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Abstract
A new algorithm is proposed for reconstructing raw RF data into ultrasound images. Prior delay-
and-sum beamforming reconstruction algorithms are essentially one-dimensional, as a sum is
performed across all receiving elements. In contrast, the present approach is two-dimensional,
potentially allowing any time point from any receiving element to contribute to any pixel location.
Computer-intensive matrix inversions are performed once-and-for-all ahead of time, to create a
reconstruction matrix that can be reused indefinitely for a given probe and imaging geometry.
Individual images are generated through a single matrix multiplication with the raw RF data,
without any need for separate envelope detection or gridding steps. Raw RF datasets were
acquired using a commercially available digital ultrasound engine for three imaging geometries: a
64-element array with a rectangular field-of-view (FOV), the same probe with a sector-shaped
FOV, and a 128-element array with rectangular FOV. The acquired data were reconstructed using
our proposed method and a delay-and-sum beamforming algorithm, for comparison purposes.
Point-spread-function (PSF) measurements from metal wires in a water bath showed the proposed
method able to reduce the size of the PSF and/or its spatial integral by about 20 to 38%. Images
from a commercially available quality-assurance phantom featured greater spatial resolution and/
or contrast when reconstructed with the proposed approach.

I. Introduction
The reconstruction of raw radiofrequency (RF) data into ultrasound images typically
includes both hardware-based and software-based operations [1]. One especially important
step, called ‘delay-and-sum beamforming’ as it involves applying time delays and
summations to the raw RF signal, can be performed very rapidly on dedicated hardware.
Such hardware implementations of the delay-and-sum beamforming algorithm have made
ultrasound imaging possible at a time when computing power was insufficient for entirely-
digital reconstructions to be practical. But improvements in computer technology and the
introduction of scanners able to provide access to digitized RF signals [2–6] have now made
digital reconstructions possible. Software-based reconstructions are more flexible [6–11],
and may allow some of the approximations inherited from hardware-based processing to be
lifted. A main message of the present work is that delay-and-sum beamforming is not a
particularly accurate reconstruction algorithm, and that software-based remedies exist which
are capable of providing significant image quality improvements, especially in terms of
spatial resolution and contrast.

Delay-and-sum beamforming is essentially a one-dimensional operation, as a summation is
performed along the ‘receiver element’ dimension of the (properly delayed) RF data. Several
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improvements upon the basic scheme have been proposed, whereby different weights are
given to different receiver elements in the summation to control apodization and aperture.
More recently, sophisticated strategies have been proposed to adjust these weights in an
adaptive manner, based on the raw data themselves, to best suit the particular object being
imaged [12–17]. In the ‘minimum variance beamforming’ method for example [12–15],
weights are sought that minimize the L2-norm of the beamformed signal (thus making
reconstructed images as dark as possible), while at the same time enforcing a constraint that
signals at focus be properly reconstructed. The overall effect is to significantly suppress
signals from undesired sources while preserving for the most part signals from desired
sources, thus enabling a number of different possible improvements in terms of image
quality [18]. Such adaptive beamforming approaches will be referred to here as ‘delay-
weigh-and-sum’ beamforming, to emphasize that elaborately selected weights are being
added to the traditional delay-and-sum beamforming algorithm. It should be noted that
irrespective of the degree of sophistication involved in selecting weights, delay-weigh-and-
sum beamforming remains essentially one-dimensional in nature. In contrast, the approach
proposed here is two-dimensional, allowing any time sample from any receiver element to
potentially contribute, in principle at least, toward the reconstruction of any image pixel.
Image quality improvements are obtained as correlations between neighboring pixels are
accounted for and resolved. Reductions in the size of the point-spread-function (PSF) area
by up to 37% and increases in contrast by up to 29% have been obtained here, as compared
to images reconstructed with delay-and-sum beamforming.

In the proposed approach, the real-time reconstruction process consists of a single step, a
matrix multiplication involving a very large and very sparse reconstruction matrix, without
any need for separate envelope detection or gridding steps. Throughout the present work,
considerable attention is given to the question of computing load, and of whether computing
power is now available and affordable enough to make the proposed approach practical on
clinical scanners. Computing demands for reconstruction algorithms can be separated into
two very different categories: Calculations performed once and for all ahead of time for a
given transducer array and imaging geometry, and calculations that must be repeated in real-
time for every acquired image. While long processing times may be acceptable for the first
category (algorithms performed only once, ahead of time), fast processing is necessary for
the second category (real-time computations). While the method does involve a heavy
computing load, the main bulk of these calculations fit into the first category above, i.e., for
a given probe and FOV geometry they can be performed once and for all. The actual real-
time reconstruction involves multiplying the raw data with the calculated reconstruction
matrix. In the present implementation, depending on field-of-view (FOV) and raw dataset
sizes, this multiplication took anywhere between about 0.04 and 4 s per time frame. In the
future, further algorithm improvements and/or greater computing power may enable further
reductions in processing time. Even in cases where frame rates sufficient for real-time
imaging could not be reached, the present method could still prove useful for reconstructing
the images that are saved and recorded as part of clinical exams.

It may be noted that the proposed approach is not adaptive, in the sense that the
reconstruction matrix depends only on the probe and on the geometry of the imaging
problem, and does not depend on the actual object being imaged. As such, the proposed
approach should not be seen as a competitor to adaptive beamforming, but rather as a
different way of addressing different limitations of the traditional delay-and-sum
bemforming algorithm. Ideas from the adaptive beam-forming literature may well prove
compatible with the present approach, thus enabling further improvements in image quality.
More generally, the 2D approach proposed here might prove a particularly suitable platform
for modeling and correcting for image artifacts, to obtain improvements beyond the
increases in spatial resolution and contrast reported in the present work.
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II. Theory
A. Regular (delay-and-sum beamforming) reconstructions

Ultrasound imaging (USI) reconstructions typically rely on delay-and-sum beamforming to
convert the received RF signal into an image [1]. Other operations such as TGC, envelope
detection and gridding may complete the reconstruction process. The acquired RF signal can
be represented in a space called here ‘e-t space’, where ‘e’ is the receiver element number
and ‘t’ is time.

