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Abstract
We introduce the functional generalized additive model (FGAM), a novel regression model for
association studies between a scalar response and a functional predictor. We model the link-
transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an
unknown regression function and X(t) is a functional covariate. Rather than having an additive
model in a finite number of principal components as in Müller and Yao (2008), our model
incorporates the functional predictor directly and thus our model can be viewed as the natural
functional extension of generalized additive models. We estimate F(·,·) using tensor-product B-
splines with roughness penalties. A pointwise quantile transformation of the functional predictor is
also considered to ensure each tensor-product B-spline has observed data on its support. The
methods are evaluated using simulated data and their predictive performance is compared with
other competing scalar-on-function regression alternatives. We illustrate the usefulness of our
approach through an application to brain tractography, where X(t) is a signal from diffusion tensor
imaging at position, t, along a tract in the brain. In one example, the response is disease-status
(case or control) and in a second example, it is the score on a cognitive test. R code for performing
the simulations and fitting the FGAM can be found in supplemental materials available online.
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1 Introduction
This paper studies regression with a functional predictor and a scalar response. Suppose one
observes data {(Xi(t), Yi) : t ∈ τ} for i = 1, …, N, where Xi is a real-valued, continuous,
square-integrable, random curve on the compact interval τ and Yi is a scalar. We assume that
the predictor, X(·), is observed at a dense grid of points. The problem addressed here is
estimation of E(Yi∣Xi), which is assumed independent of i. We introduce the model

(1)

where θ0 is the intercept, g is a known link function, and F is an unspecified smooth
function to be estimated. As a special case, when g(x) = x and F(x, t) = β(t)Xi(t), we obtain
the most commonly used regression model in functional data analysis, the functional linear
model (Ramsay and Dalzell 1991), henceforth the FLM,

(2)

where β(·) is the functional coefficient with β(t) describing the effect on the response of the
functional predictor at time t. The FLM can be thought of as multiple linear regression with
an infinite number of predictors, as we now explain. Let tij = tj for 1, …, J denote the
observation times for the curves Xi(·); then the usual multiple linear regression model

 can be viewed
as a Riemann sum approximation that converges to (2) as J → ∞. This model has been
extended to a functional generalized linear model, i.e. a model of the form g{E(Yi∣Xi)} = θ0
+ ∫τ Xi(t)β(t)dt (e.g., James 2002; Müller and Stadtmüller 2005).

Now consider an additive model of the form

, where the fj’s are unspecified smooth
functions. The basic idea is to rewrite the model as

, and then let J → ∞ and add a
link function. The model obtained is our model (1). We call model (1) the functional
generalized additive model (FGAM). Our modelling approach provides greater flexibility, as
it does not make the strong assumption of linearity between the functional predictor and the
functional parameter. To overcome the so called curse of dimensionality, we will perform
smoothing in both the x and t components of F(·, ·). Just as the FLM is the natural extension
of linear models to functional data, our model is the natural extension of generalized
additive models (GAMs) to functional data.

There are few instances in the literature of nonparametric, additive structures being used for
scalar on function regression models. Müller and Yao (2008) and James and Silverman
(2005) both consider GAMs that use linear functionals of the predictor curves as covariates.
The former approach regresses on a finite number of functional principal components scores
and the latter approach searches for linear functionals using projection pursuit. Both models
rely strongly on the linear directions they estimate; in contrast, our modelling approach
regresses on the functional predictors directly. A model that is additive in the principal
component scores is not additive in X(t) itself, and vice versa. Therefore, our FGAM and the
additive model of Müller and Yao (2008) are different and should be considered
complementary, rather than competitors.

Additive models are attractive for a number of reasons; see for example Buja et al. (1989)
and Hastie and Tibshirani (1990), which are standard, early references. Initial work in the
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area advocated smoothing splines and backfitting for fitting these models. Additional theory
for backfitting was developed in a series of papers by Opsomer and Ruppert (1997, 1998,
1999). An alternative to classical backfitting is the smooth backfitting of Mammen et al.
(1999). Though not as widely used, it has been shown to offer a number of advantages; see
Nielsen and Sperlich (2005) for a discussion of its implementation and practical
performance. Recently, penalized regression splines have proven successful in a number of
applications. Estimation in this case is most often done with penalized, iteratively
reweighted least squares (P-IRLS) with smoothing parameters chosen using generalized
cross validation (GCV); for example, see Marx and Eilers (1998), Ruppert et al. (2003), and
Wood (2006b). This is the approach we adopt to estimate the FGAM. In general, additive
models offer increased flexibility and potentially lower estimation bias than linear models
while having less variance in estimation and being less susceptible to the curse of
dimensionality than models that make no additivity assumptions. The proposed model (1)
provides greater flexibility than the FLM, while still facilitating interpretation and
estimation.

One area where this increased flexibility is useful is diffusion tensor imaging (DTI), which
we consider in Section 5. The dataset contains closely spaced evaluations of measures of
neural functioning on multiple tracts in the brain for patients with multiple sclerosis and
healthy controls. We will use these measurements as regressors and predict multiple health
outcomes to gain a better understanding of how the disease is related to DTI signals. Our
model is able to quantify the effect that the functional predictor has on the response at each
position along the tract, something that a model such as the GAM of Müller and Yao (2008)
is unable to do, since it uses principal component scores and hence loses information about
tract location. Another potential application of FGAM is to study how a risk factor trajectory
such as body mass index or systolic blood pressure is related to a health outcome such as
developing hypertension (e.g. see the study in Li et al. 2007). Our FGAM can locate times
of life when the risk factor has its greatest effect; this is not possible if principal component
scores are used in a GAM.

