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Abstract
Sequence analysis of large protein families can produce sub-clusters even within the same family.
In some cases, it is of interest to know precisely which amino acid position variations are most
responsible for driving separation into sub-clusters. In large protein families composed of large
proteins, it can be quite challenging to assign the relative importance to specific amino acid
positions. Principal components analysis (PCA) is ideal for such a task, since the problem is posed
in a large variable space, i.e. the number of amino acids that make up the protein sequence, and
PCA is powerful at reducing the dimensionality of complex problems by projecting the data into
an eigen-space that represents the directions of greatest variation. However, PCA of aligned
protein sequence families is complicated by the fact that protein sequences are traditionally
represented by single letter alphabetic codes, whereas PCA of protein sequence families requires
conversion of sequence information into a numerical representation. Here, we introduce a new
amino acid sequence conversion algorithm optimized for PCA data input. The method is
demonstrated using a small artificial dataset to illustrate the characteristics and performance of the
algorithm, as well as a small protein sequence family consisting of nine members, COG2263, and
finally with a large protein sequence family, Pfam04237, which contains more than 1,800
sequences that group into two sub-clusters.

Keywords
Principal components analysis; PCA; Protein sequence analysis

Introduction
Protein sequence analysis is useful in many applications including identification of
functional domains [1] and prediction of protein–protein interactions [2]. However,
quantitative statistical analysis of protein sequence variations is complicated by the fact that
protein amino acid sequences are conventionally represented by an alphabetic one-letter
code whereas quantitative statistical analyses of protein sequence variations requires some
form of numerical representation of the amino acid sequence information. Many methods
have been explored to solve this problem but basically two techniques are commonly used:
(1) assigning a number to each amino acid calculated based on their biochemical properties,
and (2) using binary vectors to represent distinct amino acid types.

Statistical analyses of protein sequence patterns have been used for many purposes. Genetic
code organization has been explored using indices for amino acids based on their
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physicochemical characteristics [3–5]. Amino acid substitution matrices based on solvent
accessibility, charge and volume have been used to define protein families [6]. Assignment
of numerical values for each amino acid type using the electron–ion interaction potential
(EIIP) method has been used to detect conserved regions in proteins [7, 8]. Sequence
weighting has been introduced to decrease sequence redundancy in protein families and to
emphasize diversities in multiple sequence alignments (MSA) [9]. Though biased in some
conditions [10], sequence weighting has been shown to be useful in combination with other
methods [11].

Binary vector profiling of protein sequence patterns is also a popular method for predicting
functional residues in protein families. In this algorithm, a binary vector with a length of 20
bits is used to represent each amino acid type [12], essentially as a letter is represented by a
byte in computer binary storage. An amino acid type is converted to a binary vector by
assigning a unique register in the 20-element vector a value of 1, with all other positions
equal to 0, for each amino acid type. This binary profiling technique demonstrated good
performance for predicting binding sites in proteins [13].

Another vector-based encoding scheme was provided by Atchley et al. [14], which is a
combination of the two methods just described. Instead of a binary vector of 20 elements, a
vector of five non-zero variables was used to explain each residue based on amino acid
properties. This method is called Amino Acid Property (AAP) Encoding [11]. The AAP
method generates vectors with fewer elements and continuous variables, which make this
method easier for statistical analysis [11].

Specifically conserved amino acid positions considered to be related to functional specificity
have been referred to as specificity-determining positions (SDPs) [15]. Various tools have
been developed to detect SDPs [16] including phylogenetic trees methods [17–19], methods
based on global variability representative positions detection [20–22] and multivariate
analyses [12]. Phylogenetic trees use MSA data to build a tree to show subfamilies and the
branching points are the conserved positions for the subfamilies. On the other hand, methods
based on global variability representative positions were designed to detect variation
positions which could represent the variations of the whole alignment. Multivariate analyses
like principal components analysis (PCA) have also been applied to analyze subfamilies
because of its power for multidimensional data simplification. Binary vector [12] profiling
has been used for PCA and a recently developed PCA-like method called multiple
correspondence analysis has also been applied to reduce data dimensionality using a similar
binary vectors theory [15].