This space is either 2- or 3-dimensional, for 1D or 2D transducer arrays, respectively. A
single e-t space matrix can be used to reconstruct a single ray, multiple rays, or even an
entire image in single-shot imaging [19, 20]. In the notation used below, all of the points in a
2D (or 3D) e-t space are concatenated into a single 1D vector, s. The single-column vector s
features Nt × Ne rows, i.e., one row for each point in e-t space, where Ne is the number of
receiver elements and Nt the number of sampled time points. As further explained below, a
regular delay-and-sum beamforming reconstruction can be represented as:

[1]

where ô is the image rendering of the ‘true’ sonicated object o; it is a 1D vector, with all Nx
× Nz voxels concatenated into a single column. Time gain compensation (TGC) is performed
by multiplying the raw signal s with the matrix T0, which is a diagonal square matrix
featuring Nt × Ne rows and columns. Delay-and-sum beamforming is performed by further
multiplying with D0, a matrix featuring Nl × Nax rows and Nt × Ne columns, where Nl is the
number of lines per image and Nax is the number of points along the axial dimension. The
content and nature of D0 will be described in more details later. The operator V{·} performs
envelope detection, which may involve non-linear operations and thus could not be
represented in the form of a matrix multiplication. Gridding is performed through a
multiplication with the matrix G featuring Nx × Nz rows and Nl × Nax columns. The operator
A{·} represents optional image-enhancement algorithms, and will not be further considered
here. The reconstruction matrix, R0, is given by D0 × T0. An example of an RF dataset in e-t
space and its associated reconstructed image ô (rendered in 2D) is shown in Fig. 1a and 1b,
respectively. Figure 1b further includes graphic elements to highlight regions-of-interest
(ROI) that will be referred to later in the text (white boxes and line). A main goal of the
present work is to improve R0 in Eq. 1 as a means to increase the overall quality of
reconstructed images ô such as that in Fig. 1b.

B. An improved solution to the reconstruction problem
As assumed in delay-and-sum beamforming reconstructions, the signal reflected by a single
point-object should take on the shape of an arc in the corresponding e-t space RF signal. The
location of the point-object in space determines the location and curvature of the associated
arc in e-t space. For a more general object, o, the raw signal would consist of a linear
superposition of e-t space arcs, whereby each object point in o is associated with an e-t space
arc in s. The translation of all object points into a superposition of e-t space arcs can be
described as:

[2]

where Earc is an encoding matrix featuring Nt × Ne rows and Nl × Nax columns. The matrix
Earc is assembled by pasting side-by-side Nl × Nax column vectors that correspond to all of
the different e-t space arcs associated with the Nl × Nax voxels to be reconstructed. The
reconstruction process expressed in Eq. 1 is actually a solution to the imaging problem from
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Eq. 2: Multiplying both sides of Eq. 2 with Earc
+, the Moore-Penrose pseudo-inverse of

Earc, one obtains o ≈ Earc
+×T0×s. Upon adding the envelope detection and gridding steps,

one can obtain Eq. 1 from Eq. 2 given that:

[3]

On the other hand, the operations involved in a digital delay-and-sum beamforming
reconstruction (i.e., multiplying the raw signal in e-t space with an arc, summing over all
locations in e-t space, and repeating these steps for a collection of different arcs to
reconstruct a collection of different image points) can be performed by multiplying the RF
signal with Earc

H, where the superscript H represents a Hermitian transpose. In other words,
D0 in Eq. 1 is given by:

[4]

Combining Eqs 3 and 4 gives a relationship that captures one of the main assumptions of
delay-and-sum beamforming reconstructions:

[5]

In other words, delay-and-sum beamforming reconstructions assume that assembling all e-t
space arcs together in a matrix format yields an orthogonal matrix. This assumption is very
flawed, as demonstrated below.

An example is depicted in Fig. 2 where the e-t signal consists of a single arc (Fig. 2a),
meaning that the object o should consist of a single point. However, reconstructing this arc
using Eqs 1 and 3 does not give a point-like image, but rather the broad distribution of
signals shown in Fig. 2b. This is because Earc

H, and thus D0 through Eq. 4, is only a poor
approximation to Earc

+.

Instead of using the approximation from Eq. 5, the imaging problem as expressed in Eq. 2
can be better handled through a least-square solution. Equation 2 is first multiplied from the
left by Earc

H to obtain the so-called normal equations [21]: Earc
H×(T×s) = Earc

H×Earc×o.
Inverting the square normal matrix Earc

H×Earc and multiplying from the left with
(Earc

H×Earc)−1 allows o to be estimated: ô = (Earc
H×Earc) −1×Earc

H×(T×s). Upon the
addition of a damped least-squares regularization term λ2L, and the insertion of Ψ−1 as part
of a preconditioning term Earc

H×Ψ −1, an equation is obtained which exhibits the well-
known form of a least-square solution [7, 11, 22, 23]:

[6]

In the present work Ψ is simply an identity matrix, and L will be discussed in more details
later. The signal ‘s’ may here include both legitimate and noise-related components, and ô is
a least-square estimate of the actual object ‘o’. The image in Fig. 2c was reconstructed using
Eq. 6. Compared to Fig. 2b, Fig. 2c presents a much more compact signal distribution and a
greatly improved rendering of the point-object. But even though images reconstructed using
the R1 matrix (e.g., Fig. 2c) may prove greatly superior to those reconstructed with delay-
and-sum beamforming and the associated R0 matrix (e.g., Fig. 2b) when dealing with
artificial e-t space data such as those in Fig. 2a, such improvements are typically not
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duplicated when using more realistic data instead. The reason for this discrepancy is
explored in more details in the next section.

C. Including the shape of the wavepacket into the solution
Datasets acquired from a single point-like object do not actually look like a simple arc in e-t
space. In an actual dataset, the arc from Fig. 2a would be convolved with a wavepacket
along t, whereby the shape of the wavepacket depends mostly on the voltage waveform used
at the transmit stage and on the frequency response of the piezoelectric elements. A
wavepacket has both positive and negative lobes, while the arc in Fig. 2a was entirely
positive. Even though the delay-and-sum beamforming assumption in Eq. 5 is very
inaccurate, negative errors stemming from negative lobes largely cancel positive errors from
positive lobes. For this reason, delay-and-sum beamforming tends to work reasonably well
for real-life signals, even though it may mostly fail for artificial signals such as those in Fig.
2a.