For estimation of the model (1), we will use P-splines (Eilers and Marx 1996). However,
there will be some differences from standard fitting of tensor product P-splines. Namely, our
design matrix is obtained from integrating products of B-splines over functional covariates.
P-splines offer many computational advantages. Additional scalar or functional predictors
can be incorporated in a simple way and will not require backfitting. Both types of
predictors can be included in either a linear or an additive fashion. Though we use P-splines,
our estimation procedure can incorporate other bases and penalties for some or all of the
covariates. We use well-developed, efficient techniques for the computations (Wood 2006b;
Ramsay et al. 2009).

We also propose transforming the functional predictors using the empirical cumulative
distribution function (empirical cdf) at fixed values of t. This transformation is convenient
for estimation purposes and retains the interpretation advantages provided by the FGAM
when the raw curves are used. Considering again the DTI data example, when this
transformation is used, we can now infer the effect on the response of a subject being in the
pth-quantile for the functional predictor at a particular location along the tract.

To see how our model can aid in uncovering the underlying structure of a functional
regression problem, consider Figure 1. The figure shows the estimated surface, F̂(·, ·), for
one of the functional predictors in the DTI dataset when the response is disease status (= 1 if
the subject has the disease). Overlaid on the surface are the observed functional predictor
values for two subjects. The surface is non-linear in x, so an FLM based on the predictors
may be inadequate for this problem. We see that for the most part, the solid curve, belonging
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to a control subject, takes smaller values on the surface than the dashed curve, which
belongs to a MS patient, does; thus, the subject with MS will have a higher fitted value and
is more likely to be classified as having the disease. It will be shown for this dataset that the
added generality of our approach leads to improved predictive accuracy over the FLM.

We also show how standard error estimates for the parameters of the FGAM are obtained
and examine the performance of confidence bands constructed from these standard errors
through a simulation study. These are used to make approximate inferences about the
estimated surface and the estimated second derivative surface ∂2/∂x2 F̂(x, t) which can be
used to detect nonlinearity in x. Several diagnostic plots such as the one in Figure 1 are
available for exploring the relationship between the predictors and the response.

The article is organized as follows. Section 2 introduces the FGAM in more detail. Our
estimation procedure using P-splines is discussed in Section 3. Section 4 applies our model
to simulated datasets and compares it with some standard regression models used in
functional data analysis. Section 5 discusses the results of applying our model to the DTI
dataset. Section 6 concludes with a brief discussion and mentions some possible extensions.

2 Functional Generalized Additive Model
In this section, we introduce our representation for F(·, ·), describe the identifiability
constraints, and discuss a transformation of the functional predictor. It is assumed that τ =
[0, 1] and that X(·) takes values in a bounded interval which, without loss of generality, can
be taken as [0, 1]. The latter assumption is guaranteed by the proposed transformation of the
functional predictors discussed in Section 2.2.

We will model F(·, ·) using tensor products of B-splines. Splines are commonly used for
estimation of functional linear models. For example, smoothing splines are used by Crambes
et al. (2009) and Yuan and Cai (2010) and penalized splines are considered by Cardot et al.
(2003) and Goldsmith et al. (2010b). These papers impose smoothness using a penalty on
the integrated, squared second derivative of the coefficient function. Instead, we use the
popular Psplines of Eilers and Marx (1996). P-splines use low rank B-splines bases with
equally-spaced knots and a simple difference penalty on adjacent coefficients to control
smoothness.

The many advantages of using P-spline estimators in additive modelling are discussed in
detail in Marx and Eilers (1998). The implementation with P-splines will make it possible to
estimate all the components of the model at once. While backfitting could be implemented
for the case of multiple predictors, it is not feasible for estimating (1). It will be shown that
the fitted values for the FGAM are linear in the tensor product B-spline coefficients so we
actually have a penalized generalized linear model (GLM). By using fewer knots than there
are observations, the size of the system of equations for the estimation is reduced. Penalized
splines are fairly insensitive to the position and the number of knots compared to
unpenalized splines. Also, unlike smoothing splines, P-splines allow any degree of B-spline
to be used with any order of differencing for the penalty.

2.1 Notation and Identifiability Constraints
A bivariate spline model is used for F(·, ·) so that

(3)
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where  and  are spline bases on [0, 1]. We will
use B-spline bases. It follows from combining (1) and (3), that we obtain the GLM

(4)

where . Each Zj,k(i) can be approximated by, say,
Simpson’s rule.

For identifiability, we require  (Wood 2006b, Section 4.2). This
constraint may not be enough to ensure identifiability on its own, however, so we must
perform a further check for numerical rank deficiency during fitting. The details are
explained in the next section. Additional discussion of identifiability for the FGAM is also
provided in Appendix A available in the online supplemental materials.

