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Abstract
It has been hypothesized that known words in the lexicon strengthen newly formed representations
of novel words, resulting in words with dense neighborhoods being learned more quickly than
words with sparse neighborhoods. Tests of this hypothesis in a connectionist network showed that
words with dense neighborhoods were learned better than words with sparse neighborhoods when
the network was exposed to the words all at once (Experiment 1), or gradually over time, like
human word-learners (Experiment 2). This pattern was also observed despite variation in the
availability of processing resources in the networks (Experiment 3). A learning advantage for
words with sparse neighborhoods was observed only when the network was initially exposed to
words with sparse neighborhoods and exposed to dense neighborhoods later in training
(Experiment 4). The benefits of computational experiments for increasing our understanding of
language processes and for the treatment of language processing disorders are discussed.
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INTRODUCTION
It is generally accepted that representations of phonological segments, lexical word-forms,
and semantic information (among other types of representations) are involved in the
production and recognition of spoken words (e.g., Dell, Schwartz, Martin, Saffran &
Gagnon, 1997; Vitevitch & Luce, 2005). These representations also play a role in, and
indeed must be formed in the acquisition of new words (Storkel & Morrisette, 2002). When
one encounters a novel word, one must activate the existing representations of phonological
segments until a new lexical representation can be created and associated with the
appropriate meaning. Much research has examined the biases that influence how children
learn the meanings of new words (e.g., Gershkoff-Stowe & Smith, 2004). The present
investigation, however, focused on another part of the word-learning process, namely the
formation of lexical representations, or phonological word-forms, and examined how
existing lexical representations influence the acquisition of novel word-forms.

Infants (Hollich, Jusczyk & Luce, 2002), toddlers (Storkel, 2009), preschool children
(Storkel, 2001; 2003) and college-age adults (Storkel, Armbruster, & Hogan, 2006; see also
Stamer & Vitevitch, 2012) learn novel words that sound similar to many known words (i.e.,
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the novel word has a dense neighborhood) more readily than novel words that sound similar
to few known words (i.e., the novel word has a sparse neighborhood).1 This influence of
existing words on the acquisition of novel words has been found when the novel words are
nouns (Storkel, 2001), verbs (Storkel, 2003), or homonyms (Storkel & Maekawa, 2005), and
has also been found in naturalistic contexts, in addition to laboratory-based experiments
(Storkel, 2004; 2009).

To account for the influence of existing lexical representations on the acquisition of a novel
word-form, Storkel et al. (2006) suggested that the partial phonological overlap that exists
between the novel word and the representations of known words in the lexicon strengthen
the newly formed lexical representation of a novel word (see also Jusczyk, Luce, & Charles–
Luce, 1994). A newly formed representation that resembles many known words in the
lexicon will be strengthened to a greater extent then a newly formed representation that
resembles few known words in the lexicon, hence the advantage for learning novel words
with dense compared to sparse neighborhoods.

This account of how existing lexical knowledge affects the process of word-learning is
appealing for several reasons including that it is intuitive and simple to understand.
However, it lacks the necessary detail to make precise predictions about how the process of
word learning might be affected by differences among word-learners or by differences in the
word-learning environment. To better explore these questions, we developed a simple
computer model (using connectionist principles) that captured the essence of the account
proffered by Storkel et al. (2006).

Although a number of computational models of the process of “word-learning” in children
have been previously developed, many have focused on the acquisition of conceptual
information, or the acquisition of the association between conceptual information and the
lexical word-form rather than focus solely on how lexical knowledge influences the
acquisition of word-forms, as in the present case (e.g., Cottrell & Plunkett, 1994; Gasser &
Smith, 1998; Howell, Jankowicz & Becker, 2005; Plunkett, Sinha, Moller, & Strandsby,
1992; Yu, 2005). Models that have investigated the acquisition of word-forms have not
accounted for the influence of neighborhood density on word-learning (e.g., Plunkett &
Marchman, 1996; Li, Zhao & MacWhinney, 2007; Regier, 2005; Sibley, Kello, Plaut &
Elman, 2008). Rather then modify an existing model, we found it more advantageous to
build our own computational model, allowing us to focus solely on the influence of
neighborhood density on word-learning (N.B., we do not deny that syntactic, semantic, and
other factors influence word-learning, we simply wished to focus on this one aspect of word-
learning, specifically, how the number of existing, similar sounding word-forms influences
the acquisition of novel word-forms).

In the present studies we used a multi-layered, auto-associative network with distributed
representations, trained with the back-propagation learning algorithm to test how existing
words in the lexicon influence the acquisition of novel words. A multi-layered network has
several layers of processing units—input, hidden, and output units—whereas a single-
layered network lacks hidden units. An associative network must learn that two patterns are

1Neighborhood density refers to the number of words, or neighbors, that are phonologically similar to a target word. Phonological
similarity is often defined operationally using an edit distance of one phoneme (Levenshtein, 1966). That is, a word is phonologically
similar to a target word if that word can be formed by the substitution, addition, or deletion of a single phoneme in the target word
(e.g., Greenberg & Jenkins, 1967; Landauer & Streeter, 1973; Luce & Pisoni, 1998). According to this definition, the words hat, cut,
cap, scat, and _at can be considered phonologically similar to the word cat (cat has other words as neighbors, but only a few were
listed for illustrative purposes). Similarity between words has also been defined using only substitutions (e.g., Vitevitch, 2002;
orthographically see: Davis, Perea & Acha, 2009) as well as other methods based on behavioral confusions of phonemes (see Luce &
Pisoni, 1998). There is, of course, a strong correlation between the number of neighbors formed by the substitution, addition, or
deletion metric and the substitution-only metric.
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related to each other. When the network is presented with one pattern, the network must
compute the other associated pattern. In the case of an auto-associative network, the pattern
that is computed is identical to the one that is initially presented to the model (e.g., produce
X when given X). In contrast, a hetero-associative network must learn to associate two
different patterns (e.g., produce Y when given X). Both types of associative networks are
ideally suited for the efficient storage of patterns that must be produced at some later point
in time (Rumelhart, McClelland, et al., 1986).

Although it might be tempting to view the auto-associative network as an analogue of
various tasks commonly used in psycholinguistic experiments of word-learning—such as the
nonword repetition task in which a child hears a novel word-form and must repeat it aloud
as quickly and as accurately as possible (e.g., Gathercole, 2006)—it is important to note that
we did not create a computer simulation of human performance in the nonword repetition
(or any other) task. Rather, we are using a simple, computational model to examine how
knowledge is structured in the mental lexicon, and how current knowledge might affect the
acquisition of new word-forms. In order to assess the knowledge that the network has, we
examined how well it learned to associate input and output patterns that were identical.
Presenting the network with a pattern and examining the output that it produces is simply
one way to evaluate the knowledge of the network; see the Results and Discussion section of
the present studies for another method we used to evaluate the knowledge that the network
acquired (i.e., generalization—accuracy in producing patterns that the network was not
trained on).

One account for the acquisition of novel word-forms (Storkel et al., 2006; among others)
suggests that the partial phonological overlap between a novel word and known words in the
lexicon serves to strengthen the newly formed lexical representation of the novel word.
However, in the case of spoken word recognition (e.g., Luce & Pisoni, 1998), phonological
overlap results in increased confusability among word-forms, making it more difficult to
quickly and accurately retrieve a known word-form from the lexicon. Similarly, Swingley
and Aslin (2007) suggested that the partial phonological overlap among words leads to
competition during word-learning. In Experiment 1 we examined whether similar sounding
words would indeed facilitate (or interfere with) the acquisition of lexical word-forms.

In Experiment 2 we examined whether the network could extract relevant information from
the patterns that it was presented with if the words containing those patterns were presented
over time, much like a human language-learner is presented with the words it must acquire,
instead of all at once as in Experiment 1. Finally, in Experiments 3 and 4 we made various
manipulations—such as reducing cognitive resources, or exposing the model to learning
environments that might retard typical development—that are difficult or unethical to
implement in experiments with human language-learners to explore how word-learning
might be affected by these conditions.

Although the computational model used in the present study is admittedly simple, such
models can nevertheless provide us with several important insights, as discussed by
Lewandowsky (1993; see also Norris, 2005) and others. Namely, the computational model
made explicit the mechanisms of word learning that were previously described only in
verbal form (Jusczyk, Luce, & Charles-Luce, 1994; Storkel et al., 2006). Making the
hypothesized mechanisms of word learning explicit in a computational model prevents one
from making predictions that are contradictory or logically incompatible—which might
occur unintentionally when making predictions from a model that exists only in verbal form.
Furthermore, the model that we developed in the present study enabled us to explore the
influence of variables and conditions that—for ethical and practical reasons—would be
impossible to examine in real word-learners.
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EXPERIMENT 1
A connectionist network of the type employed in the present study (multi-layered, auto-
associative network with distributed representations) appears ideally suited for capturing the
essence of the verbal theory of word-learning proposed by Storkel et al. (2006; see also
Jusczyk, Luce, & Charles-Luce, 1994). Recall that Storkel et al. (2006) suggested the partial
phonological overlap between a novel word and known words in the lexicon serves to
strengthen the newly formed lexical representation of the novel word. That is, the novel
word and the known words share certain sub-patterns, or regularities. The newly formed
representation of a novel word with a sub-pattern or regularity that is more prevalent in the
lexicon (i.e., the phonological sub-pattern is found in many words) will be strengthened to a
greater extent then a newly formed representation of a novel word with a sub-pattern that is
less prevalent in the lexicon, accounting for the advantage in learning novel words with
dense neighborhoods observed in a number of word-learning studies.