The reconstruction process from Eq. 6 avoids the approximation made by delay-and-sum
beamforming as expressed in Eq. 5, but it remains inadequate because it is based on Earc,
and thus assumes object points to give rise to arcs in e-t space. While Earc associates each
point in the object o with an arc in the raw signal s through Eq. 2, an alternate encoding
matrix Ewav associates each point with a wavepacket function instead. Because Ewav
features several non-zero time points per receiver element, the reconstruction process truly
becomes two-dimensional in nature, as whole areas of e-t space may get involved in the
reconstruction of any given pixel location, as opposed to one-dimensional arc-shaped curves
as in delay-and-sum beamforming. Sample computer code to generate Ewav is provided in
the Appendix.

The solution presented in Eq. 6 is duplicated in Eq. 7 below, but it now involves a more
accurate model relying on Ewav rather than Earc:

[7]

where the TGC term T2 may be equated to T1 in Eq. 6, T2 = T1. Note that no envelope
detection and no gridding operation are required in Eq. 7, unlike in Eqs 1 and 6. As Ewav
already contains information about the shape of the wavepacket, envelope detection is
effectively performed when multiplying by D2. Furthermore, because a separate envelope
detection step is not required, there is no reason anymore for reconstructing image voxels
along ray beams. Accordingly, the Nvox reconstructed voxels may lie directly onto a
Cartesian grid, removing the need for a separate gridding step. For a rectangular FOV, the
number of reconstructed voxels Nvox is simply equal to Nx × Nz, while for a sector-shaped
FOV it is only about half as much (because of the near-triangular shape of the FOV). As
shown in the Results section and in the Appendix, a prior measurement of the wavepacket
shape, for a given combination of voltage waveform and transducer array, can be used
toward generating Ewav. Note that unlike Earc, Ewav is complex.

Equation 8 below is the final step of the present derivation. The index ‘2’ from Eq. 7 can
now be dropped without ambiguity, and a scaling term (I + λ2L) is introduced, where I is an
identity matrix, to compensate for scaling effects from the λ2L regularization term:

[8]
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Based on Eq. 8, an image ô can be generated in a single processing step by multiplying the
raw RF signal s with a reconstruction matrix R.

D. Geometrical analogy
There is a simple geometrical analogy that may help understand at a more intuitive level the
least-square solution in Eq. 8. Imagine converting a 2D vector, s⃗=s1i⃗+s2j⃗, from the usual x-y
reference system defined by unit vectors i⃗ and j ⃗ to a different reference system defined by

the unit vectors  and by  instead. This can be done

through projections, using a dot product: . Projections are appropriate in
this case because the basis vectors u⃗l form an orthonormal set: . In contrast,
projections would not be appropriate when converting s⃗ to a non-orthonormal reference

system, such as that defined by  and by . In such case, the

coefficients sα and sβ in  should instead be obtained by solving the following
system of linear equations:

(9)

Direct substitution confirms that  and sβ= (s1 – s2) is indeed the correct solution

here, as it leads to . The delay-and-sum beamforming
reconstruction algorithm, which aims at converting e-t space signals into object-domain
signals, is entirely analogous to a change of reference system using projections. Every given
pixel is reconstructed by taking the acquired signal in e-t space and projecting it onto the
(arc-shaped) function associated with this particular pixel location. Such projection-based
reconstruction algorithm neglects any correlation that may exist between pixels, and a better
image reconstruction algorithm is obtained when taking these correlations into account, as
done in Eqs 8 and 9.

E. Generalization to multi-shot imaging
As presented above, Eq. 8 involved reconstructing a single e-t space dataset s from a single
transmit event into an image ô. However, Eq. 8 can readily be generalized to multi-shot
acquisitions, whereby transmit beamforming is employed and only part of the image is
reconstructed from each transmit event. In such case, data from all Nshot shots are
concatenated into the column-vector s, which would now feature Nshot × Nt × Ne elements.
The number of columns in the reconstruction matrix R also increases to Nshot × Nt × Ne. In
the simplest scenario, where any given image voxel would be reconstructed based on RF
data from a single transmit event (rather than through a weighted sum of multiple voxel
values reconstructed from multiple transmit events), the number of non-zero elements in R
would remain the same as in the single-shot imaging case. As shown in the results section,
the number of non-zero elements in R is the main factor determining reconstruction time.
While the increased size of s and R may cause some increase in reconstruction time, the fact
that the number of non-zero elements in the sparse matrix R would remain unchanged
suggests that such increase may prove modest.

F. On extending the proposed model
The present work offers a framework whereby information anywhere in the e-t space can be
exploited, in principle at least, toward reconstructing any given image pixel. This more
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flexible, two-dimensional approach may conceivably lend itself to the modeling and
correction of various effects and artifacts. Two possible examples are considered below:

1) Multiple reflections—The number of columns in the encoding matrix Ewav could be
greatly increased to include not only the e-t space response associated with each point in the
reconstructed FOV, but also a number of extra versions of these e-t space responses shifted
along the t axis, to account for the time delays caused by multiple reflections. Such increase
in the size of Ewav could however lead to a prohibitive increase in terms of memory
requirements and computing load.

2) Effect of proximal voxels on more distal voxels—Ultrasound waves are
attenuated on their way to a distal location, which may give rise to the well-known
enhancement and shadowing artifacts, but they are also attenuated on their way back to the
transducer, which may affect the e-t space function associated with distal points. For
example, whole segments of the e-t space signal might be missing if one or more proximal
hyperintense object(s) would cast a shadow over parts of the transducer face. The model
being solved through Eq. 8 is linear, and cannot accommodate for the exponential functions
required to represent attenuation. One would either need to opt for a different type of
solution, possibly an iterative solution, or to make the model linear through a truncated
Taylor series, ex ≈ (1 + x). We did pursue the latter approach, and obtained encoding
matrices the same size as Ewav, to be used in solutions of the same form as Eq. 8. At least in
its current form, the approach proved very impractical for two main reasons: A) Although no
bigger than Ewav in its number of rows and columns, the new encoding matrix was much
less sparse than Ewav, leading to truly prohibitive reconstruction times and memory
requirements. B) Maybe more importantly, the encoding matrix becomes dependent on the
reconstructed object itself so that most of the processing would have to be repeated in real-
time for each time frame, rather than once-and-for-all ahead of time.