2.2 Transformation of the Predictors
Depending on the number of B-splines used for each axis, there could be a particular tensor
product of B-splines that has no observed data on its support. This would lead to Zj,k(i) = 0
for all i for some j, k pair; resulting in the design matrix containing a column of zeros. One
remedy for this is to transform X(t) by Gt(x) := P{X(t) < x} for each value of t. Our model
becomes

(5)

where BG(·) is a new B-spline basis with support on [0, 1]. Loosely, the data are being
“stretched out” to fill the entire space that the grid of B-splines will cover. For any t, the
transformed points will lie uniformly between [0, 1]. Though the estimation procedure is the
same in both cases, clearly, F(·, ·) in (5) will have a different estimate from F(·, ·) in (1). We

estimate Gt(·) using the empirical cdf , where I{A} = 1 if
condition A is true and I{A} = 0 otherwise. Once the Zj,k(i)’s have been estimated, the fitting
procedure is analogous to the case when the cdf transformation is not used. Another
advantage of using this approach is that it does not require any assumptions about the range
of the predictors. Besides the computational advantages, this transformation retains the
benefit of ease of interpretation. In fact, F(p, t) is the effect of X(t) being at its pth quantile.

Another potentially useful transformation we do not pursue in this paper is

, where Φ(·) denotes the standard normal cdf and ht is a
user chosen bandwith that can depend on t. The advantage of this transformation over the
empirical cdf transformation is that future observations falling below[above] the
minimum[maximum] value of the training data at a particular t are not all assigned the value
zero[one].

Due to the penalization used later when fitting the FGAM, parameter estimates can still be
obtained when the design matrix has a column of zeros. However, we expect our
transformation will improve both the numerical and statistical stability of our estimates.
Note also that if there exists any pointwise transformation, Ht(·), such that

, then the FGAM will still hold; and similarly, for any
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model of the form (5) for a general transformation Gt(·). Thus, the FGAM is invariant to
transformations of the predictor, unlike the FLM.

3 Estimation
In this section, we present the estimation procedure for F(·, ·). First, we review P-spline type
penalties and discuss penalized GLMs and the selection of smoothing parameters. We then
describe the estimated surface and discuss construction of pointwise confidence bands for
these estimates. We conclude the section by showing how to include additional functional
and nonfunctional predictors in the model.

3.1 Roughness Penalties
Smoothing can be achieved by using row and column penalties as in Marx and Eilers

(1998). The row penalty is , where  is the dth difference of the

sequence θj−d,k, …, θj,k (k held fixed). The column penalty is , where

 is the dth difference of the sequence θj,k−d, …, θj,k (j held fixed). Selection of the
penalty parameters λ1 and λ2 is discussed in Section 3.2.

Proceeding similarly to Marx and Eilers (2005), we first place the Zj,k(i)’s in a matrix as
follows. Let Zi = vec {ℤ(i)} be the KxKt-vector obtained by stacking the columns of

, and let ℤ = [Z1 Z2 ⋯ ZN]T. The penalty matrix is given by

(6)

with ℙ1 = Dx ⊗ IKt, ℙ2 = IKx ⊗ Dt where Ip is the p × p identity matrix, ⊗ is the Kronecker
product, and Dx and Dt are matrix representations of the row and column difference
penalties with dimension (Kx − dx) × Kx and (Kt − dt) × Kt, respectively. The parameter, d,
denotes the prespecified degree of differencing. Note that additional penalties such as an
overall ridge penalty could also be incorporated.

To incorporate the intercept, a leading column of ones must be added to ℤ and a leading
column of zeros must be added to ℙ1 and ℙ2. Throughout the rest of the paper, this has been
done unless otherwise indicated. When we don’t wish to consider the intercept, M[−i,−j] will
denote the matrix M with its ith row and jth column removed and ν[−i] will denote the vector
ν excluding its ith entry.

3.2 Penalized GLMs and Smoothing Parameter Selection
Let the response vector, Y, be from an exponential family with density having the form

, where ζ is the canonical parameter
vector with components satisfying ζi = (b′)−1(μi) and ϕ is the dispersion parameter.
Parameterizing E(Y∣X) as a standard GLM with known link function, g(·), let η := ℤθ and
μ := E(Y∣X), so that η = g(μ). The constraint discussed in Section 2.1 is enforced by
requiring 1Tℤ[,−1]θ = 0. Formally, this is done by obtaining the QR decomposition of

, where ℚ2 has dimension (1 +KxKt) × KxKt. The
constrained optimization problem is then replaced by an unconstrained optimization
(outlined below) over θq, where θq is such that θ = ℚ2θq. For notational simplicity, for any
matrix M, define M̃ = Mℚ2.
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The penalized log-likelihood to be maximized is

The coefficients are estimated using penalized iteratively re-weighted least squares (P-
IRLS). Specifically, at the (m + 1)th iteration we take

(7)

where ûm is the current estimate of the adjusted dependent variable vector, u, and Ŵm is the
current estimate of the diagonal weight matrix, W. The components of u are given by ui = ηi
+ (yi − μi)g′ (μi). The ith diagonal element of W is wii = 1/{V (μi)[g′ (μi)]2}, with V (μi) = b″
(ζi). To initialize the algorithm, use μ0 = Y and η0 = g(Y), adjusting yi if necessary to avoid
ηi = ∞.

To efficiently construct (7) and to detect rank deficiency, the following procedure is used.
First,use the QR-decomposition to form W1/2ℤ̃ = ℚℝ where ℚ is orthogonal, ℝ is upper

triangular, and . Next, use the Choleski decomposition to obtain

. Pivoting should be used here because ℙ is positive semi-definite instead of
positive definite. Now, from a singular value decomposition form [ℝT LT ]T = UDVT, where
U and V are orthogonal and D is a diagonal matrix containing the singular values. At this
point, we ensure identifiability by removing the columns and rows of D and the columns of
U and V corresponding to singular values that are less than the square root of the machine
precision times the largest singular value (Wood 2006b, p. 183). It then follows that (7) can

be obtained from , where U1 is the sub-matrix of U satisfying
ℝ = U1 DVT. At the final iteration, say M, our solution for θ is given by θ̂ = ℚ2 θ̂q,M, and it
can be shown that this satisfies 1T ℤ[,−1]θ̂ = 0 as required (Wood 2006b, Section 1.8.1).