The effect of shared sub-patterns or regularities on learning has also been examined in
previous research with connectionist networks used to model various cognitive processes.
The influence of these regularities and sub-patterns on learning has been referred to as a
conspiracy effect, and comes about in connectionist models in the following way
(Rumelhart, McClelland et al., 1986; pg. 81):

When a new item is stored, the modifications in the connection strengths must not
wipe out existing items. This can be achieved by modifying a very large number of
weights very slightly. If the modifications are all in the direction that helps the
pattern that is being stored, there will be a conspiracy effect: The total help for the
intended pattern will be the sum of all the small separate modifications…

In a connectionist model of the lexicon, a novel word-form that is similar to—by the virtue
of sharing sub-patterns with—many existing words in the lexicon will produce many small
changes in the connection weights. Adding up many small changes in the connection
weights will facilitate the storage of that novel item. In this way, the representation of a
novel word may be “strengthened” by the representations of known words that sound similar
to it. In contrast, a novel word-form that is similar to few existing words in the lexicon will
produce fewer small changes in the connection weights. Adding up fewer small changes in
the connection weights results in less benefit for the storage of that novel item.

Although it seems straightforward that known patterns will facilitate the acquisition of
similar novel patterns in both humans (learning words) and connectionist networks, other
studies of connectionist networks have found that similarity among items may lead to
interference or confusability among the similar items, and be detrimental to learning
(Rumelhart, McClelland et al., 1986). A similar detriment to learning (perhaps) resulting
from similarity between known and novel items has also been observed in studies of word-
learning in humans (e.g., in typically developing children, Swingley & Aslin, 2007; in
children with speech sound delays, Storkel, 2004). We, therefore, thought it prudent to
verify that a multi-layered, auto-associative network with distributed representations would
indeed capture the essence of the verbal theory of word-learning proposed by Storkel et al.
(2006; see also Jusczyk, Luce, & Charles-Luce, 1994). If this type of connectionist network
does indeed show a “conspiracy effect,” then such a model will be suitable for further
exploring questions related to the influence of neighborhood density on word-learning.

METHODS

Network architecture: A multi-layer network consisting of 18 input units, 6 hidden units,
and 18 output units was created with tLearn (Plunkett & Elman, 1997). Each of the input
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units was connected to each of the hidden units. Similarly, each of the hidden units was
connected to each of the output units. All connections were feed-forward only; there were no
feedback connections. That is, the input units fed information to the hidden units, and the
hidden unit fed information to the output units; information did not flow “backwards” from
the output units to the hidden units, nor from the hidden units to the input units.

Five “seeds” were used to initialize the random settings on the connection weights. The
same five seeds were used to test both sets of stimuli (described below). One can think of
each network “seed” as an individual participant in a conventional in vivo experiment,
thereby allowing us to more broadly generalize the results of our experiments. Initial bias
offset, used to introduce non-linearity into the network, was set to zero. The initial weights
were randomly distributed in the range ± .5. The learning rate, which determines how fast
the weights are changed, was set to .1000. Momentum, which determines the proportion of
the weight changes from the previous learning trial that will be used on the current learning
trail, was set to .0003 (Plunkett & Elman, 1997). These values were the same for, and held
constant throughout all of the Experiments that are reported.

The input activation function to the nodes is given in Equation 1:

(Eq. 1)

where the net input to node i is the sum of the activation aj of the nodes that send to node i,
and wij refers to the weights on the connections from nodes j to node i. The output
activation function of each node is given in Equation 2:

(Eq. 2)

where ai refers to the output of nodei, neti is the net activation flowing into the node, and e is
the exponential.

The 18 input units received 18-bit vectors containing 1’s and 0’s as input. The first 6 bits in
the vector represented the initial segment of a word, bits 7–12 in the vector represented the
medial segment of a word, and bits 13–18 in the vector represented the final segment of a
word. Because the same 18 input units were used to represent each word that the network
had to learn, distributed representations were used in this network to represent phonetic-like
“micro-features,” described in more detail below (Rumelhart, McClelland et al., 1986).
Distributed representations contrast with localist representations in which a single
processing unit responds to a concept or entity. If localist representations were used to
represent words in the present network, the model would be limited to acquiring only 18
words.

Stimuli: The network was presented with short “words” comprised of 3 phonological
segments in a consonant-vowel-consonant syllable structure. (We use the term “word” with
some liberty. All of these sequences were equally novel to the networks even though some
of the sequences we created correspond to real words in English. The frequency with which
the words were presented to the network was the same for each word. That is, “word
frequency” was controlled.) Words were created using 10 consonants that were acquired
relatively early in English (/p/, /b/, /k/, /g/, /t/, /d/, /f/, /v/, /m/, /n/), and 10 vowels, primarily
monophthongs and nonphonemic dipthongs (/i/, /ɪ/, /e/, /ε/, /æ/, /u/, /ʊ/, /o/, /ɔ/, /ɑ/).

Six bits were used to code phonetic-like features for each segment in the words. The first bit
coded the consonantal nature of the segment (1 = consonant, 0 = vowel). The second bit
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coded voicing (1 = voiced, 0 = voiceless). The third and fourth bits coded information that
roughly corresponded to manner of articulation with the third bit coding for sonority in the
consonants and for tenseness in the vowels, and the fourth bit coding for continuance in the
consonants and for roundedness in the vowels. The fifth and sixth bits coded information
that roughly corresponded to place of articulation with the fifth bit coding an anterior place
of articulation, and the sixth bit coding for coronal articulation in consonants, or middle
tongue height in vowels. Thus the word /vot/ would be presented to the network as
110110011101100011. Because of the limited number of features used to represent the
phonemes, no central vowels were used.

The use of phonetic-like “micro-features” (Rumelhart, McClelland et al., 1986) contrasts
with the approach that has been used in some simulations looking at other aspects of
language in which a whole word is represented with random bit vectors (e.g., Ellis &
Lambon Ralph, 2000). Our decision to use micro-features should not be construed as a
commitment to a particular linguistic, phonological, phonetic, or other type of theory.
Rather, we simply wished to mimic (in an admittedly simplified way) the manner in which
larger elements (i.e., words) are formed by combining smaller elements (i.e., phonemes) in
real, human language (see Brousse & Smolensky (1989) for a discussion of this type of
combinatorial representational scheme). Furthermore, we used vectors to represent phonetic-
like features rather than an arbitrary vector to represent the phonemes to give the network
input that resembled, at least in a rudimentary way, the input a human word-learner receives.

Trained Items—Using this set of phonetic-like features, we created 60 CVC sequences
(listed in the appendix) to train and assess the performance of the connectionist network.
Eighteen of those items were designated “target” items, with the remaining 42 being
“neighbors” of the targets. Of the 18 targets, 3 were designated to have a dense
neighborhood, and 15 were designated to have a sparse neighborhood. Each dense target had
9 neighbors, with three neighbors being formed by a substitution in each of the three
phoneme positions. Each of the sparse targets had a single neighbor, with 5 sparse targets
having a neighbor being formed by a substitution in the initial phoneme position, 5 sparse
targets having a neighbor being formed by a substitution in the medial phoneme position,
and 5 sparse targets having a neighbor being formed by a substitution in the final phoneme
position.

The construction of phonological neighbors using only the substitution of phonemes enabled
us to use words of all the same length, which greatly simplified the architecture of the
network. This decision should not be construed as a commitment to any theoretical or
operational definition of neighbors, phonological similarity, etc. Further note that
“neighbors” have also been defined in psycholinguistic experiments using only substitutions
of phonemes as well as the substitution, addition, and deletion of phonemes (see Vitevitch,
2002; Davis, Perea & Acha, 2009).

No word was a neighbor of more than one target. In total there were 30 items distributed
across 3 neighborhoods that were designated as being part of a dense neighborhood, and 30
items distributed across 15 neighborhoods designated as being part of a sparse
neighborhood.2

Generalization Items—Using the same phonetic-like features, an additional 24 CVC
sequences were created. Importantly, the network was not trained on any of these items.
Rather, these untrained items were used to test how well the model generalized the
knowledge it may have acquired from the items in the training set. If the network shows
comparable performance on the “generalization items” as it does on the items it was trained
on, this would suggest that the network extracted important information about the
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regularities found in the input, and could use that information to process the novel items.
However, if the network fails to perform on the “generalization items” as it did on the
trained items, this would suggest that the network learned only about the peculiarities of the
trained items rather than more general information about the words it was trained on.

The 24 generalization items consisted of the following items: for each dense target, 3 new
neighbors were created (one formed by a substitution in each phoneme position), and for
each sparse target 1 new neighbor was created. For the sparse targets, 5 targets had
generalization items formed by a substitution to the phoneme in the initial position, 5 targets
had generalization items formed by a substitution to the phoneme in the medial position, and
5 had generalization items formed by a substitution to the phoneme in the final position. In
each case, 3 of the 5 generalization items for the sparse targets were formed by a substitution
in the same position as the trained neighbor, and one of the 5 generalization items was
formed by a substitution in each of the other positions than the trained neighbor.

To ensure that the results we obtained from the experiments were not due to unique
characteristics of the targets, neighbors, or generalization items, we rearranged the targets
such that some of the items that had previously been designated “sparse” targets were now
“dense” targets, and vice versa. Compare, for example, the word /vot/ and its neighbors in
List A and in List B. In List A, /vot/ was designated as a target word with a dense
neighborhood, whereas in List B, the same word was designated as a target word with a
sparse neighborhood. A new set of neighbors and generalization items were created
following the same guidelines described above. One can think of the use of two
“vocabularies” in the present experiment as being analogous to the counterbalancing of
stimuli in a conventional in vivo experiment, thereby allowing us to more broadly generalize
the results of our experiments. Each network “seed” was trained and tested on both
vocabularies.

Procedure: The connectionist network was trained with all of the 18 targets, and all of the
42 neighbors for 1000 epochs using 5 different initial randomizations of connection weights.
That is, all of the words were presented to the network for training regardless of whether
they were targets or neighbors, and whether they were dense or sparse (with the exception of
the generalization items, which the network was never trained on). The words were
presented randomly without replacement. The same randomized start-states were used to
train the network on the other set of 18 targets, and 42 neighbors for 1000 epochs; again
presentation and training of the words occurred all at once. Training (i.e., adjustment of the
connection weights) was accomplished using the back-propagation learning algorithm
(Elman et al., 1996). Weights were updated after the presentation of each pattern. Because
our targets were 1s and 0s, cross-entropy error was used during training (to allow errors to
continue to modify the connection weights even though the nodes may have saturated), but
root-mean-square error (RMSE) was analyzed in what follows.