PCA is a powerful mathematical technique used to reduce the dimensionality of the
parameter space, and it is widely used in physics [23], ecology [24], and metabonomics [25].
The idea of using PCA for protein sequence analysis was suggested by Casari et al. after
converting the amino acid sequence information using the binary method [12]. Gogos et al.
[26] showed that PCA can be very useful in assigning function to protein sequences using
the binary method. However, the binary vector method introduces more variables because a
single amino acid type is represented by many vector elements, which makes the analysis
complex. PCA has also been used to detect conserved regions in proteins using the EIIP
letter to number conversion [8] but the results were not satisfactory and wavelet
transformation had to be used to increase detection efficiency.

In our application, we wish to use PCA to quantitatively, systematically, and rapidly to
identify sequence positions whose variability drives sequence cluster separations in
algorithms such as CLuster ANalysis of sequences (CLANs) [27]. In order to apply PCA to
address this problem, protein sequence information encoded by the alphanumeric one-letter
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system must be converted to a numerical representation scheme that faithfully preserves
variability that occurs at a given position in a sequence family. Existing methods for
converting protein sequence alignments into numerical representation are not optimal for
PCA data input. In this paper, we introduce a letter-to-number conversion method designed
to be more optimal for PCA data input. This new method does not assign a fixed number to
each amino acid but rather assigns a number that directly reflects the magnitude of the
variance in each sequence position. We demonstrate our method by applying PCA to
converted data from a small pair of artificial protein sequence families, a small protein
family comprised of nine sequences corresponding to Cluster of Orthologous Groups (COG)
COG2263 and large protein family comprised of over 1,800 sequences, Pfam04237, that
naturally divides into two sub-clusters when the CLANs algorithm is applied [28]. The latter
example illustrates the power of the conversion algorithm, enabling PCA to quantitatively
identify which amino acid sequence positions are most responsible for separation of two
sequence sub-clusters by CLANs in a very large sequence family.

Materials and methods
Conversion method

In this method, we start with a multiple sequence alignment. We then calculate how many
times each amino acid occurs in a given column in an aligned sequence. We refer to this
number as the occurrence frequency. The occurrence frequencies are then sorted from low
to high, resulting in a rank order for each amino acid type in each column, i.e. those amino
acids with the lowest occurrence frequency are assigned the smallest rank order number and
those with the highest occurrence frequency are assigned the largest rank order number.
When two amino acids have the same occurrence frequency, the amino acid that comes last
in alphabetical order is given the lowest rank order number. The rank order for each amino
acid type is then used to replace the letter for each amino acid in each column in the aligned
sequences. The resulting distribution of numbers reflects the degree of amino acid variation
that occurs at that location in the sequence. For example, only a single number will occur in
a column for positions that are strictly conserved, resulting in minimum possible variance.
At the opposite extreme, for positions that are not conserved at all, 20 different numbers
would randomly occur in the column resulting in a maximum possible variance. Any gaps in
the sequence, marked by a ‘-’ in the sequence alignment, are converted to ‘0’, meaning that
these positions make no contribution to variance. This matrix is then used to compute a
mean-centered variance/covariance matrix used for PCA. Data conversion was done in
Matlab (R2009a, MathWorks) using a home written program.

Generation of the artificial test dataset
An artificial dataset was generated to simulate 20 protein sequences containing nine amino
acids in each sequence. The test dataset was divided into two groups of ten to simulate two
different sequence families. The artificial sequence families contained positions that were
strictly conserved across both groups (Table 1, Column 6), positions that were strictly
conserved in each group but different between the groups (Table 1, Column 1), positions
that were strictly conserved in group #1 and completely variable in group #2 (Table 1,
Column 9), and several positions with differing degrees of sequence variation between the
two groups (Table 1, Columns 2, 3, 4, 7, and 8).

