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ABSTRACT: Shotgun proteomics experiments integrate a complex sequence of
processes, any of which can introduce variability. Quality metrics computed from
LC-MS/MS data have relied upon identifying MS/MS scans, but a new mode for
the QuaMeter software produces metrics that are independent of identifications.
Rather than evaluating each metric independently, we have created a robust
multivariate statistical toolkit that accommodates the correlation structure of
these metrics and allows for hierarchical relationships among data sets. The
framework enables visualization and structural assessment of variability. Study 1
for the Clinical Proteomics Technology Assessment for Cancer (CPTAC), which
analyzed three replicates of two common samples at each of two time points
among 23 mass spectrometers in nine laboratories, provided the data to
demonstrate this framework, and CPTAC Study 5 provided data from complex
lysates under Standard Operating Procedures (SOPs) to complement these
findings. Identification-independent quality metrics enabled the differentiation of sites and run-times through robust principal
components analysis and subsequent factor analysis. Dissimilarity metrics revealed outliers in performance, and a nested ANOVA
model revealed the extent to which all metrics or individual metrics were impacted by mass spectrometer and run time. Study 5
data revealed that even when SOPs have been applied, instrument-dependent variability remains prominent, although it may be
reduced, while within-site variability is reduced significantly. Finally, identification-independent quality metrics were shown to be
predictive of identification sensitivity in these data sets. QuaMeter and the associated multivariate framework are available from
http://fenchurch.mc.vanderbilt.edu and http://homepages.uc.edu/~wang2x7/, respectively.

The diverse methods, instrument platforms, and bio-
informatics used in shotgun proteomics frequently inhibit

the reproduction of experiments among different laborato-
ries.1−3 Most reproducibility analyses of the data produced in
these experiments have constrained themselves to the peptide
and protein identifications that the experiments produced.4,5

More recently, bioinformatics teams have produced software
tools for generating quality metrics that leverage identifica-
tions.6−8

The NCI Clinical Proteomic Technology Assessment for
Cancer (CPTAC) was designed to characterize proteomic
methods for their use in clinical samples. The first study
conducted by CPTAC (2006−2007) was intended to provide a
baseline set of data from common samples to evaluate the
variability of LC-MS/MS data collections prior to the use of
Standard Operating Procedures (SOPs) for CPTAC joint
studies. While later studies from CPTAC used more complex
samples (such as yeast lysates9 or blood plasma10), CPTAC
Study 1 employed a defined mixture of 20 proteins. Later
studies emphasized Thermo LTQ and Orbitrap instruments for
proteomic inventories4 and AB Sciex QTRAP instruments for
targeted quantitation,10 but Study 1 was conducted on all

instruments that CPTAC principal investigators had identified
as available for experimentation in their proposals. The
availability of raw data from 16 electrospray-mass spectrometers
in nine distinct instrument models enables a unique vantage for
evaluating variability in these platforms. CPTAC Study 5, on
the other hand, limited its focus to Thermo LTQ and Orbitrap
instruments but demonstrated the variability reduction of an
SOP, coupled with more complex samples.
Variability in a complex technology such as shotgun

proteomics may be characterized by multiple metrics, and
sets of metrics imply the need for a multivariate approach to
monitoring and evaluation. Such an approach can model the
correlations between features and control the overall
probability of falsely signaling an outlier when one is not
present (the usual α-level in univariate hypothesis testing). It is
hard to evaluate this probability from a large number of
individual metrics if the correlation among the features is
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extensive.11 To effectively evaluate and monitor experiments,
one should jointly analyze the array of metrics. If a more diverse
set of features can be characterized by metrics, a more
comprehensive appraisal of the system becomes possible, so
looking beyond identifications to include signal intensity and
chromatography is essential.6 Summarizing among metrics
presents opportunities for diagnosing the mechanism causing
variability.
In this study, we use multidimensional performance metrics

generated by QuaMeter to evaluate the data from CPTAC
Studies 1 and 5. CPTAC Study 1 sought to characterize the
performance of a broad collection of mass spectrometers prior
to any cross-site coordination of instrument protocols. The data
obtained in this large scale study have not been rigorously
analyzed until now. The results from this study are of particular
interest from the perspective of quality control (QC). We show
how robust multivariate statistical methods can produce
insights on the cross-platform, laboratory, sample, and
experimental variability assessment of large-scale experiments
by effective data visualization and modeling. The methods
developed here can be applied in a broad range of quality
control studies with multidimensional performance metrics.