2Given the number of stimuli that we created, the limited number of phonological segments in our inventory, the constraint on word
length, and the constraint that a word could not be the neighbor of more than one target word it was inevitable that the frequency with
which particular segments appeared in the words varied (perhaps analogous to phonotactic probability in real languages; Vitevitch &
Luce, 2005). For example, in the words in List A /p/ occurs in the onset position of trained items (targets and neighbors) a total of 4
times, whereas /v/ occurs in the onset position of trained items (targets and neighbors) a total of 11 times. Also, the frequency with
which the segments occurred in dense and sparse trained items varied, such that a given segment tended to occur more often in sparse
items than in dense items. Note that the trend for segment frequency leads to the prediction that if segment frequency causes a
difference in the acquisition of words, then a learning advantage should be observed in the following simulations for sparse words
over dense words (contrary to the prediction of the model proposed by Storkel et al., 2006).
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RESULTS AND DISCUSSION
The data in the following computational experiments were analyzed in a manner analogous
to the group studies employing human participants (cf., Spieler & Balota, 1997). That is,
overall performance for each network (i.e., participant) was assessed by computing the mean
root-mean-square error (RMSE; or simply referred to as error in the text that follows)
between the vector representing the output produced by the network and the desired output
vector (i.e., a vector identical to the input vector) for the dense and sparse items of interest.
Smaller error values indicate that the output of the model was closer to the desired output,
suggesting better learning by the network. By contrast, larger error values indicate that the
output of the model was further from the desired output, suggesting poorer learning by the
network.

Analysis of variance (ANOVA) was used to compare the performance of the networks on
the two groups of words. This method of analysis allowed us to determine if the (group of)
networks produced a pattern of word-learning that was qualitatively similar to the pattern of
word-learning observed in (groups of) human participants: dense words are strengthened
more than and therefore learned more readily than sparse words.

Trained Items
For the targets, the dense targets had less error (mean = .632, sd = .121) than the sparse
targets (mean = 1.073, sd = .075), suggesting that the network more readily learned the
dense targets than the sparse targets, F (1, 9) = 56.23, p < .0001. Similarly, for the
neighbors, the words in the dense neighborhood had less error (mean = .945, sd = .038) than
the words in the sparse neighborhood (mean = 1.013, sd = .052), suggesting that the network
more readily learned the dense neighbors than the sparse neighbors, F (1, 9) = 17.07, p < .
01.

Notice that the size of the effect for the targets is larger than the size of the effect for the
neighbors, even though all of the targets and neighbors were trained at the same time. To
better understand this difference it might be helpful to refer to the stimuli listed in the
appendix. First consider the sparse items. Each sparse target had only 1 word that was
phonologically similar to it, namely the neighbor. Each neighbor in the sparse category also
had only 1 word that was phonologically similar to it, namely the target word. Therefore,
each sparse word (whether it was a target or a neighbor) was strengthened by the sub-
patterns that occurred in only one other word.

Now consider, for example, the dense target word /vot/, which has 9 words that are
phonologically similar to it: /bot, dot, got, væt, vʊt, vct, vop, vog, vof/. The representation of
the target word /vot/ was strengthened by the sub-patterns (e.g., _ot, v_t, vo_) that occur in
those 9 neighbors. Now consider one of the neighbors of the target word /vot/, like /bot/. The
word /bot/ has only 3 words that are phonologically similar to it: the target word /vot/, and
the neighbors of the target word, /dot/ and /got/, which are also neighbors of the target /vot/.
The difference in the number of words that are phonologically similar to each target and to
each neighbor in the dense category—and therefore the number of sub-patterns that serve to
strengthen each target and each neighbor—may account for the difference in the size of the
effect for the targets and the neighbors.

Generalization Items
To further test how known word forms influence the acquisition of novel words we
examined how the networks would respond to word-forms that they had not been trained on
(i.e., the “generalization items”). If the networks simply learned the peculiarities of the items
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they were trained on, then the networks should perform quite poorly on the generalization
items, and should not show a processing advantage for untrained words that are part of a
dense neighborhood. Alternatively, if the networks extracted relevant sub-patterns from the
input, and were able to exploit that information, then the networks should show an
advantage in processing the novel words that are part of a dense neighborhood by producing
smaller RMSE values for those generalization items. The results show that novel items that
belonged to the dense neighborhoods had less error (mean = 1.13, sd = .032) than the novel
items that belonged to the sparse neighborhoods (mean = 1.23, sd = .062), F (1, 9) = 19.41,
p < .01, suggesting that the networks did indeed extract relevant sub-patterns from the input,
and were able to exploit those sub-patterns to “strengthen” the representations of the novel
words in the generalization set.

The results of the present experiment show that a “conspiracy” among sub-patterns found in
many words serves to strengthen the representations of the words that contain those sub-
patterns. Evidence of such “strengthening” was observed in the words that the network was
initially trained on—compare the size of the effect for the targets and for the neighbors—
and was also observed in a set of novel words that contained those sub-patterns (i.e., the
generalization items).

The results of the present experiment also suggest that the sub-patterns that are extracted
from the words are larger than individual segments. As discussed in Footnote 2, the
frequency with which the phonological segments occurred in the words varied in such a way
that there tended to be more occurrences in the sparse words than in the dense words. This
disparity might lead one to predict that the “additional practice” received by the segments in
words with sparse neighborhoods should give sparse words a benefit in acquisition. The
results of the present experiment, however, showed the opposite result: words with dense
neighborhoods were learned better than words with sparse neighborhoods. This does not
mean that the frequency with which segments occur in words (i.e., phonotactic probability)
does not affect processing, or more specifically word-learning; indeed work by Storkel and
Lee (2011) suggests that it does. Rather we believe that the influence of phonotactic
probability may be due to another level of representation (i.e., something smaller than
words, like biphones or phones, which are representations that were not included in the
present model), or a different process related to word-learning (i.e., a process that signals the
cognitive system that the input is not known and should be learned as described in Storkel
(2011); the word-learning problems exhibited by children with functional phonological
delays as reported in Storkel (2004) is also consistent with the hypothesis that lexical and
sub-lexical representations are involved in word-learning).

The conspiracy effect observed in our connectionist network provides us with a
computational model that is more detailed than the verbal theory of word learning proposed
by Storkel et al. (2006), which suggested that known words with dense neighborhoods
strengthened representations of novel words to a greater degree than known words with
sparse neighborhoods. Although this model does not account for all aspects of word-
learning, the model does capture an important part of word-learning, and enables us to
explore other questions about word-learning that could not readily be examined with human
participants.

Before exploring those questions with our model, it is necessary to address an important
matter related to the manner in which training occurred in the present experiment. Recall
that the network was trained on all of the targets and neighbors at once. The presentation of
all of the items at once may have enabled the network to extract the relevant sub-patterns
from the input, and use them to strengthen the representations of the word-forms. Rarely (if
ever!) is one exposed to all of the words of a language at once. Rather, exposure to the
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words of a language occurs over time. The manner in which children are naturally exposed
to the words in one’s language raises the important question of whether our connectionist
network would be able to successfully extract relevant sub-patterns from the input, and use
them to strengthen the representations of word-forms if that input were distributed over
time. That is, the sub-patterns in the input are not present at the outset of training, simply
waiting to be extracted; rather the relevant sub-patterns appear in the input over time. To
examine this important question, we conducted the following experiment, in which the
network was incrementally trained on the word-forms.

EXPERIMENT 2
Although our connectionist network captures certain important aspects of the process of
acquiring phonological word-forms—namely, phonological similarity serves to strengthen
lexical representations during acquisition—this effect may simply be an epiphenomenon of
the manner in which the network was trained: all of the targets and neighbors were presented
to the network at once. To verify that our connectionist network can extract relevant sub-
patterns from input that is distributed through time, the present experiment trained the
network incrementally on the targets and neighbors. For example, the network was first
trained for 100 epochs on 3 words that would come to have a dense neighborhood, and 3
words that would come to have a sparse neighborhood. In the next 100 epochs of training,
the network continued to be trained on the initial set of items, but now received 3 more
words with a dense neighborhood (i.e., 1 neighbor of each dense target) and 3 more words
with sparse neighborhoods (i.e., new sparse targets). The network continued to receive an
increasing number of words in the training set in this way, until the network had received all
of the dense and sparse items (which occurred after 1000 epochs of training, facilitating
comparison to Experiment 1).

This method of exposing the network to the words in the training set more closely
approximated in several ways the manner in which word-learners are exposed to the words
that they acquire. First, as noted above, word-learners are not exposed to all of the words in
their vocabulary all at once. Rather, a word-learner acquires the words that comprise his
vocabulary gradually over time. In addition, words in the language with dense
neighborhoods gradually come to have dense neighborhoods in the vocabulary of a
language-learner, with the asymmetry between dense and sparse neighborhoods increasing
with development (Charles-Luce & Luce, 1990; 1995). Will the same learning benefits
observed for words with dense neighborhoods in Experiment 1 be observed in the present
experiment when the vocabulary is acquired in a manner more akin to how a child acquires
his vocabulary?

With this more naturalistic way of exposing the network to words in the language, we were
also able to examine two different aspects of word learning, namely, lexical configuration
and lexical engagement. Leach and Samuel (2007) defined lexical configuration as the
factual knowledge associated with a word, such as its phonological form, meaning, etc. This
type of information is incremental in nature, with more knowledge of this type being added
to the representation with each exposure. If our network does indeed acquire information
regarding the lexical configuration of the first set of words it was trained on from the very
beginning (i.e., the 3 “dense” and the 3 “sparse” targets), then the error rate for this initial set
of words should decrease with each exposure.

In contrast, Leach and Samuel (2007) define lexical engagement as the way in which a
lexical entry interacts with other lexical (and sub-lexical) representations (e.g., lexical word
forms compete during word recognition; Luce & Pisoni, 1998). If the items that our network
is trained on truly become integrated into the lexicon, then relevant sub-patterns should
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emerge from the lexicon, despite the network being exposed to the input gradually over time
(rather than all at once as in Experiment 1), and be increasingly exploited by the network
when presented with novel items. The generalization items provide us with a unique way to
evaluate the lexical engagement of the trained items. If newly trained words become
integrated into the lexicon, then the network should better “see” the important sub-patterns
that are gradually emerging, and can better exploit that information to process the novel
generalization items, resulting in the error rate for the generalization items (which the
network is never trained with) decreasing over time. However, if information about the
newly trained words is not integrated into the lexicon, then important sub-patterns will not
be detected or exploited in the processing of the generalization items, resulting in the error
rate for the generalization items remaining unchanged over time. To evaluate the ability of
the network to extract relevant sub-patterns from incrementally presented input, and to
assess lexical configuration and lexical engagement, the present experiment was performed.

