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	Background	 The Net Reclassification Index (NRI) and its P value are used to make conclusions about improvements in predic-
tion performance gained by adding a set of biomarkers to an existing risk prediction model. Although proposed 
only 5 years ago, the NRI has gained enormous traction in the risk prediction literature. Concerns have recently 
been raised about the statistical validity of the NRI.

	 Methods	 Using a population dataset of 10 000 individuals with an event rate of 10.2%, in which four biomarkers have no 
predictive ability, we repeatedly simulated studies and calculated the chance that the NRI statistic provides a posi-
tive statistically significant result. Subjects for training data (n = 420) and test data (n = 420 or 840) were randomly 
selected from the population, and corresponding NRI statistics and P values were calculated. For comparison, the 
change in the area under the receiver operating characteristic curve and likelihood ratio statistics were calculated.

	 Results	 We found that rates of false-positive conclusions based on the NRI statistic were unacceptably high, being 63.0% 
in the training datasets and 18.8% to 34.4% in the test datasets. False-positive conclusions were rare when using 
the change in the area under the curve and occurred at the expected rate of approximately 5.0% with the likeli-
hood ratio statistic.

	Conclusions	 Conclusions about biomarker performance that are based primarily on a statistically significant NRI statistic 
should be treated with skepticism. Use of NRI P values in scientific reporting should be halted.
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The evaluation of biomarkers to improve risk prediction is a 
common theme in modern research. New statistical methods for 
reporting the improvement in prediction performance gained by 
adding a biomarker to standard risk factors have become com-
mon place in publications. In particular, the Net Reclassification 
Index (NRI) has gained huge popularity since its introduction in 
2008 (1,2). A search with Google Scholar on December 16, 2013, 
yielded 1810 citations of the seminal NRI paper (1) published in 
2008. Of those, approximately half (n = 964) occurred in 2012 or 
2013. The NRI has gained a reputation as being sensitive to clini-
cally important changes in risk (3,4). It has gained most traction in 
cardiovascular research, but its use in cancer research publications 
is accelerating (5–9).

Recent statistical research has raised questions about the validity 
of conclusions based on the NRI (10,11). Moreover, there has been 
surprisingly little theoretical or empirical work done examining the 
validity of the NRI statistic and its associated P value. Therefore we 
set about evaluating whether the rate of false-positive conclusions 
using the NRI statistic is acceptable by simulating realistic studies 
involving biomarkers with no predictive information.

Methods
We considered a scenario where a panel of 4 biomarkers is to be 
evaluated for its capacity to improve prediction of an outcome 

beyond an existing risk prediction score. For example, these may 
represent four candidate biomarkers to improve prediction of 
5-year breast cancer risk calculated with the Gail model (12). We 
generated data for a hypothetical population and simulated stud-
ies conducted in that population to determine the proportion of 
studies that yielded positive statistically significant results for the 
biomarker panel. Detailed descriptions and data are provided in the 
Supplementary Materials (available online).

Population Data Description
The method for generating data has been used previously by 
us (13,14) and by others (15), and the dataset is provided in the 
Supplementary Materials (available online). The population was 
comprised of 10 000 subjects, of whom 1017 (10.2%) experienced 
the outcome event and 8983 did not. The baseline clinical risk score 
was normally distributed in case patients (those with events) and in 
control subjects (those without events), with a mean difference of 
1.73 and standard deviation of approximately 1. Consequently the 
area under the receiver operating charateristic curve (AUC) for the 
baseline risk score was 0.88. The four biomarkers that were inves-
tigated for their prediction improvement were generated to have 
no relationship with the outcome. Specifically, in both case patients 
and in control subjects, the biomarkers had approximately stand-
ard normal distributions (Table 1). In a logistic regression model 
applied to the population of 10 000 subjects, including the clinical 
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score and the four markers as predictors, none of the markers were 
associated with the outcome (Table 1).