■ EXPERIMENTAL SECTION

Creation of NCI-20 Reference Material. An aqueous
mixture of 20 purified human proteins (referred to as the “NCI-
20”) was produced by NIST. The 20 proteins were chosen on
the basis of several criteria including the commercial availability
of highly purified or recombinant preparations, the identity of
the protein as either “classical” plasma proteins or potential
plasma biomarkers of cancer,12 and the availability of
commercial immunoassays for the chosen protein. The
concentrations of the 20 human proteins in the NCI-20
mixture spanned a range similar to that of proteins in human
plasma, specifically from 5 g/L to 5 ng/L. The target
concentration of most of the proteins in the NCI-20 mixture
(with the exception of human albumin) reflects the clinically
relevant concentration range in human plasma, as reported in
the literature.13

To prepare the NCI-20 mixture, stock solutions of each
commercial protein preparation were prepared in 25 mmol/L
phosphate buffered saline, pH 7.4, containing 5 mmol/L acetyl
tryptophan and 4 mmol/L sodium azide. Table 1 in the
Supporting Information of the CPTAC Repeatability article
lists the commercial sources of the proteins in the NCI-20
mixture.4 A portion of the NCI-20 mixture was aliquotted (600
× 125 μL aliquots) into polypropylene microcentrifuge tubes
and stored at −80 °C. These aliquots were labeled as “Sample
1A” for the CPTAC interlaboratory study. Another portion of
the NCI-20 mixture was denatured in RapiGest SF (Waters,
Millford MA), reduced by dithiothreitol, alkylated with
iodoacetamide, and proteolytically digested with immobilized
trypsin (Thermo Pierce, Rockford IL) to prepare “Sample 1B”
for the study. A portion of this digest was aliquotted (600 ×
125 μL) into polypropylene microcentrifuge tubes and stored
at −80 °C.
Harvesting Data from CPTAC. The CPTAC program

conducted a series of multisite experiments that employed data-
dependent technologies:

• Study 1: diverse instruments analyzing NCI-20 without
SOP

• Study 2: LTQs and Orbitraps analyzing NCI-20 under
SOP 1.0

• Study 3: LTQs and Orbitraps analyzing yeast and NCI-
20 under SOP 2.0

• Study 5: LTQs and Orbitraps analyzing yeast and BSA-
spiked yeast under SOP 2.1

• Study 6: LTQs and Orbitraps analyzing yeast and UPS1-
spiked yeast under SOP 2.2

• Study 8: LTQs and Orbitraps analyzing yeast in two
concentrations without SOP

Study 1 was unusual for its inclusion of a broad range of
instrument types and replication of its experiments to span at
least two weeks, and yet these data have never been evaluated
in the peer-reviewed literature. Study 5 is valuable for
producing six replicates of both complex and defined samples
under SOP for six different instruments. The two experiments
were selected because they provided sufficient replication for
characterizing the participating instruments, and they provide
significant contrast due to the included sample types and the
different levels of methodology control.

Overview of CPTAC Study 1. Study 1 was designed as a
first group experiment for the CPTAC network. The study
evaluated the variability of replicate data sets for NCI-20
samples that were digested at the individual sites (1A) or
centrally at NIST (1B). It attempted three aims in assessing
clinical proteomics technologies. The first was to benchmark
proteomic identification for a defined mixture across a diverse
set of platforms and laboratories. The second evaluated the
week-to-week reproducibility associated with MS/MS instru-
mentation. The third aim sought to evaluate the variability
introduced by decentralizing the initial step of protein digestion
by trypsin; if on-site digestion led to less comparable results
among sites, centralized digestion would be justified for shared
program experiments. Three vials of sample 1A and sample 1B
were sent to each lab in each shipment, with one week
intervening between two shipments. The date on which the first
LC-MS/MS was conducted for each instrument was defined as
day one. The expected output from each lab would include six
LC-MS/MS analyses on day one (split evenly between 1A and
1B samples) and another six LC-MS/MS analyses on day eight.
A total of 17 electrospray tandem mass spectrometers of seven
different models took part in the study starting in November,
2006, with an additional four MALDI tandem mass
spectrometers and two MALDI peptide mass fingerprinting
instruments rounding out the study. Table S1 in the Supporting
Information provides a list of mass spectrometers included in
Study 1. Table S2 provides the historical context for proteomic
instruments spanning the 1990s and the first decade of the
2000s.