Generalized cross validation (GCV) can be used to choose the smoothing parameters; see
Wood (2004, Section 4.5.4) for justification of its use for non-identity link GAMs. The GCV
score for λ1 and λ2 is given by

(8)

where H is known as the influence matrix and is related to the fitted values by μ̂ : =
g−1(ℤθ̂M) = g−1 (HuM) and D(Y; μ̂ : λ1, λ2) denotes the model deviance. The model
deviance is defined to be twice the difference between the log-likelihoods of the saturated
model, which has one parameter for each observation, and the given model. Formulas for the
deviance for some common GLMs are given in McCullagh and Nelder (1989, Section 2.3);
for example, for an identity link GLM, D(Y; μ̂ : λ1, λ2) = ∥Y − HY∥2. The constant γ ≥ 1 is
usually chosen to take values between 1.2 and 1.4 to combat the tendency of GCV to
undersmooth. For additional safeguards against undersmoothing, lower bounds could also be
placed on the smoothing parameters.

A choice must be made on the order in which the P-IRLS and the smoothing parameter
selection iterations are performed. For what is termed outer iteration, for each pair of
smoothing parameters considered, a GAM is estimated using P-IRLS until convergence. The
other possibility, known as performance iteration, is to optimize the smoothing parameters at
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each iteration of the P-IRLS algorithm. The latter approach can be faster than outer iteration;
however, it is more susceptible to convergence problems in the presence of multicollinearity
(Wood 2006b, Chapter 4).

Our model can conveniently be fit in R using the mgcv package (Wood 2011, 2004). The
details of how this is done are available in Appendix B of the supplemental materials. We
use outer iteration and Newton’s method for minimizing the GCV score, the package
defaults. Using this package also allows for many possible extensions (e.g. mixed effects
terms, formal model selection, alternative estimation procedures, etc.) beyond the scope of
the current paper. Our code is available in an online supplement as well as in the R package
refund.

3.3 Estimated Surface
For a given θ̂, we can evaluate the estimated surface at any grid of points in its domain. Let
X be an arbitrary column vector of length n1 taking values in the range of X(·) and T be the
observation times or any vector of length n2 taking values in [0, 1]. We let F̂ denote the
estimated surface evaluated on the mesh defined by X and T. To obtain F̂, let Bx be the n1n2
× Kx matrix of x-axis B-splines evaluated at X ⊗ 1n2, i.e.,

, where 1n denotes a column vector of length n.
Similarly, define Bt as the n1n2 × Kt matrix of B-splines evaluated at 1n1 ⊗ T. Next, define
the n1n2 × Kx Kt matrix

(9)

where ⊙ denotes element-wise matrix multiplication. The estimated surface is then given by
F̂ = Bθ̂[−1].

3.4 Standard-error bands
For a response from any exponential family distribution, one simple way to construct
approximate, pointwise confidence bands for F ̂(x, t) conditional on the estimated smoothing
parameters is to use a sandwich estimator in the same manner as Hastie and Tibshirani
(1990, Section 6.8.2) and Marx and Eilers (1998). However, we found through our
simulation studies that these intervals do not have adequate coverage for our model, a result
also noticed for univariate GAMs in Wood (2006a). This is because these intervals assume θ̂
is unbiased, which will not be the case when θ ≠ 0, due to the penalization involved in the
estimation.

To overcome the bias in the parameter estimation, we use the Bayesian approach of Wahba
(1983). Using the improper prior π(θ) ∝ exp (−θT ℙθ/2), it can be shown that

see e.g. Wood (2006b, Section 4.8). To estimate W, we use the estimated weight matrix at
the final P-IRLS iteration, ŴM. If it is necessary to estimate the dispersion parameter, ϕ, we

use . Letting Vθ̂ = (ℤT ŴM ℤ + ℙ)−1 ϕ̂ and
recalling that the estimated surface is given by F ̂ = Bθ̂[−1], where B is defined in (9), the
variance of F̂ is given by var{F ̂} = BVθ̂[−1,−1] B

T. Taking F ̂ ± 2{diag(var{F̂})}1/2 gives
approximate 95% empirical Bayesian confidence bands for F.
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These Bayesian intervals have a nice frequentist property “across the function”: in repeated
random experiments with the same F, the observed coverage probabilities averaged over the
observation points will tend to be close to the nominal coverage level. This property was
borne out in the simulation experiments of several papers including Wahba (1983) and
Nychka (1988) for the case of smoothing splines and Wood (2006a) for thin-plate regression
splines. It will be examined for the FGAM through a simulation study in Section 4.2.

Depending on the application, a particular linear combination of the elements of F̂ may be of
interest. If we let c be a vector of the same length as F̂, then we can also construct
confidence bands of the form cT F̂ ± 2{cT (var{F̂})c}1/2. For example, this could be used to
determine approximately whether two observed curves have significantly different effects
on the response at a particular value of t. Under a null hypothesis of H0 : θ = 0, θ̂ is unbiased
and we can use the sandwich estimator for the variance, Vf = Vθ̂ℤTŴM ℤVθ̂/ϕ̂, to conduct
approximate hypothesis tests for subsets of θ For example, we can construct surfaces of
approximate t-statistics by scaling the estimated surface values by the reciprocal of their
standard error (the diagonal elements of Vf).