Sampling of Training and Test Datasets and Risk 
Estimation
We selected 420 subjects at random from the population for a 
training dataset. We fit two logistic regression models: the base-
line model that included only the clinical risk score (labeled X 
in Figure  1) and an expanded model that, in addition to X, also 
included the four markers (labeled as M1, M2, M3, and M4). The 
fitted models were used to calculate risk estimates for each subject 
in the training dataset. In addition, the linear combination of the 

markers M1–M4, derived from the expanded model, was used to 
define a combination marker M for subsequent validation in an 
independent test dataset.

It is well known that models fit to training data will appear to 
perform better than in reality when evaluated in the same training 
data. An ideal approach to avoiding this overoptimism is to evaluate 
performance in an independent test dataset. We randomly selected 
another set of subjects from the population for the test dataset. 
Test set sample sizes of 420 and 840 were used. We fit two logis-
tic regression models: the baseline model that included only the 
risk score X and an expanded model that included the combination 
marker M in addition to X. These latter models are likely to fit the 

Table 1.  Distributions of biomarkers and of the clinical risk score in case patients and in control subjects in the population (n = 10 000)

Predictor
Case patients, mean (SD) 

(n = 1017)
Control subjects, mean 

(SD) (n = 8983) Odds ratio P*

Clinical risk score 1.73 (1.03) 0.01 (0.99) 5.59 <.01
Marker 1 –0.06 (1.01) 0.01 (1.01) 0.94 .10
Marker 2 –0.02 (1.02) –0.02 (0.99) 1.00 .97
Marker 3 0.01 (0.97) –0.01 (1.00) 1.03 .49
Marker 4 0.05 (0.98) 0.00 (1.00) 1.01 .72

*	 Two-sided Wald P values are shown for coefficients in a logistic regression model fit to the population that includes the clinical score and the four candidate 
markers. SD = standard deviation.

Figure 1.  Schema for study design and analysis. The goal was to evaluate if a panel of four biomarkers (M1,M2,M3,M4) could improve prediction 
of a binary outcome (event or case–control status) over a standard clinical score, X. The combined marker M is derived from the expanded model 
including M1–M4 fit in the training dataset. Δ AUC = change in the area under the receiver operating characteristic curve; L = likelihood ratio statistic; 
NRI = net reclassification index; TR = training dataset; TS = test dataset.
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data in the test dataset better than those derived from the training 
dataset.

For each subject in the test dataset, we calculated risk estimates 
using two strategies. In the training set (TR) strategy we applied the 
training set–derived models to each subject’s baseline and marker 
data. In the test set (TS) strategy we applied the test set–derived 
models to each subject’s data.

Prediction Performance Improvement Statistics and 
P Values
The improvement in performance attributable to the four-marker 
panel was assessed using the NRI statistic. We focus here on the 
category-free NRI statistic because, unlike earlier versions of the 
NRI, the category-free NRI does not require making choices for 
categories of risk. In most cancer settings, clinically meaningful 
risk categories do not exist. The category-free NRI statistic is cal-
culated as the net proportion of case patients for whom the risk 
with the expanded model is higher than the risk with the baseline 
model plus the net proportion of control subjects for whom the risk 
with the expanded model is lower than the risk with the baseline 
model:	
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where riskbase is the risk estimate for the baseline model and riskexp 
is the risk estimate for the expanded model that includes the mark-
ers as well as the baseline risk score. We divide the estimated NRI 
by its standard error estimate under the null hypothesis (1) and 
compare with the standard normal distribution to obtain a one-
sided P value.

Another statistic that is often used to compare two risk models 
is the change in the AUC statistic, written ΔAUC. For ΔAUC, we 
calculated the empirical AUC statistics associated with the esti-
mated risks from the baseline and expanded models and took the 
difference. The standard Delong method (16,17) was used to cal-
culate a one-sided P value.

Both the NRI and ΔAUC statistics were calculated with train-
ing set data using risks estimated from models fit to the train-
ing data. The corresponding indexing is TR-TR in Figure 1 and 
Table 2. The NRI and ΔAUC statistics were also calculated with 
test set data using risks derived from models fit to training data 
(TR-TS indexing) and finally with test set data using risks derived 
from models fit to test set data (TS-TS indexing).

