, S. parvula, and
E. salsugineum, the conservation of promoter sequences
and short simple repeats upstream to SOS1 genes unite
S. parvula and E. salsugineum but exclude Arabidopsis
in sharing this pattern (Oh et al., 2010; Dassanayake et al.,
2011b). AVP1 and SOS1 loci in the genomes of the halo-
phytes S. parvula and E. salsugineum, previously grouped
together as genus Thellungiella (Amtmann, 2009), illustrate
genomic architecture and regulatory sequences shared
between the two halophytes but not the glycophyte
Arabidopsis.

In S. parvula, HKT1, encoding an Na+/K+ transporter,
exists as tandemly duplicated genes, with evidence for
subfunctionalization. TD of HKT1 was also observed in
E. salsugineum (Wu et al., 2012); however, the pattern of
subfunctionalization of each duplicate’s expression dis-
tinguishes the two halophyte species. SpHKT1;2, shows
strong shoot-specific expression, while both SpHKT1 du-
plicates are expressed at significantly lower levels in roots
compared with AtHKT1 (Fig. 4C; Supplemental Table S6).
In contrast, the HKT1 homologs in E. salsugineum show
higher expression in both roots and shoots relative to
AtHKT1 expression (Wu et al., 2012). This differential
pattern of subfunctionalization may explain another ad-
aptation for the unique environment of the S. parvula
habitat, where both [Na+] and [K+] are extremely high in
the soil (Helvaci et al., 2004), compared with the soil high
in [Na+] but without high [K+] where E. salsugineum is
found (Orsini et al., 2010). In further support, continued
root growth in high [K+] media was observed only in
S. parvula but not in E. salsugineum (Supplemental Fig. S1).

Studies on model plants have focused on deficiencies
of macronutrients such as potassium and magnesium
(Maathuis, 2009; Wang and Wu, 2013). On the other
hand, plant responses to excessive [K+] or [Mg2+] have
not received much attention. Homologs encoding two
potassium transporters, KEA1 and KUP9, are duplicated
in S. parvula and show higher basal-level expression in
roots, comparedwith their Arabidopsis homologs (Fig. 4A;
Supplemental Table S5). KEA1 shares sequence simi-
larity with a bacterial K+/H+ antiporter, but precise
functions of the family members are still unknown
(Chanroj et al., 2012). KUP9, encoding a potassium
transporter of unknown function, was considered a
candidate polymorphism responsible for the adaptation
of A. lyrata to serpentine soil (Turner et al., 2010). Elu-
cidation of the intracellular and tissue localization and
functions of these S. parvula-specific duplicates will
provide clues about S. parvula’s adaptation capacity as
well as on the functions of these two cryptic ion
transporter genes. Contrastingly, homologs of Na+/H+

EXCHANGER1 (NHX1) and NHX2 and ARABIDOPSIS
K+ TRANSPORTER1, whose functions have been studied
in Arabidopsis in relation with K+ ion transport and
sequestration (Xu et al., 2006; Barragán et al., 2012), do
not show differences in copy number or basal-level
expression in S. parvula. Excessive potassium in the
soil also inhibits ammonium uptake (Wang et al.,
1996; ten Hoopen et al., 2010). S. parvula homologs of
AMMONIUM TRANSPORTER1;5 (AMT1;5), a high-
affinity ammonium uptake transporter (Yuan et al., 2007),
and TONOPLAST INTRINSIC PROTEIN2;3 (TIP2;3), a
vacuolar ammonium channel gene (Loqué et al., 2005),
exhibited higher basal-level expression in S. parvula roots
(Table II). This suggests an adaptation in S. parvula for
increased ammonium uptake in the soil with high [K+].
Among Mg2+ transporters, a homolog of Mg2+ TRANS-
PORTER7 (MGT7), critical in Arabidopsis for growth
under low Mg2+ (Gebert et al., 2009), is expressed sig-
nificantly lower in the shoot of S. parvula compared with
Arabidopsis (Table II). The significance of this difference
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in explaining the observed survival of S. parvula under
high Mg2+ (Fig. 1A) requires further assessments through
functional studies.
Finally, SpBOR5, a member of a boron transporter