METHODS

Network architecture: The same network architecture, software package, and parameter
settings used in Experiment 1 were used in the present experiment. However, different
“seeds” were used to provide randomized initial connection weights to the networks.

Stimuli: The same targets, neighbors, and generalization items used in Experiment 1 were
used in the present experiment. As in the previous experiment, some of the targets were re-
assigned to different neighborhood density conditions to better generalize our results.

Procedure: The network was trained for 100 epochs on 3 dense and 3 sparse words. For
training epochs 101–200, the network continued to be trained on the initial set of items, but
now received 3 more words with a dense neighborhood (i.e., 1 neighbor of each dense
target) and 3 more words with sparse neighborhoods (i.e., new sparse targets). For training
epochs 201–300, the network continued to be trained on the previous 12 items, but now
received 3 more words with a dense neighborhood (i.e., 1 neighbor of each dense target) and
3 more words with a sparse neighborhood (i.e., neighbors of the sparse items from the initial
training set). Training continued in this way with the dense words continuing to receive a
new neighbor, and the sparse words alternating between learning a new sparse target and the
neighbor of a previously learned sparse target.

RESULTS AND DISCUSSION
To demonstrate that the finding obtained in Experiment 1—novel words with dense
neighborhoods are acquired more readily than novel words with sparse neighborhoods—was
not due to the particular way in which the network was trained on the words in the
vocabulary, we trained the network in the present experiment on a vocabulary that gradually
increased in size. As in Experiment 1, network performance was assessed with the mean
root mean square error. Smaller error values indicate that the output of the model was closer
to the desired output, suggesting better learning by the network, whereas, larger error values
indicate that the output of the model was further from the desired output, suggesting poorer
learning by the network. ANOVA was again used to compare the performance of the
networks on the two groups of words varying in neighborhood density.

Trained Items—For the targets, the dense targets had less error (mean = .548, sd = .064)
than the sparse targets (mean = 1.047, sd = .054) after 1000 epochs of incremental training,
suggesting that the network more readily learned the dense targets than the sparse targets, F
(1, 9) = 233.346, p < .0001. Similarly, for the neighbors, the words in the dense
neighborhood had less error (mean = .939, sd = .044) than the words in the sparse
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neighborhood (mean = 1.012, sd = .056) after 1000 epochs of incremental training,
suggesting that the network more readily learned the dense neighbors than the sparse
neighbors, F (1, 9) = 11.45, p < .01. Despite being exposed to the input in an incremental
fashion, the network was still able to extract relevant sub-patterns from the input and exploit
those regularities to learn the dense items better than the sparse items.

Generalization Items—As in Experiment 1, we examined the performance of the
networks on a set of novel words that they had not been trained on (i.e., the “generalization
items”). If the networks simply learned the peculiarities of the items they were trained on in
this incremental training regime, then the networks should perform quite poorly on the
generalization items, and should not show a processing advantage for untrained words that
are part of a dense neighborhood. Alternatively, if the networks extracted relevant sub-
patterns from the input they received over time, and were able to exploit that gradually
unfolding information, then the networks should show an advantage in processing the novel
words that are part of a dense neighborhood by producing smaller RMS values for those
generalization items.

The results showed that novel items that belonged to the dense neighborhoods had less error
(mean = 1.08, sd = .061) than the novel items that belonged to the sparse neighborhoods
(mean = 1.16, sd = .068), F (1, 9) = 5.89, p < .05, after 1000 epochs of incremental training,
suggesting that the networks did indeed extract relevant sub-patterns from the input, and
were able to exploit those gradually unfolding sub-patterns to “strengthen” the
representations of the novel words in the generalization set. The present results suggest that
the ability of the network to exhibit a conspiracy among relevant sub-patterns that strengthen
similar lexical representations is not due solely to the network being trained on all of the
targets and neighbors at the same time; relevant sub-patterns can indeed be extracted from
input that is distributed through time.

Lexical Configuration and Lexical Engagement—To assess the ability of the
network to acquire information related to lexical configuration and lexical engagement
additional analyses were performed on the data from the present experiment. If our network
continued to acquire information regarding the lexical configuration of the first set of words
it was trained on (i.e., “factual” information about those word-forms), then the error rate for
this initial set of words should decrease with additional exposures. Network performance on
the 6 items that the network was initially trained on (3 that would come to have a dense
neighborhood and 3 that would come to have a sparse neighborhood) was evaluated after
every 100 epochs (for a total of 1000 epochs). In assessing network performance, the
amount of error for each pattern was calculated using the root mean square. A 2 (Density) X
10 (Epochs) ANOVA was used to assess the amount of RMSE in these items over time.
Larger error values indicate that the model did not learn those patterns very well, whereas
smaller error values indicate that the model learned those patterns more readily.

The mean RMSE for the targets at every 100 epochs is shown in Figure 1. Consistent with
the prediction that the network would continue to acquire information regarding the lexical
configuration of the first set of words it was trained on (i.e., “factual” information about
those word-forms), the error rate for this initial set of words decreased with additional
exposures. That is, RMSE was significantly less after 1000 epochs of training (mean = .697,
sd = .181) than the RMSE after only 100 epochs of training (mean = 1.397, sd = .083), F (9,
81) = 382.674, p < .0001. As in the previous analyses, an influence of neighborhood density
was also observed. The initially trained items that would come to have dense neighborhoods
had overall less error (mean = .873, sd = .291) than the initially trained items that would
come to have sparse neighborhoods (mean = 1.040, sd = .194), further suggesting that the
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network more readily learned the dense items than the sparse items, F (1, 9) = 10.116, p < .
05.

Perhaps more interesting, there was a significant interaction between density and training, F
(9, 81) = 16.150, p < .0001, such that the dense targets improved more with training (a
decrease in RMSE of .890 from 100 to 1000 epochs) than the sparse targets (a decrease in
RMSE of .511 from 100 to 1000 epochs). Notice that at 100 epochs the difference in
performance between the dense (mean = 1.438, sd = .052) and sparse target words (mean =
1.357, sd = .091) is not statistically significant, F (1, 9) = 4.710, p > .05. This is not
surprising, as none of the target words had any neighbors at this point in training, meaning
there was no difference in neighborhood density yet. This condition provides us with an
important “baseline” from which to track the influence of adding neighbors to the training
set. As training progressed, one neighbor was added to the neighborhood of the sparse
targets, whereas nine neighbors eventually populated the neighborhood of the dense targets.
As the asymmetry in the number of neighbors in the dense and sparse neighborhoods
increased over time, the processing benefit for the target word in the dense neighborhoods
also increased. This provides additional support for the hypothesis that similar sounding
words act to strengthen lexical representations, with more neighbors conferring greater
benefit. This finding also highlights how the processing benefits of a dense neighborhood
can accrue over time.

To examine lexical engagement in our network, we examined performance on the
generalization items as the network was being incrementally trained. If newly trained words
are integrated into the lexicon, then the network should continually extract the gradually
emerging but relevant sub-patterns to better process the novel generalization items. This
should result in the error rate for the generalization items (which the network was never
trained with) decreasing over time. However, if information about the newly trained words
is not integrated into the lexicon, then important sub-patterns will not be detected or
exploited in the processing of the generalization items, resulting in the error rate for the
generalization items remaining unchanged over time.

The mean RMSE for the generalization items at every 100 epochs is shown in Figure 2. As
the network was trained on an increasing number of targets and neighbors, network
performance on the (untrained) generalization items improved over time. That is, RMSE
was significantly less after being trained on all of the targets and neighbors at 1000 epochs
of training (mean = 1.120, sd = .075) than the RMSE after only being trained on 3 dense
targets and 3 sparse targets at 100 epochs of training (mean = 1.338, sd = .196), F (9, 81) =
504.805, p < .0001. These results suggest that lexical engagement was indeed occurring.
That is, information about the new items the network was trained on was indeed being
integrated into the lexicon, enabling the network to extract relevant sub-patterns and exploit
those sub-patterns to continually improve upon its processing of the (untrained)
generalization items. If the network was only learning more “factual” information about
each trained word to simply improve the representation of those items (i.e., lexical
configuration) rather than dynamically integrating those newly acquired word-forms into the
lexicon, then performance on the generalization items would have remained the same
regardless of how many or what kind of words were acquired.

Furthermore, the novel generalization items that were part of the dense neighborhoods had
less error (mean = 1.279, sd = .166) than the novel generalization items in the sparse
neighborhoods (mean = 1.398, sd = .206), F (1, 9) = 18.274, p < .01. This result provides
additional evidence in support of a lexical conspiracy: words that resemble many known
words in the lexicon are “strengthened” to a greater extent than words that resemble few
known words in the lexicon.
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Finally, there was an interaction between density and epochs for the generalization items, F
(9, 81) = 15.487, p < .0001, such that RMSE decreased less over time for the novel
generalization items that were part of a dense neighborhood (a decrease in RMSE of .509
from 100 to 1000 epochs) than the novel generalization items that were part of a sparse
neighborhood (a decrease in RMSE of .609 from 100 to 1000 epochs). Although it might
seem counterintuitive that a smaller decrease in error is indicative of better performance,
consider the following explanation to see how this result is still consistent with the
hypothesis that a novel word is strengthened to a greater degree by being similar to many
rather than few known words.