Traditional likelihood ratio statistics and P values for the 
expanded vs baseline models in the training data were used to 
determine whether the markers (M1, M2, M3, M4) were associ-
ated with the outcome after controlling for the baseline risk score 
X. The likelihood ratio statistic is denoted by LRTR and has four 
degrees of freedom. In the test dataset we also calculated a likeli-
hood ratio statistic (LRTS) to determine if the marker combination 
M was associated with risk after controlling for the baseline risk 
score. This statistic has one degree of freedom.

Simulation Studies
We repeated the exercise of selecting training and test datasets 
from the population data 5000 times. We summarized the num-
ber of simulations in which each of the performance improvement 
statistics was greater than zero and statistically significant at the 
nominal .05 significance level.

Results
NRI Statistics
Remarkably, in 3149 (63.0%) of the 5000 simulations, the training 
dataset NRI statistic, NRITR-TR and its P value indicated that the 
four markers in combination improved prediction over the baseline 
risk score alone (Table 1).

Even with the independent test data, in 1160 (23.2%) of the 
5000 simulations, the smaller (n = 420) test dataset NRI indicated 
that the markers improved prediction when the risks were derived 
from the training data (NRITR-TS). Because practitioners may only 
evaluate performance in test data if the training data provide a 
statistically significant result, we also considered the 3149 valida-
tion studies (ie, test datasets) that were preceded by training stud-
ies where the NRI was positive and statistically significant. Among 
these 3149 studies, we found that the test dataset NRI TR-TS was 
positive and statistically significant 28.1% of the time. Larger test 
datasets (n  =  840) led to even higher rates of false-positive con-
clusions with the NRITR-TS statistic. Overall, 34.4% of test set  
NRITR-TS statistics were positive and statistically significant, 
whereas the fraction was 41.3% when considering only those pre-
ceded by a statistically significant training set NRI.

Re-estimating the risks in the test dataset led to somewhat lower 
rates of false-positive conclusions with the NRI statistic (NRITS-TS), 
but the rates were nevertheless unacceptably high. With the smaller 
sample size, false-positive conclusions occurred in 19.4% of the 
5000 simulated studies and in 20.5% of the 3149 that were pre-
ceded by a positive training study. With the larger sample size, the 
corresponding rates were 18.8% and 18.5%, respectively.

ΔAUC statistics
In the training data, the ΔAUC statistic also yielded overoptimistic 
results but at a lower rate than the NRI. ΔAUC was positive and 
statistically significant in 9.8% of studies.

In the test datasets the ΔAUC statistic was rarely positive and 
statistically significant. The rates at which it erroneously indicated 
that the markers improved prediction were no greater than 2.0% 
regardless of which risk estimates were used or the sample size of 
the test dataset.

Likelihood Ratio Statistics
The likelihood ratio statistics calculated in the training and test 
datasets rejected the null hypothesis at a rate of approximately 
5.0%, which was the nominal significance level.

Discussion
In our population data, the markers had no predictive capacity. Yet 
in simulated studies, the NRI statistic and its P value yielded posi-
tive conclusions about them with alarmingly high frequency. This 
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occurred not only in training data where the frequency of false-
positive conclusions was 63.0% but also in independent test data-
sets where the frequencies were 18.8% to 34.4% overall and 18.5% 
to 41.3% when preceded by a positive training set study.

It is considered poor statistical practice to use the same data 
to train models and to evaluate their performances because of the 
inherent overoptimistic bias produced. Nevertheless it is most 
common to do this in practice, at least when the number of mark-
ers is small because test data is usually unavailable and because over 
fitting is not considered to be a major issue with a small number 
of markers. However our simulations show that the rate of false-
positive conclusions with the NRI statistic is very high in training 
data, even with one to four markers. In particular, with 420 sub-
jects and an event rate of 10.2%, this approach lead to false-positive 
results in 63.0% of studies when four markers were considered and 
in 19.4% of studies when one marker was considered. Evidence 
for the latter statement can be seen from the results in Table 1 for 
NRITS-TS where risks with and without the single marker M were 
estimated in the test dataset and the corresponding NRI was calcu-
lated in the test dataset.