family (Takano et al., 2008), shows approximately 400-
fold higher expression in roots relative to the expression
of the Arabidopsis homolog (Fig. 5B; Supplemental
Table S7). This dramatic increase of the expression level
of the BOR5 homolog in S. parvula was confirmed by
quantitative real-time PCR (Supplemental Fig. S9). A Tlc
of a 15-kb DNA fragment immediately 59 of the BOR5
locus exists in S. parvula. This insertion, altering the
promoter sequence of SpBOR5, coincides with one of
the largest increments of basal-level expression strength
among all S. parvula genes compared with their Arabi-
dopsis homologs. This result leads to another testable
hypothesis, that the increased expression of BOR5 may
be related to S. parvula’s ability to survive high con-
centrations of borates, as illustrated in Figure 1. In-
terestingly, both S. parvula and E. salsugineum share the
Tlc event in the 59 upstream region of BOR5 (data not
shown), suggesting a genomic feature conserved among
the two closely related species that share tolerance to bo-
ron toxicity (Lamdan et al., 2012). The tolerance to boron
toxicity is further supported by increased copy numbers
and basal-level expression of aquaporin genes related to
boron transport, such as NOD26-LIKE INTRINSIC PRO-
TEIN5;1 (NIP5;1) and NIP6;1 (Tanaka et al., 2008; Kato
et al., 2009), in S. parvula (Table II).

Genome Structure Shapes the Transcriptome

With a focus on homologous gene pairs at otherwise
colinear chromosome regions, we observed structural
variations breaking synteny (colinearity) for up to 20% of
homologous gene pairs. S. parvula and Arabidopsis di-
verged after the most recent whole-genome duplication
event in the crucifer lineage (Oh et al., 2010; Haudry
et al., 2013). Except for the rearrangement of 24 con-
served ancestral karyotype blocks into different numbers
of chromosomes (Mandáková and Lysak, 2008; Dassa-
nayake et al., 2011a), the most conspicuous mode of
structural variation between the two species are TD and
Tlc of individual genes, as exemplified in Figure 2A.
Structural variation can lead to CNV of genes, which, in
turn, affects gene dosage and transcription strength
(Stranger et al., 2007; Schlattl et al., 2011; Massouras et al.,
2012; Haraksingh and Snyder, 2013). In plants, many
examples exist for the copy number of a gene or genome
segment associated with phenotype changes (Cook et al.,
2012; Li et al., 2012; Maron et al., 2013; Nitcher et al.,
2013), and genome-wide CNVs appear to predict phe-
notypes to some extent (Wu et al., 2012; Muñoz-Ama-
triaín et al., 2013). The S. parvula genome is characterized
by a higher copy number of genes associated with
transporter activity (Dassanayake et al., 2011a). A num-
ber of abiotic stress-related qualitative trait loci show
increased copy numbers in S. parvula (Supplemental
Table S3), when compared with Arabidopsis.

Structural variations that do not cause CNVs (i.e.
“copy-neutral” structural variants) can affect gene ex-
pression as well, either by changing regulatory ele-
ments or creating positional effects (Harewood et al.,
2010, 2012; Haraksingh and Snyder, 2013). Homolo-
gous genes involved in structural variations between
the genomes of S. parvula and Arabidopsis contained
more divergent promoters (Fig. 2B) and were enriched
with DEGPs (Table I). These alterations in genome
structure, including TD, Tlc, and insertion of transposable
elements and repetitive sequences, shaped or contributed
to transcriptome differences between the two species.

We have characterized in detail the consequences of
TD and Tlc events in the divergence of ion transporter
gene expression (Figs. 4 and 5). During evolution, du-
plicated genes may have been retained when the in-
creased transcript dosage proved beneficial for survival
or adaptability or through the diversification of dupli-
cates via subfunctionalization or neofunctionalization
(Freeling, 2009; Innan and Kondrashov, 2010; Jiang
et al., 2013). In S. parvula, examples abound that suggest
the subfunctionalization of tandemly duplicated ion
transporters and structural variations that resulted in
higher transcript dosages. Based on functional studies
in Arabidopsis, homologs of these ion transporters and
their divergence in S. parvula may explain how multiple-
ion tolerance has been acquired to support survival in an
environment characterized by extreme levels of several
typically detrimental ions.