For any pointwise transformation, Ht(·), of the predictor used (including Ht(x) = x), it is of
interest to test whether ∂2/∂h2 F(h, t) = 0 for all h and t, since this implies F{Ht(x), t} = β(t)
Ht(x) for some function β(·). Since derivatives of B-splines are simple to compute, an
estimate of the second derivative of the surface and the Bayesian confidence intervals for the
second derivative are easily obtained by replacing Bx in (9) with evaluations of the second
derivatives of the x-axis B-splines evaluated at the same points used for Bx. While we cannot
use our confidence bands for global inferences of this type, they do provide a rough heuristic
for the desired test.

3.5 Multiple Predictors
Because of the modularity of penalized splines (Ruppert et al. 2003), including multiple
functional predictors as well as scalar predictors in the model is straightforward. Each
additional functional predictor requires that two more smoothing parameters be selected. We
will outline the procedure for the case of two functional covariates [say X1(·), X2(·)] and one
scalar covariate (say W). The model is g{E(Yi∣Xi,1, Xi,2, Wi)} = θ0 + ∫τ1 F1{Xi,1(t), t}dt + ∫τ2
F2{Xi,2(t), t}dt + F3(Wi), and both X1(·) and X2(·) can be transformed by their empirical cdfs.
Further extensions are similar. As before, we use B-spline bases for both axes for both
functional predictors and now also for W. One must also choose degrees of differencing to
be used for each penalty. Let ℤ(1) and ℤ(2) denoted the matrices of integrated tensor product
B-splines for X1 and X2, respectively. Similarly, define ℙ(1) and ℙ(2) [see (6)]. Let B(W) be
the matrix of W B-splines evaluated at the observed values of W and let θ(W) be the
corresponding vector of B-spline coefficients for W. The penalty matrix for the smooth of W

is given by , where Dw is the differencing matrix for W and λw is its
smoothing parameter. For identifiability, add the constraint 1TB(W) θ(W) = 0 (the usual
constraint for each functional component in a standard additive model). We place the same
constraint on both functional predictors as in the previous section. Thus, we have three total
constraints. Construct

To accommodate a linear effect of the covariate W, replace B(W) in ℤ with the observed
values of W and replace ℙ(W) with zero in the above formula for ℙ.
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Note that it is also possible to have a linear effect for some functional predictors and
additive effects for others; e.g. a model of the form g{E(Yi∣Xi)} = θ0 + f(Wi) + ∫τ1
β(t)X1i(t)dt + ∫τ2 F{X2i(t), t}dt. Using the roughness penalty approach for estimating FLMs
mentioned in Section 4.1, this can be implemented by making straightforward changes to
ℤ(1) and ℙ(1) (see Ramsay and Silverman 2005, Chapter 15 for details).

4 Simulation Experiment
In this section, we perform simulations to assess the empirical performance of our FGAM.
We first assess the ability of our FGAM to predict out-of-sample data in the Gaussian
response case and compare its performance with several other functional regression models.
Next, we examine the coverage properties of the empirical Bayesian confidence bands
proposed in Section 3.4.

To generate the data, we created 1000 replicate data sets each consisting of N curves
sampled at 200 equally-spaced points in [0, 1] as follows: Let

 where Zhij ~ N(0, 1), ,

, and ; h = 1, 2; i = 1,…, N; j = 1,…, J. We consider two values for
J, J = 5 and J = 500, the former resulting in much smoother predictor trajectories. We
examine two cases for the true surface, F(x, t), one where the FLM holds, F(X(t), t) =
β(t)X(t) and the other where it does not. For the linear true model, F(x, t) = xt. For the

nonlinear true model, we use , which looks like a
hill or bivariate normal density.

The error variance changes with each sample so that the empirical signal to noise ratio

(SNR) defined by , where

 remains consider the
values SNR= 1, 2, 4, 8 in our simulations.

4.1 Out-Of-Sample Predictive Performance
We fit FGAM and compare its out-of-sample predictive accuracy with three other popular
functional regression models, the FLM, the kernel estimator of Ferraty and Vieu (2006), and
the functional additive model (FAM) of Müller and Yao (2008). The coding used in our
analyses was done in R (R Development Core Team 2011). The fda package (Ramsay et al.
2011) implements the standard tools of functional data analysis in R. As an initial step in
fitting our model, the FLMs and the FAM, we use this package to smooth the data using B-
spline basis functions and a roughness penalty with smoothing parameter chosen by GCV.

There are two main approaches for estimating the coefficient function β(·) for a FLM. The
first uses smoothing or penalized splines and the second uses a functional principal
component analysis (fPCA). We refer to these as FLM1 and FLM2, respectively. These
models can be fit in R using the fda package, more specifically, the functions fRegress for
FLM1 and pca.fd for FLM2. See Ramsay et al. (2009, Chapter 9) for computational details.
For FLM1, we choose the smoothing parameter by minimizing GCV. For FLM2, we
conduct a functional principal component analysis with a constant, light amount of
smoothing and retain enough components for each simulation scenario to explain 90% of the
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total variability of the functional predictor. Once the scores are estimated, the final step to
estimating FLM2 is fitting an unpenalized linear model in the scores.

To fit the FAM, we use the same number of principal component scores and the same
estimation procedure as for FLM2. The difference comes in the next step, where a
generalized additive model is fit using the scores as predictors. To estimate the GAM, we
use the default settings in the mgcv package and 11 basis functions for each additive term.