Overview of CPTAC Study 5. Study 5 was designed as a
multisite test for a long-gradient SOP and for gauging the
impacts of a spiked protein on the CPTAC yeast reference
material.9 SOP v2.1 defined a 184 min data-dependent method
for Thermo LTQ and Orbitrap instruments (see Supporting
Information Table 2 in the CPTAC Repeatability article4). The
samples included the digested NCI-20 (labeled “1B”), the yeast
reference material (“3A”), and the yeast reference material with
bovine serum albumin spiked at 10 fmol/μL in 60 ng/μL yeast
lysate (“3B”). The run order for the experiment included the
largest number of replicates for any CPTAC study, repeating
twice the block of these samples: 1B, 3A, 3A, 3A, 1B, 3B, 3B,
and 3B, followed by an additional 1B. In total, the 1B sample
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should have been analyzed by at least five experiments (more if
the blocks were separated by a gap), while the 3A and 3B
samples yielded three early and three late replicates each. Data
were collected on three LTQ and three Orbitrap mass
spectrometers between October of 2007 and January of 2008.
Raw data files for Studies 1 and 5 can be found at the CPTAC
Public Portal: https://cptac-data-portal.georgetown.edu/
cptacPublic/.
Quality Metric Generation. QuaMeter software7 is a tool

built on the ProteoWizard library14 to produce quality metrics
from LC-MS/MS data. In its original release, QuaMeter
generated metrics styled after those of Rudnick et al.,6

incorporating peptide identifications along with raw data. The
metrics generated by this tool, however, depended significantly
upon which MS/MS scans were identified, reducing their utility
in LC-MS/MS experiments with diminished identifications. For
this research, a special “IDFree” mode was added to QuaMeter
to produce metrics that are independent of identification
success rates for MS/MS scans.
QuaMeter IDFree metrics separate into the following

categories: XIC (extracted ion chromatograms), RT (retention
times), MS1 (mass spectrometry), and MS2 (tandem mass
spectrometry). The full list of 45 metrics is supplied in Table S3
of the Supporting Information; in the analyses that follow,
some metrics were omitted due to low variance or high
correlation. Many of the metrics are subdivided into three or
four quartiles in order to approximate the distribution of a
variable for an experiment, and peak intensities are generally
evaluated in logarithmic space in order to flatten large fold
changes. Because the software does not make use of
identification data, it emphasizes the set of precursor ions
that are associated with the widest XICs; this set is found by
sorting all precursor ion XIC values by full width at half-
maximum intensity (fwhm) and then accepting the smallest set
that accounts for half of the fwhm sum.
The four RT-MSMS-Qx metrics provide a simple example of

the quartiles in action. MS/MS scans could be acquired
uniformly across the retention time for an LC-MS/MS
experiment or more frequently during the most common
elution times. In the uniform acquisition case, each of these
metrics would be 0.25, implying that each quartile of MS/MS
acquisition times lasted one-quarter of the total retention time
duration. If MS/MS acquisition rates are higher in the middle
of an LC gradient, however, the Q2 and Q3 metrics will be
lower than for Q1 and Q4. The MS2-Freq-Max metric, on the
other hand, reports only the highest rate of MS/MS acquisition
(in Hz) sustained for a full minute of the LC-MS/MS
experiment.
The total intensity of MS signals can vary considerably from

scan to scan, and the three MS1-TIC-Change-Qx metrics
monitor this stability. The property in question is the log fold
change of the total MS1 signal in one MS scan versus the total
MS1 signal in the next one; a very high or very low log fold
change could indicate electrospray instability. MS1-TIC-
Change-Q4 compares the highest of these log fold changes to
the one at the 75th percentile, while -Q3 evaluates the 75th
percentile against the median, and the -Q2 evaluates the
median against the 25th percentile. Simple values like MS1-
Count or MS2-Count, which report the numbers of these scans
acquired in the experiment, are also provided.
Because QuaMeter needs access only to raw data, it allows a

very rapid assessment of experiments. Typical run times for
Thermo Orbitrap Velos raw data files are less than 5 min per

LC-MS/MS experiment, largely consumed by the extraction of
ion chromatograms. As a result, QuaMeter is well-positioned to
give immediate feedback in support of go/no-go decisions with
major experiments.