Selection of protein sequence families for testing
One small protein sequence family composed of nine sequences and nominally 240 amino
acids in the protein sequence was examined, namely Cluster of Orthologous Groups (COG)
COG2263, whose sequence data was obtained from the National Center for Biotechnology
Information (NCBI) (http://www.ncbi.nlm.nih.gov/). An advantage of using a small
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sequence family of relatively large proteins is that it provides a way to explore the
performance of the algorithm for cases of high dimensionality and it makes it straight-
forward to analyze the resulting PCA scores plot. We also considered a large protein
sequence family, Pfam04237, which contains more than 1,800 protein sequences with a
nominal protein length of 196 amino acids. We previously showed that a CLANs analysis of
Pfam04237 resolves into two sub-clusters containing more than 1,400 protein sequences
[28] with the remaining ~400 sequences were scattered in the CLANS plot and did not
obviously belong to either sub-cluster. Therefore we selected the 1,414 protein sequences
that clearly belonged to one of the two sub-clusters as a third test case.

Statistical analysis and data representation
PCA was conducted using SIMCA-P+ 11 (Umetrics). Protein structures were drawn in
PyMOL (Version 1.5.0.1 Schrödinger, LLC).

Results and discussion
Analysis of the artificial dataset

The artificial test dataset was constructed to examine how the conversion algorithm
performed for several different types of amino acid variation that might occur within a
sequence family or between sequence families. We defined two groups to represent two
distinct protein sequence families where rows 1–10 defined Group 1 and rows 11–20
defined Group 2 (Table 1). Column 6 was strictly conserved across both groups, column 3
was conserved across the two groups with two allowed amino acid types, and column 9 was
designed to have the most variance between the two groups, where the position was strictly
conserved in Group 1 and completely random in Group 2. Column 1 is interesting in that it
represents a position that is strictly conserved in each group, but the amino acid type is
different between the two groups. All other columns were intended to have intermediate
amounts of variance. The conversion algorithm was applied to the artificial dataset resulting
in the matrix shown in Table 2. The mean centered variance/covariance matrix, calculated
from the converted data is shown in Table 3. Analysis of the diagonal elements of the
variance/covariance matrix, which correspond to the variance of the individual amino acid
positions, revealed decreasing variance by amino acid position in the order (9 > 4 > 5 > 8 >
2 > 7 > 1/3 > 6), for the most part consistent with the intended variance designed into the
artificial sequence alignment. An interesting exception is position #1, which should cause
distinction between the two groups, but the position exhibits small variance, it is less
strongly weighted by the algorithm.

PCA was conducted on the variance/covariance matrix. The resulting eigenvectors and
eigenvalues are shown in Table 4. In the PCA scores plot (Fig. 1a), the two groups separated
along the first principal component direction (PC1). The absolute values of the four largest
PC1 loadings decreased in the order 9 > 8 > 2 > 1 (Fig. 1b). Inspection of the raw sequences
in Table 1 illustrates that the variance increases as the number of amino acids occurring in
the position increases (Table 1, column 9). The fact that column eight has greater weighting
than column two in the PC1 loading reflects that five total amino acids vary in column eight
(three amino acids vary in Group 1 and two different amino acids vary in Group 2), whereas
only four amino acids vary in column two (two amino acids vary in each Group 1 and
Group 2). In contrast with the PC1 loadings, the variance/covariance matrix reveals that
column four has greater variance than column eight (Table 3). This occurs because, while
there are seven total amino acids varying across the two groups, one amino acid occurs and
varies in both groups. Likewise, in column five, there are also seven amino acids that vary,
but two vary in both groups, so the variance for this position is smaller than for position
four. Examination of the second principal component (PC2) explains variance not
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segregated by group (Fig. 1a). For example, the strong group-independent variations in
positions #4 and #5 result in large loadings in PCs (Fig. 1a; Table 4). This simple example
using an artificial data set illustrated that the algorithm produced the expected features in the
PCA scores and loadings plots.