Use of an independent validation study is considered ideal for 
evaluating the prediction performance of markers because it avoids 
the aforementioned overoptimistic bias of fitting and evaluating 
models on a single dataset. We found, however, that false-positive 
conclusions based on the NRI statistic occurred with high fre-
quency even in validation test data using risks derived from train-
ing data (NRITR-TS). This corroborates recent work in the statistical 
literature (10,11) that shows the NRI statistic can be made posi-
tive simply by use of poorly fitting risk models. Unfortunately, we 
found that refitting the models in the test dataset did not offer a 
solution, as evidenced by the high false-positive rate associated 
with NRITS-TS.

We included the ΔAUC statistic in our evaluations because it is 
commonly used in practice and because historically the NRI was 
introduced to improve upon the ΔAUC. However we do not pro-
mote its use, primarily because it lacks clinical relevance to the risk 
prediction problem. Nevertheless it was interesting to see that it 
did not share the NRI’s tendency to provide false-positive conclu-
sions in validation data and that in training data the rate of false-
positive conclusions was much reduced relative to the NRI.

Our simulations focused on the category-free NRI statistic. 
In circumstances where risk categories exist, a corresponding 
category-based NRI statistic can be calculated (1). Although one 
simulation study that considered the setting where a single bio-
marker is evaluated in a large training dataset (n = 5000 with 10.0% 
event rate) found that a three- or four-category NRI yielded false-
positive conclusions in approximately 5% of studies (18), we have 
documented in another setting that very high rates of false-positive 
conclusions can also occur with category-based NRI statistics (19). 
The problem we have documented here is therefore not unique 
to the category-free NRI. We surmise that in practice the prob-
lem of high rates of false-positive conclusions may be more severe 
with the category-free NRI than with the category-based NRI. 
Unfortunately, it is unclear under what circumstances the cate-
gory-based NRI is well behaved. Moreover, there is no theory to 
provide insight or to support its use. Therefore, conclusions about 
improved risk prediction that are supported primarily by the P 
value of the category-based NRI statistic are also tenuous.

To exemplify the practical importance of our results, we con-
sider how they affect the interpretation of the results of a recent 
study published in the New England Journal of Medicine (9). The 
study reported the category-free NRI for a panel of six biomarkers. 
A  test dataset was not available, so the study used a single train-
ing dataset to fit risk models and evaluate the performance of the 
six-marker panel. The predictive capacity of the six-marker panel 
did not yield a statistically significant change in the AUC statistic, 
but it did yield a statistically significant category-free NRI statistic. 
According to our findings, these results would not be unexpected, 
even if the biomarkers were completely uninformative. Positive 
conclusions about the capacity of the markers to improve risk pre-
diction based on statistical significance of the NRI statistic alone 
cannot be trusted. Fortunately the investigators included addi-
tional analyses that provided more trustworthy evidence in favor 
of their biomarkers.

The simulation scenarios we considered are similar to those 
used by others evaluating prediction performance metrics (15). We 
used normal distributions in case patients and control subjects for 
markers and other covariables. We only considered markers that 
were uninformative of outcome because our interest was in the 
rates of false-positive conclusions made about them. The sample 

Table 2.  Rates at which the null hypothesis of no performance improvement is rejected in favor of the one-sided alternative hypothesis 
that prediction is improved by adding the four biomarker panel to the baseline clinical score*

Dataset for calculating 
performance improvement† NRI‡ LR‡ ΔAUC‡

Training set (n = 420)
  Using training set risks, TR-TR 63.0% 5.3% 9.8%
Test set (n = 420)
  Using training set risks, TR-TS 23.2% — 1.1%
  Using re-estimated risks, TS-TS 19.4% 4.7% 1.5%
Test set (n = 840)
  Using training set risks, TR-TS 34.4% — 0.6%
  Using re-estimated risks, TS-TS 18.8% 5.1% 1.8%

*	 Because the biomarkers have no association with the outcome in the population, all rejections are false-positive results. ΔAUC = change in the area under the 
receiver operating characteristic curve; LR = likelihood ratio; NRI = Net Reclassification Index; TR = training dataset; TS = test dataset.