The final model we fit is described in detail in Ferraty and Vieu (2006, Chapter 5). The
response is predicted by the nonlinear operator r(X) := E(Y∣X). This operator is estimated by
a functional extension of the Nadaraya-Watson kernel estimator:

(10)

where K is an asymmetrical kernel with bandwidth h and d is a semimetric. Continuity or
Lipschitz continuity of the regression operator in the semimetric is assumed. We used the

quadratic kernel, , and the semimetric d(Xi, Xi′) = [∫τ {Xi(t) −
Xi′(t)}2dt]1/2. Code for fitting this model with automatic bandwidth selection can be obtained
from: http://www.math.univ-toulouse.fr/staph/npfda. Note the differences in the assumptions
and complexities of these three models: the simplest model assumes the response is linear in
the functional predictor, the FGAM lessens the restrictions to additivity in the functional
predictor, and the kernel estimator makes no restrictions on the form of the regression
function other than continuity.

Each training set contained 67 curves and 33 curves were used for the test set. The
performance of the models was measured by the out-of-sample

. We report results for both the FGAM fit to the
original data and the FGAM fit after X has been transformed using the empirical cdf
transformation given in (5). In both cases, six cubic B-splines were used for the x-axis and
seven cubic B-splines were used for the t-axis with second degree difference penalties for
both axes. The tuning parameter, γ, for the GCV criterion (8) was taken to be 1.0 in all
cases. The mgcv package requires that the number of coefficients to estimate be less than the
sample size, so we must have the product of the dimensions of the bases be less than the
sample size minus one (for the intercept). The results of the simulations are summarized in
Figure 2.

The figure reports the median RMSE’s across the 1000 simulations for each scenario and
model. We see that the FGAM loses little to the FLM in terms of predictive accuracy when
the FLM is the true model and provides substantial improvements in the case when the FLM
is not the true model. In fact, all the models perform quite similarly in the linear true model
case with the exception of the Ferraty and Vieu model (10) which performs considerably
worse. In the nonlinear true model case, we see that fitting an FGAM to the transformed
data performs slightly better than fitting an FGAM to the original curves and that in general
the FGAM offers significant advantages over all the other models. As expected, the
differences in performance between the different models become more pronounced as the
fixed empirical signal to noise ratio increases.
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4.2 Bayesian Confidence Band Performance
We now assess the average coverage probabilities (ACP) of the confidence bands from
Section 3.4. The observed ACP for the ith simulation is given by

where { ; j, k = 1,…, 25} are a subset of the N × 200 observed X(t) and t values for

the ith simulation and } is the entry of F ̂(i) ±2{diag(var{F̂(i)})}1/2

corresponding to . We consider two values for the sample size, N = 100 (combining
the training and test sets from the previous section) and N = 500, the same true surfaces from
the previous section, and two values for the empirical signal to noise ratio, two and four. For
both the x and t axes, we use nine basis functions, cubic B-splines, and a second order
difference penalty. We report results for the FGAM fit without an intercept to the
untransformed predictor curves with J = 500. The results for J = 5 were nearly identical.

To reduce the number of times that the confidence bands are evaluated at points outside the
region jointly defined by the observed (Xi(tj), tj) values, only grid points that are inside the
convex hull defined by the observed values for each simulation are used in the calculation of
mean ACP. A final modification is necessary to account for the identifiability constraint
imposed on the FGAM. To do this, we fit the FGAM (including the constraint) with
negligible amounts of smoothing to the true E(Yi∣Xi) values (without noise) and take the
fitted values to be the true responses. The mean ACP across the 500 simulations is displayed
in Table 1 for each simulation scenario.

We see from the table that the coverage is fairly close to the nominal level of 0.95, though
there is a slight problem with over-coverage in all the scenarios. Further analysis shows that
the average estimated Bayesian standard errors for the surface are larger than the Monte
Carlo standard deviation of the estimated surface, which is causing in the over-coverage.
This is a biproduct of the Bayesian intervals trying to correct for the smoothing bias inherent
in nonparametric regression. Recall that these intervals do not account for uncertainty in the
estimation of λ1 and λ2. If more precise confidence bands are required, alternatives such as
bootstrapping could be employed; see Wood (2006a, Section 4). These results indicate that it
is safe to use the Bayesian confidence bands to make inferences about the true surface F(x,
t). We additionally ran a subset of these simulation scenarios while computing the
confidence bands using the sandwich estimator of the variance of the estimated
surface(results not included) and found there could be substantial under-coverage in the
nonlinear true model case as a result of bias due to smoothing.

5 Application to Diffusion Tensor Imaging Dataset
We now assess the performance of our model on a DTI tractography study. DTI is a
technique for measuring the diffusion of water in tissue. Water diffuses differently in
different types of tissue, and measuring these differences allows for detailed images to be
obtained. Our dataset comes from a study comparing certain white matter tracts of multiple
sclerosis (MS) patients with control subjects. MS is a central nervous system disorder that
leads to lesions in the white matter of the brain which disrupts the ability of cells in the brain
to communicate with each other. This dataset was previously analyzed in Goldsmith et al.
(2010b) and Greven et al. (2010).
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The result of the DTI tractography, is a 3×3 symmetric, positive definite matrix
(equivalently, a three dimensional ellipsoid) that describes diffusion at each desired location
in the tract. We consider three functions of the estimated eigenvalues from these matrices:
fractional anisotropy, parallel diffusivity, and perpendicular diffusivity. Fractional
anisotropy measures the degree to which the diffusion is different in directions parallel and
perpendicular to the tract, with zero indicating an isotrophic diffusion. More precisely, if the
eigenvalues of the ellipsoid are given by λ1, λ2, λ3, fractional anisotropy is equal to

, where λ̄ = (λ1 + λ2 + λ3)/3.
Parallel (or axial or longitudinal) diffusivity is the largest eigenvalue of the ellipsoid.
Perpendicular diffusivity is an average of the two smaller eigenvalues. See Mori (2007) for
an overview of DTI.