Analysis of protein sequences in COG2263
COG2263 represents a small protein sequence family having nine members with 240
aligned amino acid positions within the family. The sequence relationships among the
different proteins were obtained from the PCA scores plot (Fig. 2a). The general positional
relationships of the individual protein sequences in the PCA scores plot were similar to the
positional relationships found in the dendrogram (Fig. 2b). For example, Ta1320 and
TVN0270 are very close in the scores plot and they are adjacent in a common branch in the
dendrogram. PH1948, PAB1205 and AF0205 also had similar positional relationships
between the PCA scores plot and dendogram. Investigation of the sequence alignment for
COG2263 indicates that MJ0284 contains an 11-residue insertion not present in MTH1918.
Whereas the dendogram algorithm groups these two sequences together, our PCA indicates
separation along the PC2 dimension, albeit, the two sequences have PC1 weightings, which
is consistent with sequence clustering in the dendogram. The information contained in the
corresponding loadings plot makes it possible to identify sequence relationships that
dominate the overall protein positional relationships with single amino acid position
resolution. This result follows from PCA theory, where loadings with the large absolute
values contribute the most to determining the direction and distance of separation in the
scores plot. In other words, the sequence position variables with large absolute values of the
loadings are most important in determining those sequence variations that distinguish
protein sequence families.

In order to connect the information contained in the PCA loadings plot with the structure of
the proteins in the sequence family, we used a cutoff equal to 40 % of the Euler distance
from the origin to the most distant loading to identify those amino acid positions that
accounted for the most variance across the family. We then defined four categories of Euler
distances ranging from >90 %, 80–90 %, 60–80 % and 40–60 % of the maximum Euler
distance and these were given distinct color assignments (Fig. 3a). The loadings along with
their colors were mapped onto a representative protein structure, PH1948 (PDB-ID: 1WY7),
as an example, in Fig. 3b, c.

The PCA loadings were also used to identify the most conserved amino acid positions
within the sequence family. For this application, we needed to identify loadings with the
smallest Euler distances. We selected a cutoff threshold with an upper limit corresponding to
5 % of the Euler distance from the origin to the most distant loading (Fig. 4a, b). Again, the
identified loadings were assigned a color according to their corresponding Euler lengths
(Fig. 4a, b) and those loadings having Euler distances <2 % of the maximum were identified
as the most conserved positions within the sequence. Using this threshold, all residue
positions with Euler distances <5 % of the maximum Euler distance were colored on the
ribbon diagram of a representative structure from the sequence family to allow visual
inspection of the locations of conserved positions within the sequence (Fig. 4c, d).

Analysis of protein sequences in Pfam04237
Pfam04237 is composed of more than 1,800 protein sequences with a nominal length of 196
amino acids. We previously conducted a CLANs analysis of this family [28], which revealed
that the family largely divided into two sub-clusters consisting of about 1,400 of the
sequences. Here we focus on just the 1,414 sequences in the two sub-clusters. The CLANs
analysis of this subset of Pfam04237 is shown in Figure S1.
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A natural question, then, is what are the sequence variations that are most responsible for
division of this sequence family into two sub-clusters? Clearly, when the number of protein
sequences becomes large, in this case exceeding 1,400, and/or the number of amino acids in
the protein sequence becomes large, about 196 amino acids per protein, answering this
question becomes increasingly challenging, and well suited for PCA. In our application,
each amino acid position defines a variable for PCA. The weightings or loadings in the PCA
eigenvectors, then, report on the degree to which the variable positions are responsible for
cluster separation. We demonstrate the power of our approach by applying our conversion
method to enable PCA of the >1,400 proteins sequences in the Pfam04327 subset used for
the CLANs analysis above. PCA of this subset produced a scores plot in which the proteins
separate into two statistically significant distinct clusters (Fig. 5), mainly along the PC1
direction.

Analysis of the PCA loadings for this data enabled identification of those amino acid
positions in the sequence family most responsible for sub-cluster separation (Fig. 6a). There
were 44 out of 196 loading points that exceeded a cutoff of 30 % of the maximum loading
Euler distance. Mapping these loadings onto a representative structure from Pfam04327
(PDB-ID: 3H9X) made it possible to visualize where these sequence positions lie on the
structure (Fig. 6b, c).