III. Methods
A. Experimental set-up and reconstruction

All data were acquired with a Verasonics system (Redmond, WA, USA) model V-1, with
128 independent transmit channels and 64 independent receive channels. Two different
ultrasound phantoms were imaged: A phantom manufactured by CIRS (Norfolk, VA, USA)
model 054GS with a speed of sound of 1540 m/s and an attenuation coefficient of 0.50 ±
0.05 db/cm-MHz, and a homemade phantom consisting of a single metal wire in a water
tank. Two different probes were employed: An ATL P4-2 cardiac probe (2.5 MHz, 64
elements, pitch of 0.32 mm) and an Acuson probe (3.75 MHz, 128 elements, pitch of 0.69
mm). The ATL probe was used either in a rectangular-FOV mode (all elements fired
simultaneously) or in a sector-FOV mode (virtual focus 10.24 mm behind the transducer
face), while the Acuson probe was used only in a rectangular-FOV mode. When using the
Acuson probe, signal from the 128 elements had to be acquired in two consecutive transmit
events, as the imaging system could acquire only 64 channels at a time. The system acquired
4 time samples per period, for a 10−7 s temporal resolution with the ATL probe and
6.7×10−8 s with the Acuson probe. About 2000 time points were acquired following each
transmit event (either 2048 or 2176 with the ATL probe, and 2560 with the Acuson probe).
The reconstructed FOV dimensions were 2.05 × 14.2 cm for the ATL probe in a rectangular-
FOV mode, 17.7 × 11.0 cm for the ATL probe in a sector-FOV mode, and 8.77 × 10.1 cm
for the Acuson probe in a rectangular-FOV mode.

Reconstruction software was written in the Matlab programming language (MathWorks,
Natick, MA, USA) and in the C language. Sample code for key parts of the processing is
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provided in the Appendix. The reconstruction problem from Eq. 8 was solved using either
an explicit inversion of the term (Ewav

H× Ψ−1×Ewav+λ2L), or a least-square (LSQR)
numerical solver. While the LSQR solution was vastly faster than performing an explicit
inverse, and proved very useful throughout the developmental stages of the project, it would
be impractical in an actual imaging context as the LSQR solution requires the actual RF
data, and thus cannot be performed ahead of time. In contrast, performing the explicit
inverse may take a long time, but it is done once and for all ahead of time and the result
reused indefinitely for subsequent datasets, potentially allowing practical frame rates to be
achieved. Reconstruction times quoted in the Results section were obtained using either an
IBM workstation (Armonk, New York, USA) model x3850 M2 with 4 quad-core 2.4 GHz
processors and 128 GB of memory, or a DELL workstation (Round Rock, Texas, USA)
Precision T7500 with 2 quad-core 2.4 GHz processors and 48 GB of memory. The DELL
system was newer and overall significantly faster, allowing shorter reconstruction times to
be achieved, while the IBM system proved useful for early developments and for
reconstruction cases with more stringent memory requirements.

B. Optimization of reconstruction parameters
1) Time-gain-compensation—The dataset shown in Fig. 1 was reconstructed several
times using Eq. 1 and Eq. 6 while adjusting the TGC matrices T0 and T1 from one
reconstruction to the next. The different TGC matrices were computed based on different
attenuation values, in search for matrices able to generate fairly homogeneous image results.
The effects of reconstructing images one column or a few columns at a time rather than all
columns at once were also investigated, as a way of gaining insights about the proposed
algorithm.

2) Regularization—The dataset shown in Fig. 1 was reconstructed using several different
settings for the regularization term λ2L in Eq. 8, by varying the value of the scalar λ2 and
using L = I, an identity matrix. Although a single time frame was shown in Fig. 1, the full
dataset actually featured Nfr = 50 time frames. A standard deviation along the time-frame
axis was calculated, and ROIs at various depths were considered (shown in Fig. 1b). As a
general rule, the regularization term should be kept as small as possible to avoid blurring,
but large enough to avoid noise amplification if/when the system becomes ill conditioned. A
depth-dependent regularization term λ2L is sought, with L ≠ I, whereby an appropriate
amount of regularization is provided at all depths.

3) Maintaining sparsity—The proposed approach involves manipulating very large
matrices featuring as many as hundreds of thousands of columns and rows. The approach
may nevertheless prove computationally practical because these matrices, although large,
tend to be very sparse. Only the non-zero elements of a sparse matrix need to be stored and
manipulated, and one needs to make sure that all matrices remain sparse at all times
throughout the reconstruction process. If large amounts of nearly-zero (but nevertheless non-
zero) elements were generated at any given processing step, processing time and memory
requirements could readily grow far beyond manageable levels. Three main strategies were
used to ensure sparsity: A) As shown in the results sections, the wavepackets used as prior
knowledge when constructing Ewav were truncated in time so as to keep only Nwpts non-zero
points, to help keep Ewav sparse. B) Instead of solving for all of D in one pass, the areas of D
where non-zero values are expected were covered using a series of Npatch overlapping
regions, each one only a small fraction of D in size. In the image plane, these patches can be
thought of as groups of voxels that are located roughly a same distance away from the
virtual transmit focus. For rectangular-FOV geometries, different patches simply correspond
to different z locations (Fig. 3a) and additional reductions in processing requirements can be
achieved by further sub-dividing the x-axis as well (Fig. 3c), while for sector-shaped FOV
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geometries they correspond to arc-shaped regions in the x-z plane (Fig. 3b). Alternatively,
these patches can be understood as square sub-regions along the diagonal of the square
matrix (Ewav

H × Ewav + λ2L) −1, which are mapped onto the non-square D and R matrices
through the multiplication with Ewav

H in Eq. 8. C) Once all patches are assembled into a D
or an R matrix, the result gets thresholded so that only the largest Nnz values may remain
non-zero. Preliminary thresholding on individual patches may also be performed. Smaller
settings for Nnz lead to sparser R matrices and shorter reconstruction times, but potentially
less accurate image results. The need for fast reconstructions must be weighed against the
need for image accuracy.

After selecting a reasonable setting of Npatch = 20 for the dataset in Fig. 1 (see Fig. 3a),
images were generated using a number of different values for Nnz while noting the effect on
reconstruction speed and accuracy. The so-called ‘artifact energy’ was used as a measure of
image accuracy:

[10]

where ôNnz and ôref were obtained with and without thresholding, respectively. The number
of non-zero elements in R should be made as small as possible to achieve shorter
reconstruction times, but kept large enough to avoid significant penalties in terms of image
quality and artifact energy.