Standard magnetic resonance imagining is used for diagnosing MS, but it is believed that the
extra information provided by the tract profiles produced from DTI can be used to
understand the disease process better. As an example of the types of effects we could
investigate with our model, it has been found (Reich et al. 2007) that parallel diffusivity is
increased along the corticospinal tracts of people with MS. We would hope to see this effect
if we were using parallel diffusivity measurements along that tract to predict MS status. We
consider the corpus callosum tract in our analysis because it is related to cognition.

As an illustration of the FGAM, we fit our model using each of the three diffusion measures
separately and compare the results with the same models introduced in the previous section.
We also compare using the original curves as the predictor (1) with using the empirical cdf
of the curves (5). Figure 3 contains plots of the parallel diffusivity measurements along the
corpus callosum tract and the corresponding empirical cdf-transformed values for each
subject in the training set.

Throughout the analysis, when fitting the FGAM, we use cubic B-splines with second-order
difference penalties, six B-splines for the x (p)-axis, and seven B-splines for the t-axis. We
found our results to be insensitive to these choices, and for brevity we do not include results
for other values considered. Throughout this section, γ in (8) is taken to equal 1.4. To
evaluate the performance of the models, we examine their leave-one-curve-out prediction
error. We repeatedly fit each model using all the samples except one and then use the fit to
predict the left-out sample. This process is repeated until every sample has been left-out
once. Our performance measure is the root mean squared error, defined as

, where ŷ(i) is the predicted value of the ith response
value when this sample is left out of the estimation.

5.1 Predicting PASAT Score
The first variable we predict is the result of a Paced Auditory Serial Addition Test (PASAT),
a cognitive measure taking integer values between 0 and 60. The subject is given numbers at
three second intervals and asked to add the current number to the previous one. The final
score is the total number of correct answers out of 60. MS patients often perform
significantly worse than controls on this test. Since the corpus callosum is known to play a
role in cognitive function, we might expect to see that the functional measurements along
this tract have a significant impact in forecasting PASAT score. The PASAT was only
administered to subjects with MS. One subject with peculiar tract profiles was removed for
simplicity and to avoid dealing with missing values.
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The estimated surface F̂(p, t) [see (3)] is shown in Figure 4(a) for transformed parallel
diffusivity. Figure 4(b) shows a contour plot of the observed pseudo-t statistics discussed in
Section 3.4. We can see from this figure that parallel diffusivity for tract positions around
0.4 – 0.6 appears to be influential on the predicted response; subjects in the middle quantiles
for this measurement at these positions are more likely to score higher on the PASAT, while
the opposite is true for subjects in the upper quantiles at this location.

Figure 5 shows an example of a slice of the estimated surface when the untransformed
curves are used for a fixed x value (left) and for a fixed position along the tract, t, (right).
Parallel diffusivity along the corpus callosum is used as the predictor in these plots which
also include twice standard error bands based on the sandwich estimator described earlier.
Figure 5 also shows the same slices for the estimated second derivative of the surface with
respect to t. This can give us a rough idea of whether the linear model is sufficient. In
practice, we look at these plots for a representative sample of values with both the predictor
value fixed and with the position fixed. We see that the second derivative is significantly
non-zero in some regions, which suggests inadequacy of using an FLM in the untransformed
predictors.

Table 2 reports out-of-sample RMSE from separately using each of the three different
diffusivity measurements along the corpus callosum tract as predictors in the five models
under consideration. Here, using FGAM with the empirical cdf transformation (FGAM-T)
led to improved forecasting accuracy compared to using the raw measurements as predictors
(FGAM-O). In fact, FGAM-T (5) has lower out-of-sample RMSE than both FLMs for all
the functional predictors considered, indicating that a linear model may be too restrictive in
this application. Our FGAM-T compares favourably with the functional kernel regression
model (10) and the FAM, showing better performance when either perpendicular diffusivity
or fractional anisotropy are used as predictors. Though the kernel estimator provided slightly
improved predictions in the parallel diffusivity case, the complex nature of its fit makes
visualization difficult, so it is less useful than the FGAM for helping us understand the
relationship between the DTI measurements and the PASAT scores.

5.2 Predicting MS status: Logistic Link
We now consider classifying the disease status of subjects. Since the PASAT was only given
to the subjects with MS, our sample size is now 88 and includes controls. We include results
using the untransformed curves only. The results using the quantile transformation were
similar. We again use the leave-one-curve-out procedure described earlier. Fitting the
FGAM resulted in the estimated surface displayed in Figure 1 when perpendicular
diffusivity is used as the predictor. The observed perpendicular diffusivity for two subjects
is overlaid on the plot; recall the interpretation given in the introduction. It appears that the
predictor values at the end of the tract corresponding to t = 1 have a strong influence in
predicting disease status. Subjects in the lower range for perpendicular diffusivity at this end
of the tract seem to be less likely to be classified as having MS, whereas subjects in the
upper range at this position are more likely to have MS. Models were also fit using
fractional anisotropy and parallel diffusivity as predictors. A fourth model was considered
that included a nonparametric component for the subject’s age in addition to using
perpendicular diffusivity. Figure 6 contains a plot of the ROC curves for these fitted models.
The model using fractional anisotropy performs almost universally worse than the other
three models. None of the other three models considered perform universally better than the
others. Including age as a covariate in the model with perpendicular diffusivity did not
improve performance.