Alternatively, we can define a cutoff just based on the PC1 weighting for identifying residue
positions responsible for cluster separation, which may be more meaningful in cases where
the cluster separation is mainly along PC1 which is observed in most cases. Accordingly, we
chose 30 % of the maximum PC1 eigenvector weighting as the cutoff (Figure S2a). These
loadings were then mapped onto the representative structure in Figures S2b and S2c. The 30
% cutoff is entirely arbitrary, and can be adjusted to produce any desired number of
sequence positions for consideration. In the extreme case, one could ask what is the single
amino acid position whose variance contributes most to cluster separation, which would be
identified as the largest weighting in the PC1 eigenvector. Alternatively, one could select the
top ten contributors, or the number of contributors that account for a certain extent of
variance in the dataset.

Having used the PCA to identify those amino acid positions most responsible for cluster
separation, we then interrogated the loadings data to identify those amino acid positions that
were most conserved across the family. To do this, we selected a maximum threshold cutoff
of 5 % and all loadings below this threshold were considered the most conserved amino acid
positions. This approach is illustrated in Fig. 7 where 62 out of 196 loadings were identified
as the most conserved residues, and these residues were grouped into four color-coded
categories (0–2 %-red, 2–4 %-orange, 4–5 %-cyan, >5 %-green). The conserved amino acid
positions were mapped onto a representative structure and colored according to their Euler
distances Fig. 7b, c. Euler distances shorter than 2 % of the maximum (colored red)
indicated the most conserved positions across the family.

Finally, repeating this analysis using a maximum threshold of 5 % just along the PC1
direction to identify the most conserved residues across the family (Figure S3a) identified
103 out of 196 loadings and these were assigned a color based on the following categories
(0–2 %-red, 2–4 %-orange, 4–5 %-cyan, >5 %-green). The most conserved loadings were
mapped onto the ribbon diagram of protein 3H9X in Figure S3b and S3c.

Conclusions
In this paper, we introduce a novel method for converting alphabetic designation of amino
acids in aligned protein sequence families into numerical representation intended to be
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useful for PCA. Unlike existing conversion methods, this method does not assign each
amino acid to a fixed number, or represent each amino acid type with a binary vector, but
assigns a number that directly reflects the amino acid variance based on the occurrence
frequencies for each aligned position. The method was tested on a small artificial dataset to
provide insight into the performance of the conversion method, yielding expected results
based on intuition and design of the artificial dataset. The method was then tested on a real
protein sequence family, COG2263, which contained nine protein sequences and 240
aligned amino acid sequence positions. In this example, the PCA was shown to reproduce
the positional sequence relationships for most members identified using a conventional
dendogram analysis. We also illustrated how the Euler distance from the origin to the
loading points, along with consideration of the direction of the Euler vector relative to the
direction of separation of the clusters, could be used to identify sequence positions that
experienced the strongest amino acid variation and these positions were mapped onto a
representative protein structure to elucidate how the most variable amino acid positions
varied in the context of the protein structure. Finally, we applied our method to a large
protein sequence family containing more than 1,800 sequence, for which a subset of >1,400
members grouped into two distinct sub-clusters using the CLANs analysis. Clearly, in this
example, the power of the PCA-based approach was highlighted, given its characteristics for
projecting directions of greatest variance in extremely hyperdimensional spaces onto
eigenspaces composed of a relatively small number of principal components, and by doing
so, making it quite straight-forward to identify those residue positions that were most
strongly responsible for sub-clustering in this large sequence family. We also demonstrated
that we could use an upper limit threshold to identify those residues that were most
conserved across a large dataset.