In a connectionist model with distributed representations, the same processing units are used
to produce various patterns of activation to represent each of the words in the lexicon. In the
case of a dense neighborhood, the connection weights on those processing units assume
values that lie somewhere in the middle of all of the values of the connection weights
associated with the words in the neighborhood, thereby minimizing overall error in the
representation of any of those words. As more words continue to be added to a dense
neighborhood, smaller and smaller changes are required to maintain optimal values for the
connection weights. When the network is tested on a novel word from a dense
neighborhood, the novel word is never very far from the other words in the neighborhood
and therefore never very far from the optimized values of the connection weights. As the
connection weights are “tuned” more and more finely to better represent the words in the
dense neighborhood, the amount of error produced by the network in processing the novel
word (i.e., the generalization item) will also continue to decrease.

However, in the case of a sparse neighborhood, the connection weights have been
configured to represent the known target word with as little error as possible. The
subsequent addition of a word to such a neighborhood may require a large change in some
of the connection weights in order to maintain the representation of the known word (i.e.,
the target), and to represent the newly added neighbor. When the network is tested on a
novel word from a sparse neighborhood, the novel word may be very far from the other
words in the neighborhood, and will therefore be very far from the optimized values of the
connection weights, resulting in a large amount of error in processing the generalization
item. As the connection weights are not tuned as often as they are when new words are
added to a dense neighborhood, the network will continue to produce a relatively large
amount of error in processing the generalization item with a sparse neighborhood.

Overall, the results of Experiment 2 resemble those of Experiment 1 in that similar lexical
representations conspire to facilitate the processing of novel representations. Specifically,
processing of novel items that are similar to many known words will benefit to a greater
degree than novel items that are similar to few known words. The important contribution of
Experiment 2 is that this facilitative effect among lexical representations was shown to
emerge even when the lexicon grew over time. Recall that in Experiment 1, the network was
trained on the entire vocabulary all at once, not in an incremental fashion as in the present
experiment. The facilitative effect among lexical representations can, therefore, emerge as
the relevant sub-patterns in the input unfold over time. Given that the network can still
extract relevant sub-patterns with incremental exposure to the input—a manner of exposure
that is more similar to the way humans are exposed to the words in the ambient language—
we now have a simple, computational model of word-learning that can be used to explore
the questions we initially posed: how is the process of word learning affected by differences
(in cognitive resources) among word-learners and by differences in the word-learning
environment.
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EXPERIMENT 3
The results obtained from Experiments 1 and 2 suggest that (at least one aspect of) learning
novel word-forms may rely on a general processing principle that is captured by our simple
connectionist model: known words that are similar to each other conspire to strengthen the
representations or facilitate processing of phonologically similar novel words. With this
simple model, we can now explore a number of questions about word-learning that we might
not be able to examine easily with human word-learners. For example, a number of
researchers have suggested that various cognitive resources—short-term memory
(Gathercole & Baddeley, 1989) or attention (Dixon & Salley, 2006)—influence the process
of word learning, such that learning becomes more difficult (i.e., more errors are made)
when fewer processing resources are allocated to the word-learning process. More
specifically, how might differences in cognitive resources influence the processing
advantage for words from dense neighborhoods in word learning (observed in numerous
studies and in Experiments 1 and 2)? One might predict that a reduction in cognitive
resources will affect the learning of dense and sparse words equivalently, resulting in an
overall decrement in word-learning performance. A larger reduction in cognitive resources
would result in a larger performance decrement in word-learning.

Alternatively, one might predict that a reduction in cognitive resources will result in the
development of an alternative (and overall less efficient) processing strategy to learn new
words. In the context of learning novel words from dense and sparse neighborhoods, one
might expect to observe the processing advantage for words from dense neighborhoods, but
only in a limited range of available processing resources. Once cognitive resources have
been reduced below a certain point, however, one might expect an alternative processing
strategy to emerge: because of their uniqueness, novel words from sparse neighborhoods
may now be more readily learned than words from dense neighborhoods. As there are fewer
words in sparse neighborhoods (by definition), fewer words overall will, of course, be
learned, resulting in what appears to be a decrement in word-learning performance when
cognitive resources are reduced.

To further explore how differences in the internal processing resources available to the
network influence the advantage in word-learning for words from dense neighborhoods, the
present experiment was performed. The amount of internal processing resources available to
the network was manipulated by varying the number of “hidden” units in the model from
one to six. (Recall that the networks used in Experiments 1 and 2 had 6 hidden units.)
Manipulating the number of hidden units in a network is a well-established approach for
approximating differences in computational resources in humans (Brown, 1997;
Seidenberg & McClelland, 1989; Thomas & Karmiloff-Smith, 2003). The results of this
experiment may offer unique insight into the debate about the cause of various language
disorders. The two outcomes described above roughly correspond to the classic distinction
made in the literature, and described by Rice (2003), between language delay and language
deviance as the underlying cause of various language disorders. Said another way, language
disorders may simply be extreme cases of normal variation in processing rather than the
result of a qualitatively different processing mechanism (Tomblin, Zhang, Weiss, Catts &
Ellis Weismer, 2004).

In the case of the present simulation, an outcome consistent with the idea that language
disorders are caused by language delay would be a continuous change in the number of
hidden units being associated with a continuous change in performance in the word-
learning task (i.e., dense is always better than sparse, but overall performance
decreases as the number of hidden units decreases). An outcome consistent with the
idea that language disorders are caused by language deviance we would observe a
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discontinuous shift, for example, an advantage for dense over sparse words when the
networks had 4–6 hidden units, but an advantage for sparse over dense words when
the networks had 1–3 hidden units.

METHODS

Network architecture: The same network software package used in Experiments 1 and 2
was used in the present experiment. The network architecture was also similar to that used in
Experiments 1 and 2, except the number of hidden units varied from one hidden unit to six
hidden units (the number of hidden units used in Experiments 1 and 2). A new set of random
“seeds” was used in the present experiment to provide randomized initial connection
weights to the networks, but the same set of seeds were used in each of the networks in this
experiment.

Stimuli: The same targets, neighbors, and generalization items used in Experiment 1 were
used in the present experiment.

Procedure: The network was trained on all of the targets and neighbors at the same time (as
in Experiment 1) for 1000 epochs.

RESULTS AND DISCUSSION
A 2 (Density) X 6 (Number of Hidden Units) ANOVA was used to assess the performance
of the networks (via RMSE) when tested on the targets and neighbors (which the networks
were trained on for 1000 epochs), and on the (untrained) generalization items. Smaller error
values indicate that the output of the model was closer to the desired output, suggesting
better learning by the network, whereas, larger error values indicate that the output of the
model was further from the desired output, suggesting poorer learning by the network.

Trained Items—For the targets (see Figure 3), a main effect of neighborhood density was
observed such that dense targets had less error (mean = 1.243, sd = .315) than the sparse
targets (mean = 1.485, sd = .208) after 1000 epochs of training, suggesting that all of the
networks more readily learned the dense targets than the sparse targets, F (1, 54) = 805.758,
p < .0001. A main effect of number of hidden units was observed, such that the networks
with more hidden units (i.e., internal processing resources) learned the target words better (6
hidden units: mean = 1.175, sd = .346) than networks with fewer hidden units (1 hidden
unit: mean = 1.583, sd = .122), F (5, 54) = 108.560, p < .0001.

Finally, an interaction between neighborhood density and number of hidden units was
observed, such that the networks with greater processing resources discriminated between
the dense and sparse targets more than the networks with fewer processing resources: the
network with 6 hidden units had a mean difference of .276 between dense and sparse targets,
whereas the network with 1 hidden unit had a difference of .166 between dense and sparse
targets, F (5,54) = 6.706, p < .001. The nature of this interaction (ordinal rather than
disordinal) suggests that networks with a smaller amount of processing resources do not
adopt a completely different processing strategy than networks with greater amounts of
processing resources in order to perform the task of learning words. Rather, all of the
networks—regardless of the amount of internal processing resources available to them—
employed a similar processing strategy to learn the words. The difference in the amount of
internal processing resources available to the networks seemed only to influence the degree
of success that the networks had in learning the words. These results suggest that problems
in word learning related to processing resources may be better described as language delays
rather than language deviances (Rice, 2003).
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To further illustrate that the networks employed similar mechanisms to learn the target
words, but that the networks with fewer processing resources were simply delayed in their
learning, we equated the performance of the network with 6 hidden units to the performance
of the network with 1 hidden unit (an approach that is commonly employed in studies
examining language disorders to distinguish language delay from language disorder).
Equivalent performance on dense and sparse targets was observed after 500 epochs of
training in the network with 1 hidden unit (dense = 1.467; sparse = 1.663) and only 100
epochs of training in the network with 6 hidden units (dense = 1.498; sparse = 1.643), F (1,
18) = 3. 405, p = .08, not significant. Clearly the network with fewer processing resources
could learn the dense and sparse targets, and learn them as well as the network with more
processing resources. The network with fewer processing resources, however, required
additional training to do so. This result further suggests that problems in word learning
related to processing resources may be better described as language delays rather than
language deviances (Rice, 2003).

Analysis of the neighbors showed a fairly similar pattern of results. A main effect of
neighborhood density was observed such that dense neighbors had less error (mean = 1.371,
sd = .221) than the sparse neighbors (mean = 1.444, sd = .224) after 1000 epochs of training,
suggesting that all of the networks more readily learned the dense neighbors than the sparse
neighbors, F (1, 54) = 205.851, p < .0001. A main effect of number of hidden units was
observed such that the networks with more hidden units (i.e., internal processing resources)
learned the target words better (6 hidden units: mean = 1.238, sd = .276) than networks with
fewer hidden units (1 hidden unit: mean = 1.596, sd = .087), F (5, 54) = 196.313, p < .0001.
In this case, however, there was no interaction between neighborhood density and number of
hidden units, F (5, 54) = .339, p = .88, not significant.

As with the targets, equivalent performance on the dense and sparse neighbors was observed
after 500 epochs of training in the network with 1 hidden unit (dense = 1.535; sparse =
1.636) and only 100 epochs of training in the network with 6 hidden units (dense = 1.547;
sparse = 1.630), F (1, 18) = 1.391, p = .25, not significant. Like the targets, the network with
fewer processing resources required more training epochs to reach the same level of
performance on the dense and sparse neighbors as the network with more processing
resources, further suggesting that problems in word learning related to processing resources
may be better described as language delays rather than language deviances.