C. Comparing reconstruction methods
1) PSF—The metal-wire phantom was imaged using the ATL P4-2 cardiac probe both in a
rectangular-FOV and a sector-FOV mode, and the Acuson probe in a rectangular-FOV
mode. The acquired datasets were reconstructed using both delay-and-sum beamforming
(Eqs 1 and 4) and the proposed approach (Eq. 8). Earc in Eq. 4 consisted of about Nvox×Ne
non-zero elements, in other words, one non-zero element per receive channel for each
imaged pixel. Any interpolation performed on the raw data would be built-in directly into
Earc, and would lead to an increase in the number of non-zero elements. Interpolating the
raw data might bring improvements in terms of secondary lobes suppression [24], but would
also degrade the sparsity of Earc by increasing the number of non-zero elements.

Because the water-wire transition had small spatial extent, resulting images were interpreted
as a point-spread-function (PSF). The full-width-half-max (FWHM) of the signal
distribution was measured along the x and z axes, giving FWHMx and FWHMz. The size of
the PSF was interpreted here as the size of its central lobe, as approximated by (π × FWHMx
× FWHMz/4). A second measurement was performed which involved the whole PSF
distribution, rather than only its central lobe: After normalizing the peak signal at the wire’s
location to 1.0 and multiplying with the voxel area, the absolute value of the PSF signal was
summed over an ROI about 3 cm-wide and centered at the wire. The result can be
understood as the minimum area, in mm2, that would be required to store all PSF signal
without exceeding the original peak value anywhere. This measure corresponds to the L1-
norm of the PSF, and along with the size of the central lobe it was used here to compare PSF
results obtained from different reconstruction methods.

2) Phantom imaging—The CIRS phantom was imaged using the same probes as for the
metal-wire phantom (above), and the datasets were reconstructed using both delay-and-sum
beam-forming (Eq. 1) and the proposed approach (Eq. 8). Resulting images were displayed
side-by-side for comparison. Small hyperechoic objects allowed differences in spatial
resolution to be appreciated, while a larger hyperechoic object allowed differences in
contrast to be measured.
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IV. Results
A. Optimization of reconstruction parameters

1) Equivalence of implementations—Figure 4 shows 1D images obtained from the
same da-taset as in Fig. 1, for a 1D FOV that passes through the line of beads from Fig. 1b.
Of particular interest are the 3 results plotted with the same black line in Fig. 4a. These
results are indistinguishable in the sense that differences between them were much smaller
than the thickness of the black line in Fig. 4a. One was obtained using delay-and-sum
beamforming and R0 from Eq. 1, the two others using R1 and Eq. 6 while including only
one ray (i.e., one image column) at a time into the encoding matrix. Results from Eq. 6
diverged from delay-and-sum beamforming results only when many or all image rays were
included at once in the same encoding matrix (gray and dashed lines in Fig. 4a). The main
point is that differences between our approach and delay-and-sum beamforming reported
here do not appear to come from one being better implemented than the other, but rather
from our method resolving the correlation between adjacent voxels and rays, as it was
designed to do.

2) Time-gain-compensation—Figure 4b shows that with delay-and-sum beamforming
and R0 in Eq. 1, a TGC term based on a 0.30 db/cm-MHz attenuation seemed appropriate, as
it would keep the amplitude of the various beads in Fig. 1b roughly constant with depth. On
the other hand, when using R1, a correction based on a higher attenuation of 0.50 db/cm-
MHz proved more appropriate. Documentation on the CIRS phantom lists the true, physical
attenuation as 0.50±0.05 db/cm-MHz, the same value as used here with our proposed
reconstruction method. It would appear that with the proposed reconstruction, TGC might
become a more quantitative operation based on true signal attenuation. On the other hand, as
shown in Fig. 4b (gray arrow), signals at shallow depths tend to be overcompensated when
employing a value of 0.50 db/cm-MHz. To prevent the near-field region from appearing too
bright in the images presented here, further ad hoc TGC was applied over the shallower one-
third of the FOV. Furthermore, an ad hoc value of 0.35 db/cm-MHz (rather than 0.50 db/cm-
MHz) had to be used when reconstructing data from the higher-frequency Acuson array, so
that homogeneous-looking images could be obtained. Overall, although the TGC operation
does appear to become more quantitative in nature with the proposed approach, ad hoc
adjustments could not be entirely avoided.

3) Regularization—The 50-frame dataset from Fig. 1 was reconstructed several times
using different values for λ2, the regularization parameter. For each reconstruction, the
standard deviation along the time-frame direction was computed and then spatially averaged
over 5 ROIs located at different depths (shown in Fig. 1b as white rectangular boxes). Figure
5 gives the mean standard deviation associated with each one of these ROIs, as a function of
the regularization parameter λ2. For each curve in Fig. 5, an ‘×’ indicates the amount of
regularization that appears to be roughly the smallest λ2 values that can be used, while still
avoiding significant noise increases. Defining a normalized depth

, where dvf is the distance to the virtual focus behind
the transducer and wprobe is the width of the transducer probe in the x direction, the location
of the ‘×’ marks in Fig. 5 correspond to λ2 = r/20. Because having no regularization at r = 0
might be problematic, a minimum value of 0.1 was used for λ2, so that λ2 = max(r/20, 0.1).
In practice, the regularization parameter in Eq. 8 was equated to the constant part of this
expression, λ2 = 1/20, while the diagonal of the Nvox by Nvox matrix L was equated to the
variable part, so that λ2×diag(L) = max(r/20, 0.1), where j ranges from 1 to Nvox.
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More generally, this expression cannot be expected to hold for all FOV and probe
geometries. For example, when using the ATL probe in a sector-FOV mode rather than the
rectangular-FOV mode employed in Fig. 5, a much larger number of voxels get
reconstructed from essentially the same number of raw-data points, suggesting that
conditioning might be degraded and that a higher level of regularization might prove
appropriate. For both the sector-FOV results and the Acuson-probe results presented here,
regularization was scaled up by a factor of 4 compared to the expression above, leading to
λ2×diag(L) = max(rj/5, 0.1).