Overall, we have shown that PCA of protein sequence family using data converted into a
numerical representation that is designed to be appropriate for PCA generates intuitively
reasonable results and enables the power of the PCA approach to be applied to enable
quantitative analysis of protein sequence family relationships. It is also important to note
that our technique does not address the fundamental problem of protein sequence alignment.
Rather, our technique provides a tool to quantitatively analyze variance in amino acid
positions given a multiple sequence alignment. Besides its emphasis on identification of
specific amino acid positions that experience maximum variance in aligned protein
sequences, our PCA-based technique can potentially be used to explore amino acid
covariance relationships in sequence families that might play an important roles in protein
function, structure, and biophysical properties such as solubility and stability.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
PCA of the artificial test dataset. The PCA scores plot (PC1 vs PC2) is shown in a and the
corresponding PCA loadings plot is shown in b. The first two PCs explained 78.1 % of total
variance including 63 % contribution of PC1
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Fig. 2.
PCA scores plot and dendogram of COG2263. The PCA scores plot (PCA1 vs PCA2) of
COG2263 is shown in a and the dendrogram of COG2263 from the NCBI (http://
www.ncbi.nlm.nih.gov/) is shown in b. The first two PCs explained 57.1 % of total variance
including 32 % contribution of PC1
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Fig. 3.
Identification of the most variable amino acid positions within COG2263. The PCA loadings
plot (PC1 vs PC2) is shown in a. The Euler distance to the centroid was calculated and a
cutoff corresponding to 40 % of the largest Euler distance was used to filter the data (Red
dashed-line circle). There were 51 out of 240 amino acid positions that exceeded the cutoff.
These were color-coded according to decreasing percentage of the maximum Euler distance
as follows: Red (>90 %) >Orange (80–90 %) > Yellow (60–80 %) > Cyan (40–60 %) >
Green (< 40 %). The ribbon-rendering of protein (PDB-ID: 1WY7) was color-coded
according to the loadings and two different views are shown in b and c
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Fig. 4.
Identification of most strongly conserved residues from the PCA loadings. The PCA
loadings plot (PC1 vs PC2) is shown in a, and the region enclosed in the black frame is
shown in b. The Euler distance to the centroid was calculated, and a circle with an Euler
radius corresponding to 5 % of the largest loading was used as an upper limit to filter the
data (Red broken-line cycle). In the figure 89 out of 240 amino positions had Euler
distances<5 % cutoff and these were color-coded according to Red <Orange < Cyan <
Green. In c and d (rotated by 180°), the most conserved amino acid positions were colored
in the ribbon representations of the protein (PDB-ID: 1WY7) using the same color assigned
to the loadings plot data
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Fig. 5.
Scores plot from the PCA of the 1,414 protein sequence subset of Pfam04327. The larger
sub-cluster is composed of 1,040 sequences and the blue cluster is composed of 374
sequences. About 41 % of the variance explained by the first two PCs including 30 %
contribution of PC1
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Fig. 6.
PCA loadings data mapped onto a representative structure from Pfam04327. The PCA
loadings plot (PC1 vs PC2) is shown in a. The longest Euler distance from the centroid to a
loadings point was determined and a distance equal to 30 % of the largest Euler distance was
used as an upper limit cutoff. Loading points beyond a circle centered at the origin with a
radius equal to the upper limit cutoff (red dashed-line circle) were considered important for
driving cluster separation. Loading points were color-coded according to their distance
relative to the longest Euler distance as indicated in the plot with red >orange > yellow >
cyan > green. The ribbon diagrams of a representative structure from Pfam04327 (PDB-ID:
3H9X) are shown in two different orientations b and c (rotated by 180°) with important
amino acid positions colored according to the same scheme used in the loading plot
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Fig. 7.
Analysis of the PCA loadings data for Pfam04327 to identify conserved residue positions.
The PCA loadings plot (PC1 vs PC2) is shown in a and a zoomed-in view contained in the
black box in a is shown in b. Euler distances to the centroid were calculated, and a distance
equal to 5 % of the largest was used to filter the data (red broken-line circle). The ribbon
rendering of a representative from Pfam04327 (PDB-ID: 3H9X) is shown in two different
views in c and d (rotated by 180°) with the amino acid positions colored as indicated in the
figure

Wang and Kennedy Page 16

J Struct Funct Genomics. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wang and Kennedy Page 17

Ta
bl

e 
1

A
rt

if
ic

ia
l t

es
t d

at
as

et
 d

iv
id

ed
 in

to
 tw

o 
gr

ou
ps

 (
G

ro
up

 #
1:

 1
–1

0 
&

 G
ro

up
#2

: 1
1–

20
)