Generalization Items—To further demonstrate that the networks with only one hidden
unit were learning to extract relevant sub-patterns from the input, but were only doing it
more slowly than the networks with 6 hidden units, we examined the performance of
networks on the (untrained) generalization items. If the reduction in processing resources
limited the network with just one hidden unit to learn only about the items it was trained on
rather than to extract relevant sub-patterns from the input and exploit those patterns when
processing other items, then performance on the generalization items should be quite poor.
Such a result might then suggest that the networks with fewer processing resources were
employing a qualitatively different processing mechanism to learn words. Alternatively, if
all of the networks were able to generalize performance to a novel set of words, but at
different rates, that might further suggest that problems in word learning related to
processing resources may be better described as language delays rather than language
deviances.

For the generalization items, a main effect of neighborhood density was observed such that
there was less error on the generalization items from the dense neighborhoods (mean =
1.449, sd = .171) than on the generalization items from the sparse neighborhoods (mean
1.549, sd = .166) after 1000 epochs of training, suggesting that all of the networks extracted
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relevant sub-patterns from the input and exploited that information in the processing of the
novel items, F (1, 54) = 241.101, p < .0001. A main effect of number of hidden units was
also observed such that the networks with more hidden units (i.e., internal processing
resources) performed better on the generalization items (6 hidden units: mean = 1.382, sd = .
224) than networks with fewer hidden units (1 hidden unit: mean = 1.638, sd = .078), F (5,
54) = 72.088, p < .0001. Again, there was no interaction between neighborhood density and
number of hidden units, F (5, 54) = .793, p = .56, not significant.

Equivalent performance on the novel dense and sparse generalization items was also
observed after 500 epochs of training in the network with 1 hidden unit (dense = 1.564;
sparse = 1.687) and only 100 epochs of training in the network with 6 hidden units (dense =
1.581; sparse = 1.6870, F (1, 18) = .522, p = .48, not significant. This result suggests that
fewer processing resources not only impair the acquisition of the targets and neighbors, but
also reduces the ability of the network to extract relevant sub-patterns from the input and
exploit them in the processing of novel items. This result is also consistent with the results
obtained in the analyses of the targets and neighbors in suggesting that problems in word
learning related to processing resources may be better described as language delays rather
than language deviances.

The results of the present experiment further suggest that known words are used to
“strengthen” the representations of phonologically similar novel words, such that a novel
word that is similar to many known words will be learned more readily than a novel word
that is similar to few known words. More interestingly, the results of the present experiment
suggest that this influence of known words on the learning of novel words is robust to
differences in the availability of processing resources. That is, regardless of how many
hidden units the networks possessed, a word learning advantage for dense words was still
observed. Granted, in the networks with fewer processing resources (i.e., fewer hidden
units), learning proceeded at a slower rate than the networks with more processing resources
(i.e., many hidden units), but radically different learning strategies were not employed to
circumvent the restriction of resources in order to learn the words.

Interestingly, a similar pattern of delayed rather than deviant learning has been observed in
real word-learners. Evans, Saffran, and Robe-Torres (2009) found that children with specific
language impairment (SLI) were able to implicitly compute the probabilities of adjacent
sound sequences and thereby learn novel words embedded in a continuous stream of
artificial speech. However, the children with SLI required approximately double the
exposure to the artificial language as their typically developing peers to reach the same level
of above-chance performance. Although on the surface the patterns of behavior are similar,
it is important to acknowledge the differences between the present simulation and the
experiments reported by Evans et al. with regard to the task employed, the cognitive
demands of the task, the type of learning examined, etc.

EXPERIMENT 4
The experiments in the present study examined how the number of similar sounding words
affects the acquisition of those words. Being similar to many words resulted in a larger
lexical conspiracy that facilitated acquisition of those words to a greater extent than being
similar to fewer words. This benefit to processing was observed when the words to be
acquired were presented all at once (Experiment 1), as well as when the words to be
acquired were distributed over time (Experiment 2). In Experiment 3, we were able to
examine how differences in the availability of processing resources further affected the
influence of neighborhood density on word learning. In each case, a robust advantage in
learning novel words that were similar to many rather than few known words was observed.
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In the present experiment we sought to examine how varying the input might influence the
processing advantage typically observed in word learning. A classic approach to studying
word learning is to examine the input that a child receives (e.g., the work of Roger Brown,
1973). Furthermore, current verbal models of word learning suggest that children extract
relevant patterns from the input and then use these patterns to facilitate learning (e.g.,
Hirsch-Pasek, Golinkoff, & Hollich, 2000; Smith, 2000). Moreover, the main approach in
conventional speech and language therapy is to alter the input in some way. Taken together,
the structure of the input is viewed as crucial for learning from a variety of perspectives. In
Experiments 1–3, the input to the model was balanced with regards to the number of dense
and sparse words the networks received. How would the facilitative influence of
neighborhood density on word-learning be affected if the input was not balanced?

The strict control of lexical exposure required to examine this question in the real world is,
of course, not something that could be accomplished with ease. Furthermore, the possibility
that manipulating the input might actually retard language development in some way also
makes exploration of this question in the real world problematic on ethical grounds.
However, in addition to using computational models to better specify the mechanisms
described by verbal models (Elman et al., 1996; Lewandowsky, 1993), “computational
experiments” can be used to explore questions, such as the present one, that are difficult—
for ethical or practical reasons—to examine in the real world (Plunkett & Elman, 1997).
Therefore, we examined this question with our computational model using the experimental
approach of testing extremes. That is, the networks in the present experiment either received
incremental training on all of the dense words first, followed by all of the sparse words
(Dense-Sparse Training Regime), or received incremental training on all of the sparse words
first, followed by all of the dense words (Sparse-Dense Training Regime). To examine
longer-term effects of this unbalanced exposure regime, we continued to train the networks
for an additional 1000 epochs on the full set of targets and neighbors.

METHODS
The same network software package used in the previous experiments was used in the
present experiment. The network architecture, stimuli, and training procedure were also
similar to those used in Experiment 2, with the following exception. Five networks were
first exposed to the items from dense neighborhoods (six words at a time, for 100 epochs,
with six more words added to the training set, etc.). Once the network had been exposed to
all 30 items (targets and neighbors) from the dense neighborhoods, the items from the sparse
neighborhoods were added to the training sets (with six sparse items added to the training
set, trained for 100 epochs, then six more sparse items added to the training set, etc.). This
training regime will be referred to as the dense-sparse training regime.

Another set of five networks (that were identical in every way except in the training regime)
was first exposed to the items from sparse neighborhoods (six words at a time, for 100
epochs, with six more words added to the training set, etc.). Once the network had been
exposed to all 30 items (targets and neighbors) from the sparse neighborhoods, the items
from the dense neighborhoods were added to the training sets (with six dense items added to
the training set, trained for 100 epochs, and six more dense items added to the training set,
etc.). This training regime will be referred to as the sparse-dense training regime.

Training to 1000 epochs of incremental learning facilitated comparison to Experiment 2.
However, to further examine the long-term consequences of these different training regimes,
we continued to train the network on all of the targets and neighbors (now presented all
together) for an additional 1000 epochs.
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RESULTS AND DISCUSSION
Network performance was again assessed using root mean square error. Rather than just
evaluate the networks after receiving 1000 epochs of training, we wanted to better capture
how the performance of the networks might change as a function of the different training
regimes. Consequently, a 2 (training regime: Dense-Sparse versus Sparse-Dense) X 2
(Density: Dense versus Sparse) X 2 (Epochs: 100, 1000) ANOVA was used to assess the
amount of RMSE (separately) in the targets, neighbors, and generalization items so that we
could present a better picture of how performance changed over time as a function of the
different training regimes.

Separate analyses were also performed after the additional 1,000 epochs of training that the
networks received on all of the targets and neighbors (i.e., network performance assessed at
epoch 2000). Smaller error values indicate that the output of the model was closer to the
desired output, suggesting better learning by the network, whereas, larger error values
indicate that the output of the model was further from the desired output, suggesting poorer
learning by the network.

Target Word-Forms—A significant three-way interaction was found among the
variables: training regime, density, and epochs, F (1, 18) = 16.992, p < .001. All of the two-
way interactions and main effects were also significant. Not surprisingly, there was a main
effect of epoch, indicating that performance on the targets improved with training (mean
after 1000 epochs = .883, sd = .246, mean after 100 epochs = 1.657, sd = .281), F (1, 18) =
1514.237, p < .0001. To facilitate discussion of the three-way interaction, we will consider
the networks early in training (after being exposed to 100 training epochs, and only a portion
of the input) and later in training (after being exposed to 1000 training epochs, and all of the
input).

After 100 epochs of training (see Figure 4), a significant two-way interaction was observed
between density and training regime, F (1, 18) = 498.276, p < .0001. In the Dense-Sparse
training regime, performance on the sparse targets (which the network had not been exposed
to yet, mean = 1.905, sd = .036) was poorer than performance on the dense targets (which
the network had been trained on for 100 epochs, mean = 1.235, sd = .100). However, in the
Sparse-Dense training regime, performance on the sparse targets (which the network had
been trained on for 100 epochs, mean = 1.624, sd = .066) was better than performance on
the dense targets (which the network had not been exposed to yet, mean = 1.863, sd = .110).
It is perhaps not surprising that the networks performed well on the items they had been
trained on, and more poorly on items they had not been trained on, even if that exposure was
brief (i.e., 100 epochs).

After 1000 epochs of training (see Figure 5), when the networks had been exposed to all of
the items, performance of the networks again showed an interaction between training regime
and density, F (1, 18) = 534.519, p < .0001. In the Dense-Sparse training regime,
performance on the dense targets remained better (mean = .520, sd = .050) than performance
on the sparse targets (mean = 1.190, sd = .045). However, in the Sparse-Dense training
regime, performance on the dense targets (mean = .924, sd = .064) was equivalent to
performance on the sparse targets (mean = .900, sd = .036). Despite a late entry into the
training set, the relevant sub-patterns in the dense words were extracted and exploited,
allowing the network to improve the representation of these items at a faster rate than the
sparse words. That is, the representations of the dense targets were strengthened to such an
extent, that performance on the dense targets “caught up” to the performance on the sparse
targets, even though the network had received more training overall on the sparse targets.