†	 Five thousand simulated studies in which the biomarkers have no association with outcome.

‡	 Nominal rejection rates are 5.0%.
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sizes and event rates were reasonable relative to the numbers of 
predictors in the risk models. In the training dataset, the expected 
number of events was 42, whereas the number of predictors was at 
most five, yielding an events-to-predictor ratio of 8.2. This events-
to-predictor ratio is in line with standard rules of thumb (20). In the 
test data, the events-to-predictor ratio exceeded 21 (42 / 2 = 21).

Although we used standard methods to calculate P values for 
the NRI and ΔAUC statistics, we note that these methods are not 
valid for the TR-TR and TS-TS versions of these statistics where 
the same data is used to fit models and to calculate the performance 
measures (14,21–23). As explained in the Supplementary Material 
(available online), the problem is not simply overoptimism, but there 
are also concerns about nonnormal distributions for the statistics. 
Currently there are no valid statistical methods for testing NRI = 0 
and ΔAUC = 0 based estimates derived from the same data used to fit 
risk models. Testing can be better accomplished by using likelihood 
ratio statistics (14).

Why are rates of false-positive conclusions not close to the 
nominal 5.0% level for the TR-TS statistics where separate data-
sets are used to fit risk models and to estimate performance? This 
is discussed in the Supplementary Materials (available online), 
where we note that the performance of the expanded training set–
derived model is actually worse than that of the baseline training 
set–derived model because the former simply adds statistical noise 
(ie, uninformative markers) to the baseline score. For this reason 
the ΔAUC tends to be negative, not zero, and consequently the rate 
of false-positive conclusions is 0.6% to 1.8%, less than the nominal 
5.0% rate that is expected when ΔAUC is truly zero. It is particu-
larly concerning that the NRI statistic provides 23.2% to 34.4% 
rates of positive conclusions when the expanded model tends to be 
worse than the baseline model.

The key implication of our findings is that one should not 
rely on statistical significance of the NRI statistic as evidence for 
improved prediction performance in biomarker evaluation studies. 
Statistical significance can easily occur even when the biomarker is 
not predictive. The recent tendency toward reporting the NRI and 
its P value in publications should be halted.

Instead, we make two recommendations. First, we recommend 
that a standard test of the statistical significance of the regression 
coefficients for the markers in the expanded risk model be reported. 
For example, the likelihood ratio statistic can be used for this pur-
pose. Not only does it have reliable statistical properties, but it also 
has been shown mathematically that if the markers contribute to 
risk while controlling for X, the corresponding population values of 
the category-free NRI and the ΔAUC cannot be zero (14). There 
is no need for additional testing. In the six-biomarker analysis 
presented in Table 1 of the aforementioned New England Journal 
of Medicine article (9), the statistically significant regression coef-
ficient associated with the high vs low “panel value” is ample evi-
dence that the population values of ΔAUC and NRI are not zero.

Second, we recommend that clinically relevant ways to describe 
improvement in prediction be reported. We and others (24,25) 
have argued that the ΔAUC is not clinically relevant, but the NRI 
statistic is also not a clinically relevant measure of prediction per-
formance. A recent critical review of the NRI statistic (26) notes an 
array of issues with interpreting the NRI. For example, the NRI is 
commonly misinterpreted as “the proportion of patients reclassified 

to a more appropriate risk category” (27) or as the proportion of 
patients “more appropriately classified” (9). The fact that the NRI 
considers all changes in risk or risk category equal is another funda-
mental flaw. Gail (28) notes further problems with the NRI. More 
straightforward approaches to describing improvement in predic-
tion should be encouraged. Descriptive information in risk reclassi-
fication tables, changes in proportions of case patients and control 
subjects above (or below) relevant risk thresholds (13), and the cor-
responding summaries of net benefit (29) or relative utility (30), 
which are also used in practice (31–34) seem particularly appealing.
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