We also compared the FGAM fits to three other generalized functional regression models.
The first is the Ferraty+Vieu estimator (10) from the previous section. The use of this
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estimator for classification is discussed in detail in Ferraty and Vieu (2006, Chapter 8). The
second alternative model considered is a GLM in the functional principal component scores
(GLM-FPCA) and the third model is a GAM in the functional principal component scores
(FAM). The leave-one-curve-out ROC curves are displayed in the right plot of Figure 6
when perpendicular diffusivity is the covariate. There is little difference in performance
between the models used.

6 Discussion
A new model for functional regression with a scalar response has been developed. The
functional linear model has been extended to an additive structure allowing for more
complicated relationships to be modelled while still being highly interpretable. Our
approach can handle responses from any exponential family distribution as well as multiple
functional or scalar predictors.

In our simulation results, we showed that our FGAM can provide nearly identical results to
the FLM when the FLM is the true model, and offered substantial improvements when the
FLM was not the true model. We also showed that our proposed confidence bands can
achieve average coverage probabilities close to the nominal confidence level. For the
analysis of the DTI dataset, FGAM performed favourably when compared with some
standard functional regression models.

Our methodology opens up many research problems. One goal for future work is to add
several more functional predictors (e.g. for the DTI dataset, multiple tracts and more
summaries of the diffusion for each tract). This would require faster techniques for
smoothing parameter selection than our current methods. A Bayesian model and MCMC
could have also been used. Alternatively, the recent work of Wood (2011) advocates the use
of generalized linear mixed models (GLMMs) estimated by restricted maximum likelihood
for smoothing parameter selection. Our analysis of the DTI dataset did not consider the
longitudinal nature of the study. The use of a GLMM to incorporate random effects would
allow us to model these extra subject visits in a manner similar to Goldsmith et al. (2010a).
Datasets with this type of structure are becoming more and more common; for example, see
the analysis in Di et al. (2009) of the Sleep Healthy Heart Study.

There are multiple alternatives to the Bayesian approach we used for obtaining approximate
confidence bands for the estimated surface F ̂. Ruppert et al. (2003, Chapter 6) provides an
overview of some of them. Bootstrap procedures are commonly used and have been
developed for functional nonparametric regression (Ferraty et al. 2010). Fahrmeir and Lang
(2001) use a Bayesian approach involving Markov random field priors with estimation
performed using MCMC. We note that with the approach we use, it is also possible to obtain
confidence intervals for nonlinear functions of the model parameters (see Wood (2006a)).

Also of interest for further work would be obtaining formal tests of the additivity and
linearity assumptions for our model and the FLM, respectively and convergence rates for F̂.
Recent results for P-splines suggest we can obtain theoretical results for the Riemann sum
approximation to our model. Li (2011) shows the equivalence of a P-spline estimator to a
backfitting projection algorithm and uses this result to obtain asymptotic results for the P-
spline estimator for the case of piecewise constant or linear splines with first or second order
difference penalties. Care must be taken to deal with the high degree of multicollinearity
among the covariates; the assumptions placed on the probabilistic structure of the functional
predictors will likely have an important role in obtaining rates of convergence.
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Figure 1.
Estimated surface F ̂(x, t) and two predictor curves for the DTI dataset. The solid curve
belongs to a control and the dashed curve belongs to an MS patient.
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Figure 2.
Median RMSE across 1000 simulations for six different functional regression models, four
different empirical signal to noise ratios and rough (J=500) and smooth (J=5) predictor
functions. a) Linear true model, b) Nonlinear (“Hill”) true surface.
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Figure 3.
a) Observed parallel diffusivity along the corpus callosum tract for a sample of MS patients.
b) Parallel diffusivity along the corpus callosum tract transformed by its empirical cdf for
the same patients.
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Figure 4.
a) Contour plot of the estimated surface, F ̂(p, t) [see (3)], for transformed parallel diffusivity
along the corpus callosum tract. Also included are the transformed parallel diffusivity
measurements for two subjects. b) Contour plot of pseudo t-statistics (estimated surface
value divided by its standard error). The response is PASAT score.
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Figure 5.
A sample of slices of the estimated surface [plots a) and b)] and estimated second derivative
surface [c) and d)] for fixed tract positions [a) and c)] and fixed untransformed actual
predictor [b) and d)] along with the corresponding Bayesian confidence bands for parallel
diffusivity with PASAT score as the response variable.
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Figure 6.
a) Leave-one-curve-out ROC curves for different FGAMs fit each using a different
functional predictor and an FGAM including perpendicular diffusivity and a functional
component for age. The response is MS status. b) Leave-one-curve-out ROC curves for both
FGAM fits, and three other functional regression models when perpendicular diffusivity is
the functional predictor.
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Table 1

Mean ACP across 500 simulations for nominal coverage probability 0.95.

N=100 N=500

True Surface SNR=2 SNR=4 SNR=2 SNR=4

Linear 0.9746 0.9684 0.9704 0.9702

Nonlinear 0.9597 0.9665 0.9613 0.9592
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