P
os

it
io

n 
#1

P
os

it
io

n 
#2

P
os

it
io

n 
#3

P
os

it
io

n 
#4

P
os

it
io

n 
#5

P
os

it
io

n 
#6

P
os

it
io

n 
#7

P
os

it
io

n 
#8

P
os

it
io

n 
#9

Se
qu

en
ce

 #
1

A
A

A
C

F
C

C
D

A

Se
qu

en
ce

 #
2

A
C

C
D

G
C

D
E

A

Se
qu

en
ce

 #
3

A
A

A
E

H
C

C
F

A

Se
qu

en
ce

 #
4

A
C

C
F

I
C

D
D

A

Se
qu

en
ce

 #
5

A
A

A
C

F
C

C
E

A

Se
qu

en
ce

 #
6

A
C

C
D

G
C

D
F

A

Se
qu

en
ce

 #
7

A
A

A
E

H
C

C
D

A

Se
qu

en
ce

 #
8

A
C

C
F

I
C

D
E

A

Se
qu

en
ce

 #
9

A
A

A
C

F
C

C
F

A

Se
qu

en
ce

 #
10

A
C

C
D

G
C

D
D

A

Se
qu

en
ce

 #
11

C
D

A
F

C
C

D
A

H

Se
qu

en
ce

 #
12

C
E

C
G

D
C

F
G

I

Se
qu

en
ce

 #
13

C
D

A
H

F
C

D
A

K

Se
qu

en
ce

 #
14

C
E

C
F

G
C

F
G

L

Se
qu

en
ce

 #
15

C
D

A
G

C
C

D
A

M

Se
qu

en
ce

 #
16

C
E

C
H

D
C

F
G

N

Se
qu

en
ce

 #
17

C
D

A
F

F
C

D
A

P

Se
qu

en
ce

 #
18

C
E

C
G

G
C

F
G

Q

Se
qu

en
ce

 #
19

C
D

A
H

C
C

D
A

R

Se
qu

en
ce

 #
20

C
E

C
F

D
C

F
G

S

J Struct Funct Genomics. Author manuscript; available in PMC 2015 March 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wang and Kennedy Page 18

Ta
bl

e 
2

C
on

ve
rt

ed
 a

rt
if

ic
ia

l t
es

t d
at

as
et

 d
iv

id
ed

 in
to

 tw
o 

gr
ou

ps
 (

1–
10

 a
nd

 1
1–

20
)

P
os

it
io

n 
#1

P
os

it
io

n 
#2

P
os

it
io

n 
#3

P
os

it
io

n 
#4

P
os

it
io

n 
#5

P
os

it
io

n 
#6

P
os

it
io

n 
#7

P
os

it
io

n 
#8

P
os

it
io

n 
#9

Se
qu

en
ce

 #
1

2
4

2
5

6
1

2
3

11

Se
qu

en
ce

 #
2

2
3

1
4

5
1

3
2

11

Se
qu

en
ce

 #
3

2
4

2
1

2
1

2
1

11

Se
qu

en
ce

 #
4

2
3

1
6

1
1

3
3

11

Se
qu

en
ce

 #
5

2
4

2
5

6
1

2
2

11

Se
qu

en
ce

 #
6

2
3

1
4

5
1

3
1

11

Se
qu

en
ce

 #
7

2
4

2
1

2
1

2
3

11

Se
qu

en
ce

 #
8

2
3

1
6

1
1

3
2

11

Se
qu

en
ce

 #
9

2
4

2
5

6
1

2
1

11

Se
qu

en
ce

 #
10

2
3

1
4

5
1

3
3

11

Se
qu

en
ce

 #
11

1
2

2
6

4
1

3
5

10

Se
qu

en
ce

 #
12

1
1

1
3

3
1

1
4

9

Se
qu

en
ce

 #
13

1
2

2
2

6
1

3
5

8

Se
qu

en
ce

 #
14

1
1

1
6

5
1

1
4

7

Se
qu

en
ce

 #
15

1
2

2
3

4
1

3
5

6

Se
qu

en
ce

 #
16

1
1

1
2

3
1

1
4

5

Se
qu

en
ce

 #
17

1
2

2
6

6
1

3
5

4

Se
qu

en
ce

 #
18

1
1

1
3

5
1

1
4

3

Se
qu

en
ce

 #
19

1
2

2
2

4
1

3
5

2

Se
qu

en
ce

 #
20

1
1

1
6

3
1

1
4

1

J Struct Funct Genomics. Author manuscript; available in PMC 2015 March 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wang and Kennedy Page 19