CONCLUSION

S. parvula represents a plant that epitomizes adapta-
tions for growth under multiple high ion levels coinci-
dental in varying concentrations that are toxic to most
plants. A complex phenotype such as tolerance to multi-
ple salts cannot be explained by one or even a few genes.
Intuitively, several pathways, or networks, are likely
requiring changes. Given the relatively small diver-
gence time between Arabidopsis and S. parvula, esti-
mated at around 12 million years ago, macrosyntenic
regions are evident throughout the two genomes, but
structural variations, including tandem gene duplica-
tions, gene Tlc, and transposable element insertions,
interrupt colinearity. The genomic structural variations,
especially TD and Tlc of genes associated with Li+, Na+,
K+, and borate management, distinguish the S. parvula
genome from that of Arabidopsis. These genomic re-
arrangements are mirrored by and converge into tran-
scriptome adaptations via differential gene expression
and subfunctionalization that, in turn, can support the
phenotypic adaptations for multiple-ion tolerance ob-
served for S. parvula. Both Arabidopsis and S. parvula
accumulated similar numbers of duplications and other
structural variations. However, the changes retained in
each genome followed different trajectories leading to
distinct ecological niches. The genomic structural vari-
ations and the associated transcriptome reorganization
in this extremophyte represent a model to study niche
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adaptation in the evolution of stress tolerance. Improve-
ments can now be envisioned aimed at augmenting
single-ion or multiple-ion salt stress tolerances in related
Brassica species crops that share the majority of func-
tionally characterized homologs with S. parvula.

MATERIALS AND METHODS

Plant Growth and Stress Treatment

Schrenkiella parvula and Arabidopsis (Arabidopsis thaliana Col-0) plants were
grown on root wash mix soil (Plant Care Facility, University of Illinois at
Urbana-Champaign) in a growth chamber with a 14-h-day/10-h-night cycle,
130 mmol m22 s21 light intensity, and 22°C to 24°C temperature. Plants were
watered every other day, with a supplement of one-twentieth-strength
Hoagland solution once every 6 d. For stress treatments, salts were added
to irrigation as indicated. At least 12 4-week-old plants for each species were
tested. Root growth assays were performed as described before (Oh et al.,
2009), using 4-d-old S. parvula and Arabidopsis (Col-0) seedlings.

Identification of S. parvula-Arabidopsis Homologous
Gene Pairs

Genome annotations version 2.0 (http://thellungiella.org/data/; National
Center for Biotechnology Information BioProject PRJNA63667) and version 10
(http://www.arabidopsis.org/) were used for S. parvula and Arabidopsis, re-
spectively. When multiple spliced forms exist in Arabidopsis, the longest version
was considered. Homologous gene pairs were identified based on sequence
similarity. OrthoMCL (Li et al., 2003) grouped genes showing deduced amino
acid sequence alignment by all-to-all BLASTP (e , 1025) for more than 70% of
the entire gene length. To account for lineage-specific gene duplications in both
species, homologous gene pairs were searched reciprocally between the two
species. Each gene in a species was paired with a gene from the other species
that showed the highest BLASTN hit score only if the pair was in the same gene
group identified by OrthoMCL and their gene lengths were not different by
more than 20%. Among a total of 27,207 Arabidopsis nontransposon, chromo-
somal, and putative protein-coding gene models, 19,783 were paired with an
S. parvula homolog. Similarly, 19,292 out of 26,920 S. parvula gene models were
paired with an Arabidopsis homolog. The two reciprocal searches were merged,
and redundant pairs were removed to generate 20,005 S. parvula-Arabidopsis
homologous gene pairs.

Identification of DEGPs

For RNA-seq experiments, root and shoot tissues were pooled from 10
4-week-old plants (Supplemental Fig. S4). Plants grown in different batches were
sampled for three biological repeats. Total RNAs extracted with the RNeasy
Plant kit (Qiagen) were processed using TruSeq RNA Sample Prep Kits version 2
(Illumina) and sequenced by the HiSeq2000 system (Illumina). The resulting 100-
nucleotide, single-end reads were aligned to genome and gene model sequences
of S. parvula and Arabidopsis, respectively, using RNA-seq Unified Mapper
version 2.0.2 (Grant et al., 2011) with default parameters. S. parvula-Arabidopsis
homologous gene pairs with significant differences between normalized
RNA-seq read numbers uniquely aligned to the S. parvula and Arabidopsis gene
model in the pair were identified as DEGPs using the DESeq package (Anders
and Huber, 2010) with an FDR cutoff set to 0.05. A small number of DEGPs
where the decision was affected by nonunique mapping were removed from
downstream analyses. Bedgraph files generated by RNA-seq Unified Mapper
were used for visualizing RNA-seq coverage in genomic regions with Integrated
Genomics Viewer version 2.3 (Thorvaldsdóttir et al., 2013).