4) Maintaining sparsity—The dataset from Fig. 1a was reconstructed using the proposed
method, and the magnitude of the Nvox by (Ne×Nt) matrix D is shown in Fig. 6a. Because D
is very sparse, one can greatly decrease computing requirements by calculating only the
regions with expected non-zero signals, using a series of overlapping patches. The
calculated regions, where elements can assume non-zero values, are shown in Fig. 6b. R is
calculated from D, and the plots in Fig. 6c show the effect that thresholding R had on
reconstruction time and accuracy. The horizontal axis in Fig. 6c is expressed in terms of
Nnz0 = 7131136, the number of non-zero elements in R0, as obtained when performing a
regular delay-and-sum beamforming reconstruction on the same data (Eq. 1). As seen in the
upper plot in Fig. 6c, reconstruction time scales linearly with the number of non-zero
elements in R with a slope equivalent to 3.10×107 non-zero elements per second, for the
IBM workstation mentioned in the Methods section. Based on the lower plot a setting of Nnz
= 40×Nnz0 was selected, which is roughly the lowest value that can be used while essentially
avoiding any penalty in terms of artifact energy. As compared to the non-thresholded case,
an Nnz = 40×Nnz0 setting enabled about a 3-fold reduction in reconstruction time.

B. Comparing reconstruction methods
1) PSF—The wavepacket shapes used toward calculating Ewav are shown in Fig. 7a, for all
probe and FOV geometries used here. As shown with black curves in Fig. 7a, the
wavepackets were cropped to only Nwpts non-zero points to help maintain sparsity in Ewav.
In Fig. 7a and in all reconstructions a setting of Nwpts = 50 points was used. Images of the
wire phantom are shown in Fig. 7b–d, both for a delay-and-sum beamforming reconstruction
(Eq. 1) and for our proposed method (Eq. 8), along with profiles of the PSFs along the x and
z directions. All images shown here are windowed such that black means zero or less, white
means signal equal to the window width w or more, and shades of gray are linearly
distributed in-between. Area and L1-norm measurements of the PSF are provided in Table 1,
while Table 2 lists reconstruction times and matrix sizes. Note that delay-and-sum
beamforming results were reconstructed with very high nominal spatial resolution (λ×λ/8,
Table 2), to help ensure a fair comparison.

As seen in Table 1, the size of the PSF was reduced by up to 37% (ATL probe with
rectangular FOV), while the L1-norm of the PSF was reduced by up to 38% (Acuson probe
with rectangular FOV). As compared to the ATL probe results, using the wider 128-element
Acuson array and reducing the depth of the metal-wire location to only about 4 cm lead to
very compact PSF distributions (0.32 mm2, from Table 1). In this case our method had very
little room for improvements in terms of PSF size (1% improvement, from Table 1), but a
38% reduction of the L1-norm of the PSF was achieved. Reductions of the L1-norm mean
that less signal may leak away from high-intensity features, and that higher contrast might
be obtained, as verified below using the CIRS phantom.

Gray numbers in Table 1 refer to an ‘optimized’ reconstruction tailored to the metal-wire
phantom, whereby a 1.5 by 1.5 cm square region centered at the object-point location was
reconstructed using a single patch (Npatch = 1) and high spatial resolution (λ × λ/4, where λ
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is the wavelength = c/f). Such ‘optimized’ reconstructions were performed for comparison
purposes on both datasets obtained with the ATL probe, with rectangular- and sector-shape
FOV. Note that the optimum reconstruction brought very little further improvements in
terms of PSF size or L1-norm (see Table 1, gray vs black numbers).

2) Phantom imaging—Because the R0 and R matrices had already been calculated for
the PSF results shown in Fig. 7, no further processing was required and the pre-computed
matrices were simply reused for reconstructing the images in Fig. 8. The fact that no new
processing was needed is emphasized in Table 2 using “0 s” entries in the “Recon time,
stage 1” column.

A schematic of the imaged phantom is provided in Fig. 8a, and single-shot images are
shown in Fig. 8b–d for both the delay-and-sum beamforming (R0 matrix) and the present
reconstruction method (R matrix), for the 3 imaging geometries considered here. The side-
by-side comparison appears to confirm that the present approach (as expressed through Eq.
8), succeeds in increasing spatial resolution as compared to a delay-and-sum beamforming
reconstruction (as expressed through Eq. 1), at least in results obtained with the 64-element
ATL probe. Using the wider 128-element Acuson linear, the improvement in spatial
resolution appears to be subtler. On the other hand, the reduction in the L1-norm of the PSF
(Table 1) does appear to have detectable effects in the images shown in Fig. 8d. Using the
ROIs defined in Fig. 8d, and with SC the mean signal over the inner circular ROI and SR the
mean signal over the ring-shaped ROI that surrounds it, contrast for the hyperechoic circular
region (arrow in Fig. 8d) was defined as (SC − SR)/(SC + SR). The inner circular ROI had an
8 mm diameter, equal to the known size of the phantom’s hyperechoic target, and the
surrounding ring-shaped ROI had an outer diameter of 12 mm. Because a lesser amount of
signal was allowed to ‘bleed’ away from the hyperechoic region when using our proposed
reconstruction approach, contrast as defined above was increased by 29.2% compared to the
delay-and-sum beamforming results, from a value of 0.248 to a value of 0.320.

V. Discussion
An image reconstruction method was presented that offers advantages over the traditional
delay-and-sum beamforming approach. Without any increase in risk or exposure to the
patient, and without any penalty in terms of ultrasound penetration, spatial resolution and/or
contrast could be increased through a more accurate reconstruction of the acquired data. The
proposed reconstruction process involved a single matrix multiplication without any need
for separate envelope detection or gridding steps, and improvements by up to 38% in the
area and/or the L1-norm of the PSF were obtained for three different FOV and probe
configurations. As a limitation of the results presented here, the acquired data enabled a
quantitative characterization of the PSF at only a single location within the imaged FOV. A
series of measurements involving different relative positions between the imaging probe and
the imaged metal wire would be required if spatial maps of PSF improvements were to be
obtained, rather than a single spatial location. Although more qualitative in nature, results
from a CIRS imaging phantom suggested that improvements in PSF may be occurring
throughout the imaged FOV.