Vitevitch and Storkel Page 20

Lang Speech. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The networks received 1000 additional exposures to all of the dense and sparse words.
During these exposures no new words were added to the training set. Thus, the network
simply received additional exposure to all of the targets (and neighbors), and performance
was assessed after a total of 2000 epochs. At epoch 2000 (see Figure 6), performance of the
networks showed an interaction between training regime and density, F (1, 18) = 31.892, p
< .0001. In the Dense-Sparse training regime, performance on the dense targets remained
better (mean = .380, sd = .069) than performance on the sparse targets (mean = .916, sd = .
050). However, in the Sparse-Dense training regime, performance on the dense targets
(mean = .498, sd = .100) was now better than performance on the sparse targets (mean = .
743, sd = .072), despite the initial advantage observed for sparse targets in this training
regime.

A well-known characteristic of connectionist networks is that smaller changes tend to be
made to connection weights as training progresses. It is therefore somewhat surprising that
the dense words in the Sparse-Dense training regime—which were added to the training set
relatively late in the training process—were learned as well as they were. The common sub-
patterns found among the neighbors of words in dense neighborhoods may suggest a method
for overcoming the decrease in plasticity of the connection weights that occurs as training
progresses often observed in networks of this type. Additional computational experiments
are required to determine the relevant parameters by which this approach affects the
plasticity of the network—such as the number and diversity of sub-patterns in the training
set, and when those items enter the training set—as well as their limits.

Neighboring Word-Forms—For the neighbors, a significant three-way interaction was
also found among the variables: training regime, density, and epochs, F (1, 18) = 7.804, p < .
05. As with the targets, there was a main effect of epoch, indicating that performance on the
targets improved with training (mean after 1000 epochs = 1.009, sd = .119; mean after 100
epochs = 1.705, sd = .151), F (1, 18) = 1414.760, p < .0001. As above, to facilitate
discussion, we will consider the networks early in training (after being exposed to 100
training epochs, and only a portion of the input) and later in training (after being exposed to
1000 training epochs, and all of the input).

After 100 epochs of training (see Figure 7), a significant two-way interaction was observed
between density and training regime, F (1, 18) = 447.581, p < .0001. In the Dense-Sparse
training regime, performance on the sparse neighbors (which the network had not been
exposed to yet, mean = 1.874, sd = .036) was poorer than performance on the dense
neighbors (mean = 1.521, sd = .046). Note, that the network had only been exposed to the
dense target words and one neighbor of each of the target words at this point in training;
they had not actually been trained on all of the dense neighbors yet. Despite this limited
exposure, the network was able to extract and exploit relevant sub-patterns to more
efficiently process the (mostly untrained) dense neighbors.

In the Sparse-Dense training regime, performance on the sparse neighbors (for 100 epochs,
mean = 1.624, sd = .066) was better than performance on the dense neighbors (mean =
1.863, sd = .110). Recall that at this point, the network had been trained on just 6 sparse
target words, and had not been exposed to any dense words (targets or neighbors), so it is
not surprising that the networks performed better on the items they had been trained on, and
more poorly on items they had not been exposed to at all.

After 1000 epochs of training (see Figure 8), when the networks had been exposed to all of
the items, performance of the networks again showed an interaction between training regime
and density, F (1, 18) = 423.953, p < .0001. In the Dense-Sparse training regime,
performance on the dense neighbors remained better (mean = .899, sd = .046) than
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performance on the sparse neighbors (mean = 1.147, sd = .070). In contrast to the
performance of the network on the targets after 1000 epochs, the network in the Sparse-
Dense training regime continued to show better performance on the sparse neighbors (mean
= .911, sd = .049) than the dense neighbors (mean = 1.079, sd = .032), F (1, 9) = 118.796, p
< .0001. We believe this difference in performance between the targets and neighbors is
again due to the difference in the number of words that sound similar to the targets and the
number of words that sound similar to the neighbors (as discussed in Experiment 1).

Indeed, the continued advantage for sparse over dense neighbors in the Sparse-Dense
training regime decreases with continued exposure to the word-forms. At epoch 2000 (see
Figure 9), performance of the networks shows an interaction between training regime and
density, F (1, 18) = 83.911, p < .0001. In the Dense-Sparse training regime, performance on
the dense neighbors remained better (mean = .735, sd = .071) than performance on the
sparse neighbors (mean = .849, sd = .044), F (1, 9) = 61.787, p < .0001. In the Sparse-Dense
training regime, performance on the sparse neighbors (mean = .746, sd = .058) also
remained better than performance on the dense neighbors (mean = .806, sd = .034), F (1, 9)
= 23.886, p < .001, in contrast to the pattern observed for the targets.

Generalization Items—As with the targets and neighbors, a significant three-way
interaction was found in the performance on the generalization items among the variables:
training regime, density, and epochs, F (1, 18) = 25.717, p < .0001. As above, to facilitate
discussion, we will consider the networks early in training (after being exposed to 100
training epochs, and only a portion of the input) and later in training (after being exposed to
1000 training epochs, and all of the input).

After 100 epochs of training (see Figure 10), a significant two-way interaction was observed
between density and training regime, F (1, 18) = 286.598, p < .0001. In the Dense-Sparse
training regime, performance on the sparse generalization items was poorer (mean = 1.919,
sd = .049) than performance on the dense generalization items (mean = 1.532, sd = .066);
recall that the network had not been exposed to any sparse targets or neighbors yet, however.
In the Sparse-Dense training regime, performance on the sparse generalization items (for
100 epochs, mean = 1.699, sd = .051) was better than performance on the dense neighbors
(mean = 1.842, sd = .080). Despite the limited exposure to targets and neighbors in each
training regime, the network was able to extract and exploit relevant sub-patterns to more
efficiently process the generalization items.

After 1000 epochs of training (see Figure 11), when the networks had been exposed to all of
the items, performance of the networks again showed an interaction between training regime
and density, F (1, 18) = 65.894, p < .0001. In the Dense-Sparse training regime,
performance on the dense generalization items remained better (mean = 1.080, sd = .045)
than performance on the sparse generalization items (mean = 1.274, sd = .079). In the
Sparse-Dense training regime, performance on the sparse generalization items remained
better (mean = 1.125, sd = .064) than the performance on the dense generalization items
(mean = 1.252, sd = .059).

Performance on the generalization items after 2000 epochs of training (i.e., an additional
1000 exposures to all of the targets and neighbors) yielded a pattern of results that was a
little different than the pattern of results obtained at 1000 epochs, F (1, 18) = 14.493, p < .
01, as shown in Figure 12. In the Dense-Sparse training regime, performance on the dense
generalization items remained better (mean = .972, sd = .043) than performance on the
sparse generalization items (mean = 1.087, sd = .049). However, in the Sparse-Dense
training regime, performance on the dense generalization items (mean = 1.038, sd = .062)
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was now statistically equivalent to the performance on the sparse generalization items (mean
= 1.016, sd = .058), F (1, 9) = .449, p = .52, not significant.

Although performance on the target words in the Sparse-Dense training regime had
completely reversed from a performance advantage for the sparse targets to a performance
advantage for the dense targets by this point in training, we did not observe such a dramatic
change in the performance for the neighbors and the (untrained) generalization items. Note,
however, that performance on the dense and sparse neighbors, and the dense and sparse
generalization items did become more similar with additional exposure to the targets and
neighbors. We predict that additional exposure in the Sparse-Dense training regime to the
dense and sparse targets and neighbors would ultimately result in the predicted performance
advantage for dense items over sparse.

Overall, the results of this experiment show a number of interesting points. Most obvious is
the significant and long-lasting impact that initial input conditions have on the development
of the lexicon and on subsequent lexical performance. Networks that were initially exposed
to sparse followed by dense words (the Sparse-Dense Training Regime) developed a lexicon
that was less sensitive to relevant sub-patterns in the input. Networks in this training regime
were ultimately able to show a processing advantage for dense targets, but such an
advantage was not observed for the dense neighbors. Furthermore, as evidenced in the
performance on the generalization items, networks in the Sparse-Dense training regime did
not exploit the knowledge of relevant sub-patterns that had been extracted from the input to
the same extent as networks that had been exposed to the same words in the Dense-Sparse
training regime. The failure of networks in the Sparse-Dense training regime to learn and
generalize lexical knowledge was still evident even after additional training exposures (i.e.,
1000 additional epochs of training on all of the targets and neighbors), suggesting that the
(detrimental) influences of the initial input conditions on processing are also long-lasting.

Although the results of the present experiment suggest that the initial input conditions have
large and long-lasting effects on lexical processing, the present results also hint towards a
method to alleviate some of the detrimental impacts that initial input conditions may have on
subsequent processing. Consider the results for the dense targets in the Sparse-Dense
training regime. Despite disadvantageous processing of the dense targets early on in this
training regime, additional training (1000 more epochs) of the targets and neighbors
ultimately showed the advantage for dense words that had been previously observed in
human word-learners (e.g., Storkel et al., 2006) and in Experiments 1–3. Granted, this
processing advantage was not as large as the performance advantage observed in the targets
in the Dense-Sparse training regime, but it nevertheless did emerge after additional training.

For the neighbors and generalization items, we did not observe a change in processing that
was as dramatic as the change in processing observed in the target words. However, in the
case of the generalization items in the Sparse-Dense training regime, delayed exposure to
words with dense neighborhoods did result in the performance of the networks equaling that
of the initially trained sparse items. Perhaps even more training would have produced the
processing advantage for the dense generalization items (and the neighbors as well).