Analyses of Structural Variations and Promoter Sequences
of Homologous Genes

TD indicates an event where two or more genes in the same homologous
gene group identified by OrthoMCL are adjacent to, or separated by, one
nonhomologous gene from each other. A Tlc event is defined as homologous
gene pairs that are displaced to either a different chromosome or, if on the

same chromosome, more than 20 gene loci away from the original colinear
location. For transposable elements and repetitive sequences, we used anno-
tations generated by the REPET package (Flutre et al., 2011) and RepeatMasker
(http://www.repeatmasker.org/) for S. parvula and Arabidopsis genomes, re-
spectively. To identify the promoter sequence similarity of a homologous gene
pair, we used LASTZ (Kiełbasa et al., 2011) to align the 1-kb upstream sequences
of the S. parvula and Arabidopsis homologs for each homologous gene pair. The
percentage of identical nucleotides was counted for all alignments detected with
the seed pattern “111101110010111” optimized for comparison of noncoding
sequences.

Visualization of GO Terms Enriched in DEGP Groups

DEGPs identified by DESeq were further grouped into four DEGP groups,
SpR, SpS, AtR, and AtS (Fig. 3A), based on different expression in root and shoot
samples. When a single gene in one species was paired with multiple genes in
the other species due to gene duplication, the single gene was included in the
respective DEGP group only if its expression value was significantly higher than
the highest expression value among the duplicated homologs in the other spe-
cies. PlantGSEA was used to detect GO terms and gene families enriched in each
of the four DEGP groups, using Fisher’s test with Yekutieli correction (FDR
cutoff of 0.05), with The Arabidopsis Information Resource 10 Arabidopsis an-
notation as the background (Yi et al., 2013). Networks based on a parent-
children relationship of GO terms significantly enriched in each of the four
DEGP groups were constructed and visualized with the BiNGO plugin in
Cytoscape (Maere et al., 2005).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Root growth comparison between Arabidopsis,
S. parvula, and Eutrema salsugineum.

Supplemental Figure S2. Comparison of root growth of Arabidopsis and
S. parvula under different concentrations of salts and metal ions.

Supplemental Figure S3. Comparison of ion contents between S. parvula
and Arabidopsis.

Supplemental Figure S4. Flowchart depicting the process of homologous
gene pair identification, RNA-seq, and downstream bioinformatics analyses.

Supplemental Figure S5. Comparison of genomic regions near NHX8 loci
of Arabidopsis lyrata, S. parvula, and E. salsugineum, using CoGE GEvo.

Supplemental Figure S6. Quantitative RT-PCR analysis of transcript abun-
dance of NHX8 homologs in S. parvula.

Supplemental Figure S7. Comparison of colinear genomic regions near
AVP1;2 loci, of A. lyrata, S. parvula, and E. salsugineum.

Supplemental Figure S8. Quantitative RT-PCR analysis of transcript abun-
dance of AVP1 homologs in S. parvula.

Supplemental Figure S9.Quantitative RT-PCR comparing relative transcript
abundances of BOR5 homologs between S. parvula and Arabidopsis.

Supplemental Table S1. Summary of networks of GO terms overrepre-
sented in DEGP groups SpR and AtR.

Supplemental Table S2. Summary of networks of GO terms overrepre-
sented in DEGP groups SpS and AtS.

Supplemental Table S3. List of salt or ion stress-related Arabidopsis qual-
itative trait loci that are either included in DEGPs or showing CNVs in
S. parvula.

Supplemental Table S4. Overview of ion transporter gene families in
S. parvula and Arabidopsis.

Supplemental Table S5. List of DEGPs encoding ion transporters and
channels.

Supplemental Table S6. Detailed information of homologous gene pairs
shown in Figure 4.

Supplemental Table S7. Detailed information of homologous gene pairs
shown in Figure 5.
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Supplemental Data S1. RNA-seq results comparing expression strengths
of homologs between S. parvula and Arabidopsis, including a list of
S. parvula-Arabidopsis homologous gene pairs, genes involved in ge-
nomic structural variations, and promoter sequence similarity between
S. parvula and Arabidposis homologs.

Supplemental Data S2. Network of GO terms enriched in DEGP groups.

Supplemental Data S3. Homologous gene pairs encoding putative ion
transporter family proteins in S. parvula and Arabidposis.
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