Ta
bl

e 
3

V
ar

ia
nc

e/
co

va
ri

an
ce

 m
at

ri
x 

fo
r 

th
e 

co
nv

er
te

d 
da

ta
 s

ho
w

n 
in

 T
ab

le
 2

#1
#2

#3
#4

#5
#6

#7
#8

#9

#1
0.

26
0.

53
0

0.
05

3
−

0.
11

0
0.

13
−

0.
63

1.
45

#2
0.

53
1.

32
0.

26
−

0.
11

0.
05

3
0

0.
39

−
1.

16
3.

02

#3
0

0.
26

0.
26

−
0.

21
0.

26
0

0.
13

0.
1

0.
13

#4
0.

05
3

−
0.

11
−

0.
21

3.
16

0.
42

0
0.

16
−

0.
05

3
0.

37

#5
−

0.
11

0.
05

3
0.

26
0.

42
2.

83
0

0.
07

9
0.

23
−

0.
45

#6
0

0
0

0
0

0
0

0
0

#7
0.

13
0.

39
0.

13
0.

16
0.

07
9

0
0.

72
−

0.
02

6
0.

99

#8
−

0.
63

−
1.

16
0.

1
−

0.
05

3
0.

23
0

−
0.

02
6

2.
01

−
3.

34

#9
1.

45
3.

03
0.

13
0.

37
−

0.
45

0
0.

99
−

3.
34

12
.3

J Struct Funct Genomics. Author manuscript; available in PMC 2015 March 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wang and Kennedy Page 20

Ta
bl

e 
4

E
ig

en
ve

ct
or

s 
an

d 
ei

ge
nv

al
ue

s 
fr

om
 d

ia
go

na
liz

at
io

n 
of

 th
e 

va
ri

an
ce

/c
ov

ar
ia

nc
e 

m
at

ri
x 

in
 T

ab
le

 3

P
C

1
P

C
2

P
C

3
P

C
4

P
C

5
P

C
6

P
C

7
P

C
8

P
C

9
E

V

.1
1

−
.0

10
−

.0
1

−
.1

6
.1

5
.0

21
−

.5
2

−
.0

10
−

.8
2

14
.4

.2
4

−
.0

23
.1

4
−

.2
2

.5
9

−
.4

7
−

.3
7

.0
0

.4
1

3.
46

.0
1

−
.0

1
.1

6
.1

1
.3

0
−

.5
1

.6
7

−
.0

0
−

.4
1

2.
61

.0
29

.8
2

−
.5

5
−

.0
44

.0
67

−
.1

1
.0

32
.0

0
.0

0
1.

22

−
.0

39
.5

6
.8

1
−

.0
64

−
.1

4
.0

88
−

.0
49

−
.0

0
.0

0
.7

8

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

.0
0

1.
00

−
.0

1
.3

1

.0
75

.0
64

.0
37

.3
4

.6
7

.6
4

.1
2

.0
0

.0
0

.0
62

−
.2

8
.0

47
.0

24
.8

4
−

.0
44

−
.3

0
−

.3
5

−
.0

0
−

.0
0

.0
0

.9
2

.0
14

.0
19

.3
0

−
.2

5
−

.0
10

.0
37

.0
0

.0
0

.0
0

T
he

 f
ir

st
 n

in
e 

co
lu

m
ns

 r
ep

re
se

nt
 th

e 
lo

ad
in

gs
 o

f 
th

e 
ni

ne
 e

ig
en

ve
ct

or
s 

or
de

re
d 

fr
om

 le
ft

 to
 r

ig
ht

. T
he

 la
st

 c
ol

um
n 

is
 th

e 
ve

ct
or

 o
f 

ei
ge

nv
al

ue
s

J Struct Funct Genomics. Author manuscript; available in PMC 2015 March 01.