We suspect that the failure of the neighbors and generalization items to produce the dramatic
reversal in processing may have again been due (in part) to the difference in the number of
words that are actually similar to the targets, neighbors, and generalization items (see the
explanation in the discussion of Experiment 1). Recall that each sparse target is
phonologically similar to only one word (i.e., the neighbor), whereas each dense target is
phonologically similar to 9 neighbors. For the neighbors, each sparse neighbor has only one
word that is a phonologically similar neighbor to it (the sparse target), whereas each dense
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neighbor is similar to three words (two other neighbors and the target word). For the
generalization items, each sparse generalization item is similar to only one item (the target),
and each dense generalization item is similar to four words (the target word and only three
of its neighbors). The difference in performance to the targets, neighbors, and generalization
items suggests that therapeutic interventions in humans that rely solely on increased
exposure might lead to learning of the words targeted in treatment, but may not lead to the
extraction of relevant sub-patterns that are important for learning novel words. Given that
most treatment approaches strive to affect change that extends beyond the specific items
used in treatment, teaching items from dense neighborhoods to increase the asymmetry
between dense and sparse neighborhoods could lead to the dense sub-patterns becoming
more salient, thereby facilitating their extraction and use in learning novel word-forms.
Additional computational experiments and studies with human word-learners are required to
test these predictions derived from the present study.

The detrimental and long-lasting impact of the initial input conditions observed in the
present experiment also speaks to the utility of computational experiments. The stringent
control over the input and the influence on lexical processing of one of the input conditions
would have made it practically and ethically impossible to conduct a similar experiment
with human language learners. Our use of a computational model in this experiment enabled
us to observe the effects of various initial input conditions on subsequent performance in
silica, and to consider the implications for treatment should similar conditions of
impoverished input be encountered in the clinical setting.

Finally, the results of the present experiment further suggest that the underlying mechanism
employed in word learning is a “strengthening” of lexical representations by similar word-
forms. Despite what may have appeared initially in one case—the Sparse-Dense training
regime—as an advantage for sparse items over dense items, and therefore as evidence for
varying amounts of competition among lexical representations, the performance of the
network on the generalization items raises some questions about such an account.
Performance on all of the untrained generalization items improved over time, even though
the network had not been exposed to and trained on a specific neighbor of that item. This
result suggests that a novel word-form does not actually have to be a “member” of a specific
phonological neighborhood to obtain some benefit from the known words in the lexicon.
Rather, more general word knowledge can be extracted and exploited to facilitate the
processing of novel word-forms. It is not clear how performance on all of the untrained
generalization items (even those without neighbors in the lexicon) would have improved
over time if competition were the underlying mechanism in word learning, as has been
proposed by others (e.g., Swingley & Aslin, 2007).

GENERAL DISCUSSION
Four computational experiments were reported in the present study. In Experiment 1 we
exposed a multi-layered network to target words that differed in the number of phonological
neighbors to examine whether the similar sounding words would facilitate the acquisition of
the target words, leading to target words with more neighbors being learned better than
target words with fewer neighbors, or whether the similar sounding words would interfere
with the acquisition of the target words, leading to target words with few neighbors being
learned better than target words with more neighbors. The results of that experiment as well
as the experiments that followed provided several pieces of evidence that suggest that
similar sounding words facilitate the acquisition of target words, thereby giving us a
computational mechanism for the verbal model proposed by Storkel et al. (2006; see also
Jusczyk, Luce, & Charles-Luce, 1994) for the acquisition of novel word forms. Experiment
2 demonstrated that similar sounding words strengthen the representations of target words,
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even when the network is gradually exposed to the words in the lexicon (rather than being
trained on the words all at once, as in Experiment 1).

Satisfied that the computational model reasonably captured the important characteristics of
the typical word-learner, we proceeded in Experiments 3 and 4 to explore the influence of
two variables on word-learning that could not be examined in real word-learners due to
ethical and practical considerations. For example, in Experiment 3 we manipulated the
number of hidden units in the model to examine how (perhaps innate) differences in
processing resources might affect word-learning. Finding a large enough sample of real
word-learners that significantly differ in the amount of processing resources to examine this
question is likely to be challenging, at best. When all other conditions are the same,
networks with fewer processing resources required more training to reach comparable
performance levels of networks with more processing resources. Interestingly, the networks
with fewer processing resources did not adopt a different processing strategy to acquire the
novel words. That is, all of the networks, regardless of the amount of available processing
resources, showed an advantage in the acquisition of dense words over sparse words.

In Experiment 4, the networks were exposed to the same words in two different
environments. In one condition, the networks were first exposed to sparse words until all of
the sparse words had been added to the lexicon. The networks were then exposed to the
dense words, until all of the words had been added to the lexicon. This condition was
referred to as the Sparse-Dense training regime. In the other condition, the Dense-Sparse
training regime, the networks were first exposed to all of the dense words, with the sparse
words being added to the lexicon later on in the training set. Given the concern that the
Sparse-Dense training regime might, in some way, adversely affect lexical development,
carrying out such an experiment with real word-learners is, of course, ethically not possible.
(The logistics of creating such highly controlled conditions in the environment also make
this experiment impossible to carry out with real word-learners.) The results of this
experiment did indeed indicate that word learning performance in the Sparse-Dense training
regime lagged behind that in the Dense-Sparse training regime.

We do not believe that the results of Experiments 1–4 are unique to the architecture of or the
learning algorithm employed in the networks used in the present study. Recall that the
networks used in the present study had distributed representations, and that connection
weights were adjusted with the back-propagation of error algorithm. Rather, we believe that
the “strengthening” of lexical representations during word-learning can be accomplished in a
variety of connectionist networks as well as in many other types of computational models.

Indeed, Page (2000) discussed how a localist neural network—where a single node is used
to represent an entity (i.e., one node represent dog, another node represents shoe, etc.)—with
a competitive learning algorithm could also produce a learning advantage for novel words
that are similar to many known words compared to novel words that are similar to few
known words (see also Grossberg, 1972). When a novel word-form is presented to the
localist network, several uncommitted nodes become partially activated by the input, and
compete with each other to become the node that will be committed to representing that
input pattern (i.e., that word) in the future; this is known as a competitive learning algorithm.
Each of these competing nodes will adapt the weights on the connections it receives from
the input nodes in an attempt to better match the input pattern. Eventually, one node will
match the input pattern better than the other competing nodes, and will become committed
to representing that word.

The “losing” nodes remain uncommitted (i.e., they don’t represent a known word), but
because of the previous competition, their weights are in an excellent position to represent a
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new input pattern that is similar to the previously learned input pattern. Thus, another novel
input that is similar to many known words will benefit more from the connection weights
that are predisposed (as a result of previous competitions among uncommitted nodes) to
represent that new word than a novel input that is similar to few known words. Although the
connectionist architecture and learning algorithm described by Page (2000) are different
from those employed in the present experiment, both models provide a more precise,
mechanistic account of how the representation of a novel word might be “strengthened” by
sounding similar to many (rather than few) known words.

As described by Lewandowsky (1993; see also Norris, 2005), computational models benefit
researchers in several ways. For example, the computational model developed in the present
study made explicit the mechanisms of word learning that were previously described only in
verbal form (Jusczyk, Luce, & Charles-Luce, 1994; Storkel et al., 2006). Other verbal
descriptions of the mechanisms that underlie various word-learning phenomena might also
benefit from the process of developing a computational model. Furthermore, the model that
we developed in the present study enabled us to explore the influence of variables and
conditions that—for ethical and practical reasons—would be impossible to examine in real
word-learners. The computational experiments employed in the present study offer us a
technique that can be used to further explore word learning that—in conjunction with
psycholinguistic experiments—can greatly increase our understanding of this process.

These as well as other reasons speak to the important role that computational modeling and
experimentation plays in increasing our understanding of language processing and language
processing disorders. Despite the simplicity of the model employed in the present
computational experiments it is important to keep in mind that “[m]odels are not intended to
capture fully the processes they attempt to elucidate. Rather, they are explorations of ideas
about the nature of cognitive processes. In these explorations, simplification is essential—
through simplification, the implications of the central ideas become more transparent”
(McClelland, 2009; pg. 11). We believe the present simulations have greatly elucidated the
manner in which neighborhood density influences the process of word-learning.

Despite the simplicity of the network used in the present simulations, the results of these
computational experiments point to (at least) two topics worthy of further investigation
either through computational or psycholinguistic experiments. The results of all of the
present experiments suggest that another level of representation may be necessary to account
for the influence of segment frequency (as described in Footnote 2) on word learning. In
addition, the results of Experiment 4 hint towards a method that might overcome the loss of
plasticity in connection weights that occurs with increased training often observed in the
type of network used in the present study. The improved performance of dense targets in the
Sparse-Dense Training Regime suggests that items added later to the training set can still be
acquired if those new items are similar to each other. Additional work is required to fully
understand the novel observations derived from the simple model used in the present study,
and to explore the deeper implications of these observations for connectionist networks
more generally.
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Figure 1.
Root-mean-square error over 1000 epochs of incremental training for the 6 items the
network was initially trained on (3 dense and 3 sparse).
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Figure 2.
Root mean square error for the generalization items over 1000 epochs of incremental
training.
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Figure 3.
Mean root mean square error after 1000 epochs of training for the dense and sparse target
words in networks with varying numbers of hidden units.
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Figure 4.
Mean root mean square error after 100 epochs of training for the dense and sparse targets in
the two training regimes.
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Figure 5.
Mean root mean square error after 1000 epochs of training for the dense and sparse targets
in the two training regimes.
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Figure 6.
Mean root mean square error after a total of 2000 epochs of training for the dense and sparse
targets in the two training regimes. Performance was assessed after the networks had been
exposed to all of the targets (by epoch 1000), and after an additional 1000 exposures.
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Figure 7.
Mean root mean square error after 100 epochs of training for the dense and sparse neighbors
in the two training regimes.
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Figure 8.
Mean root mean square error after 1000 epochs of training for the dense and sparse
neighbors in the two training regimes.
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Figure 9.
Mean root mean square error after a total of 2000 epochs of training for the dense and sparse
neighbors in the two training regimes. Performance was assessed after the networks had
been exposed to all of the words (by epoch 1000), and after an additional 1000 exposures.
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Figure 10.
Mean root mean square error after 100 epochs of training for the (untrained) dense and
sparse generalization items in the two training regimes.
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Figure 11.
Mean root mean square error after 1000 epochs of training for the (untrained) dense and
sparse generalization items in the two training regimes.
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Figure 12.
Mean root mean square error after a total of 2000 epochs of training for the (untrained)
dense and sparse generalization items in the two training regimes. Performance was assessed
after the networks had been exposed to all of the words (by epoch 1000), and after an
additional 1000 exposures.
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