It is worth noting that the amounts of spatial resolution and contrast improvements reported
here do not necessarily represent a theoretical limit for the proposed algorithm, but merely
what could be achieved with the present implementation. In principle at least, in a noiseless
case where the encoding matrix is perfectly known, the PSF could be reduced to little more
than a delta function (e.g., see Fig. 2c). In more realistic situations, limitations on the
achievable spatial resolution result from inaccuracies in the encoding matrix, the need to use
regularization, and limits on both memory usage and reconstruction time. It is entirely
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possible that with a more careful design for Ewav and/or for the regularization term λ2L, or
greater computing resources, greater improvements in spatial resolution and/or contrast
might have been realized. On the other hand, in especially challenging in vivo situations
where processes such as aberration may affect the accuracy of Ewav, lower levels of
improvement might be obtained instead. The possibility of including object-dependent
effects such as aberration into Ewav, although interesting, is currently considered impractical
because of the long processing time required to convert Ewav into a reconstruction matrix R
(Eq. 8).

Prior information about the transmitted wavepacket was obtained here from a single
transducer element, during a one-time reference scan, using a phantom consisting of a metal
wire in a water tank. Interestingly, when using the proposed reconstruction scheme, the TGC
part of the algorithm became more exact and less arbitrary in nature, as the nominal 0.5 db/
cm-MHz attenuation coefficient of the imaged phantom could be used directly toward
calculating attenuation corrections. Scaling difficulties did however remain, especially in the
near field, and ad hoc corrections could not be entirely avoided.

A main drawback of the proposed approach may be its computing load. Although the ‘real-
time’ part of the processing consists of a single multiplication operation between a matrix R
and the raw data s, the R matrix tends to be very large and the multiplication is
computationally demanding. The use of ‘graphics processing unit’ (GPU) hardware, which
enables extremely fast processing in some applications, may not be appropriate here. In
current systems at least, the graphics memory is still fairly limited and physically separate
from the main memory, meaning that much time might be wasted transferring information to
and from the graphics card. While GPU processing may prove particularly beneficial in
situations that require a large amount of processing to be performed on a relatively small
amount of data, it is not nearly as well suited to the present case where fairly simple
processing (a matrix multiplication) is performed on a huge amount of data (mainly, the
matrix R). For this reason, ‘central processing unit’ (CPU) hardware is exploited here
instead, and a multi-threaded reconstruction program was written in the C language.
Reconstruction times in the range of about 0.04 to 4 s per image were obtained here, using 8
processing threads on an 8-processor system. Using more threads on a system featuring
more cores would represent an obvious way of reducing processing time. Further
improvements in our programming and future improvements in computer technology may
also help. If necessary, sacrifices could be made in terms of voxel size, spatial coverage and/
or artifact content, to further reduce the number of non-zero elements in R and thus reduce
processing time. It should be noted that even in cases where frame rates required for real-
time imaging could not be achieved, the present method could still be used to reconstruct
images saved and recorded as part of clinical ultrasound exams.

Unlike for the ‘real-time’ operation R × s, the processing speed for the initial one-time
evaluation of R is considered, for the most part, of secondary importance. In the present
implementation, processing times ranged from about 7 hours to well over 100 hours,
depending on probe and FOV geometry. While reducing this time through algorithm
improvements and/or parallel processing would be desirable, it is not considered an essential
step toward making the method fully practical. Because these lengthy calculations can be re-
used for all subsequent images acquired with a given transducer, excitation voltage
waveform and FOV setting, long initial processing times do not prevent high frame rates to
be achieved. In practice, several R matrices corresponding to different transducers and a
range of FOV settings can be pre-computed, stored, and loaded when needed.
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VI. Conclusion
An image reconstruction method was introduced that enabled valuable improvements in
image quality, and computing times compatible with real-time imaging were obtained for
the simplest case considered here (0.039 s per frame). The method proved capable of
reducing the area and/or L1-norm of point-spread-functions by up to about 38%, allowing
improvements in spatial resolution and/or contrast at no penalty in terms of patient risk,
exposure or ultrasound penetration.
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VII. Appendix

A. Generating the Ewav matrix
The generation of the Ewav matrix in Eq. 8 can be considered of central importance to the
proposed approach. Prior knowledge about the shape of the wavepacket (see Fig. 7a), stored
in a row-vector ‘wvpckt’ featuring Nt elements, is transformed here to the temporal
frequency domain and duplicated Ne times into the Ne by Nt array ‘wvpckt_f’:

wvpckt_f = repmat (fft (wvpckt, [], 2), [Ne 1]);

For each voxel ‘ivox’ to be reconstructed, a corresponding arc-shaped e-t space wavepacket
function is calculated through modifications to wvpckt_f. First, a ‘travel_time’ vector with
Ne entries is obtained:

d_travel = d_to_object + d_from_object;
t_travel = d_travel/sound_speed;

With ‘t_ref’ the time point within the wavepacket to be considered as the origin, a phase
ramp is placed on wvpckt_f that corresponds to the appropriate element-dependent time
shift:

t_travel = t_travel - t_ref;
ph_inc =-(2*pi/Nt) * (t_travel/dt + 1);
ph_factor = ph_inc * (0:Nt/2-1);
arc = zeros(Ne, Nt);
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arc(:,1:Nt/2) = wvpckt_f(:,1:Nt/2).*exp(1i*ph_factor);
arc = ifft (arc, [], 2);

To maintain sparsity in Ewav, only a relatively small number of time points (50 here) can be
kept for each wavepacket in ‘arc’ (see Fig. 7a). A sparser version of ‘arc’ is thus obtained,
called ‘arc_sparse’, stored into a 1D column-vector featuring Nt × Ne rows, and normalized
so that its L2-norm is equal to 1:

E_1vox(:) = arc_sparse(:);
scaling = sqrt (sum(abs(E_1vox(:)).^2,1));
E_1vox(:) = E_1vox(:) ./(scaling+epsilon);

Finally, the calculated result for voxel ‘ivox’ can be stored at its proper place within Ewav:

Ewav(:,ivox) = E_1vox(:,1);

The process is repeated for all ‘ivox’ values, to obtain a complete Ewav matrix.

B. Matrix inversion and image reconstruction
For each patch within D (see Fig. 6b), and with ‘E’ representing the corresponding region
within Ewav, the inversion in Eq. 8 can be performed through:

Ep = E’;
EpE_inv = inverse(Ep*E + lambda_L);
EpE_inv = double(EpE_inv);

where inverse(·) is part of a freely-downloadable software package developed by Tim Davis,
http://www.mathworks.com/matlabcentral/fileexchange/24119. Alternatively, the readily
available Matlab inv(·) function may be used instead, although it is generally considered less
accurate:

EpE_inv = inv(Ep*E + lambda_L);

The reconstruction times provided in Table 2 were obtained using Matlab’s inv(·) function.
As shown in Eq. 8, the (Ewav

H × Ewav + λ2L) −1 term gets multiplied by (I + λ2L) and by
Ewav

H:

EpE_inv = EpE_inv * (speye(Nvox_patch,Nvox_patch)+lambda_L);
D = EpE_inv * Ep;

Optional thresholding may be performed on D. The current patch, which involves all voxels
listed into the array ‘i_vox’, can then be stored at its proper place within the matrix R:

R(i_vox,:) = R(i_vox,:) + W*D*T;
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where T is for TGC and W is a diagonal matrix with a Fermi filter along its diagonal, to
smoothly merge contiguous overlapping patches. The matrix R is thresholded, and the
image corresponding to time frame ‘ifr’ can be reconstructed with:

s = zeros(Nt*Ne,1);
s(:) = data(:,:,ifr);
O_vec = R*s;

The Nvox by 3 array ‘voxs’ is a record of the x, z and matrix location for every image voxel
being reconstructed. The 1D vector ‘O_vec’ gets converted into a ready-for-display 2D
image format through:

O = zeros(Nz, Nx);
O(voxs(:,3)) = O_vec;

Madore and Meral Page 17

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2014 April 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
a) Raw RF data in the element vs. time space, called e-t space here, can be reconstructed into
the image shown in (b) using a regular delay-and-sum beamforming reconstruction. Note
that the carrier frequency of the raw signal was removed in (a) for display purposes, as it
would be difficult to capture using limited resolution in a small figure (the raw data was
made complex and a magnitude operator was applied). Regions of interest are defined here
in (b) for later use (white boxes and line).
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Fig. 2.
a) A point in the imaged object is typically assumed to give rise to an arc in e-t space. b)
However, reconstructing the arc in (a) with delay-and-sum beamforming does not yield a
point in the image plane, but rather a spatially broad distribution of signal. c) At least in
principle, when applied to artificial signals such as that in (a), the proposed approach can
reconstruct images that are vastly improved in terms of spatial resolution as compared to
delay-and-sum beamforming.
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Fig. 3.
To reduce computing requirements, processing is performed over several overlapping
patches rather than for the whole FOV at once. Results from all patches can be combined
into single reconstruction matrix R. Examples in the x-z plane are shown, for all three FOV
geometries used in the present work.
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Fig. 4.
A single column from a phantom image, highlighted in Fig. 1b, is plotted here for different
reconstruction algorithms and settings. a) When reconstructing one column at a time, our
modified reconstruction from Eq. 6 gives results that are essentially identical to the delay-
and-sum beamforming reconstruction from Eq. 1 (black solid line). As more columns are
included into the reconstruction, our method diverges from delay-and-sum beamforming
(gray solid and black dashed lines). b) With all columns included into the reconstruction, the
TGC must be changed from 0.30 to about 0.50 db/cm-MHz to restore the magnitude at
greater depths. The nominal attenuation value for this phantom is 0.50±0.05 db/cm-MHz, in
good agreement with the TGC compensation required with our method. However, signal
becomes overcompensated at shallow depths (gray arrow). The plots use a linear scale,
normalized to the maximum signal from the curve in (a).
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Fig. 5.
A 50-frames dataset was reconstructed several times, with different settings for the
regularization parameter λ2. The standard deviation across all 50 frames was taken as a
measure of noise, and averaged over the 5 ROIs shown in Fig. 1b. With d = z/wprobe, the
ROIs were located at a depth of d = 1.0, 2.5, 3.5, 4.5 and 5.5. For each ROI, the standard
deviation is plotted as a function of the regularization parameter λ2, and a ‘×’ mark indicates
the λ2 = d/20 setting selected here.
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Fig. 6.
a) The D matrix (Eq. 8) tends to be very sparse. b) The areas where non-zero signal is
expected are covered using many overlapping smaller ‘patches’, greatly reducing the
computing requirements as compared to solving for the entire D matrix all at once. c) The R
matrix (Eq. 8) and/or the D matrix can be thresholded, so that only the Nnz largest values are
allowed to remain non-zero. The smaller Nnz becomes, the faster the reconstruction can
proceed, as about 32.3 ms were needed for every 106 non-zero elements, on the IBM
workstation used here. But too aggressive a thresholding leads to increased artifact contents.
A compromise was reached in this case for Nnz = 40×Nnz0 = 2.852×108 elements.
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Fig. 7.
Imaging results from a metal-wire phantom are interpreted here in terms of a point-spread-
function (PSF). a) Prior knowledge about the shape of the wavepacket is used as part of the
reconstruction. b–d) Single-shot images reconstructed with delay-and-sum beamforming (R0
in Eq. 1) and with the proposed approach (R in Eq. 8) are shown side-by-side. All images
are windowed such that black is zero or less, white is equal to the window width w or above,
and all possible shades of gray are linearly distributed in-between. The ROIs indicated by
white ellipse/circles were used for the calculations of the L1-norms listed in Table 1 (3 cm
in diameter, 2 cm minor diameter for the ellipse in (a)). Gray boxes show the area
surrounding the point-object using a window width w four-time lower than the one used for
the corresponding main images, to better show background signals. Profiles across the
location of the point-object are also shown, both along the z and the x directions, for delay-
and-sum beamforming (gray curves) and for the proposed method (black curves). All plots
use a linear scale normalized to the maximum response.
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Fig. 8.
a) Imaging results were obtained from the phantom depicted here. b–d) Single-shot images
reconstructed with delay-and-sum beamforming (R0 in Eq. 1) and with the proposed
approach (R in Eq. 8) are shown side-by-side. A zoom of the region surrounding the axial-
lateral resolution targets is shown in (b) (the window width, w, was increased by 250% to
better show the individual objects). Overall, spatial resolution appears to be improved in the
images reconstructed with the proposed method (i.e., with R in Eq. 8). Contrast was
improved with the proposed method in (d), as tested using the circular ROI covering the
hyperechoic region indicated with a white arrow and the ring-shaped region that surrounds
it. See text for more details.
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