Robust Hierarchical Multivariate Statistical Toolkit.
The performance evaluation in CPTAC Studies 1 and 5
features multilevel comparisons: across instrument types, across
mass spectrometers, across samples, and among LC-MS/MS
experiments. While metrics that evaluate this chain of complex
activities have been designed,6,7 there are few quantitative
analysis methods able to jointly analyze these metrics and take
advantage of the multivariate nature of the data. Here, we
describe a series of multivariate statistical tools that can be used
to visualize, explore, and test rigorously the quality metrics
obtained through identification-independent QuaMeter quality
metrics. Multivariate statistical techniques are essential in
performance evaluation of any shotgun proteomic data set, as
the experiment routinely contains a chain of complex processes
and the performance metrics comprise an integrated group of
measures on these processes. Assessing experimental reliability
and repeatability based on individual metrics is possible, but
one can achieve greater sensitivity through combinations of
metrics.15 Multivariate statistical methods anticipate interde-
pendence of the measurements and provide a deeper and more
complete evaluation of the experimental workflow. When
outliers may be present, the use of robust models helps to
protect against bias, and operating without a benchmark profile
is necessary when only a few experiments are available for a
given instrument.
This is especially true for the shotgun proteomics experi-

ments in CPTAC Study 1, where no cross-site protocols were
implemented. The identification performance among mass
spectrometers varied across orders of magnitude. Even for the
same mass spectrometer, experimental methods yielded
considerable changes in performance. When a benchmark
profile is available, it is natural to compare each experiment
with the benchmark profile for performance evaluation, quality
control, and outlier detection. Hotelling’s T2 and QC chart are
widely implemented for quality control.16 In a pilot study like
CPTAC Study 1, however, evaluation has to be carried out
without a benchmark. With the large variability among mass
spectrometers, many assumptions used in the common
multivariate methods are not appropriate. On the basis of
these considerations, we employed robust principal component
analysis. In evaluating the mass spectrometers and batch effects,
we measured deviation using multivariate median and L1
distance instead of mean and Euclidean distance. These
methods resist undue influence from highly variant individual
mass spectrometers or flawed individual LC-MS/MS experi-
ments. They can also be extended to detect outliers. The
simultaneous evaluation of the full set of metrics may eventually
pave the way for technicians to identify which element of the
platform led to unusual behavior for an experiment, an essential
feature for QC.

Data Visualization and Explorative Analysis. If we have
only one or two metrics to measure the performance for a
shotgun proteomics experiment, it is straightforward for us to
visualize all the data (by a scatter plot, for example) and to do
an explorative comparison among all experiments. The
visualization and interpretation becomes challenging when the
set of metrics expands; for example, QuaMeter provides more
than 40 identification-independent metrics to measure the mass
spectrometer performance in a single experiment. Robust
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principal component analysis is a suitable tool to use as the first
step in exploratory data analysis. Ringneŕ provided an
introduction of PCA for biological high dimensional data.17

One purpose of the PCA analysis is to replace the
multidimensional correlated metrics by a much smaller number
of uncorrelated components which contain most of the
information in the original data set. This dimension reduction
makes it easier to understand the data since it is much easier to
interpret two or three uncorrelated components than a set of
40 with embedded patterns of interrelationships. The amount
of information contained in the transformed metrics (PCs) is
measured by the amount of variance that is accounted for by
each of the newly constructed metrics. A two-dimension PC
plot reduces and visualizes the data while retaining the most
interesting features and maximal variability from the original
data. It visualizes the performance of all the experiments based
on the first two PCs (as if we had only two metrics from the
beginning). Of course, some information is lost by the
reduction from more than 40 metrics to only two components.
Here, we only use the first two PCs as an example to show how
the PCA is helpful for us to recognize some key features in the
data, such as clusters, outliers, and deviation. A systematic
examination of different combinations for components would
be needed to comprehensively evaluate the data structure.
In this case, robust PCA18 was applied to all of the Sample

1A and 1B experiments collectively in CPTAC Study 1 and
Sample 3A and 3B in CPTAC Study 5. The following metrics
were excluded from PCA because of insufficient variability
among sites or the high correlation in Study 1: RT-Duration, all
MS2-PrecZ metrics, XIC-fwhm-Q1, and XIC-fwhm-Q3. Two
additional metrics (RT.MSMS.Q4 and MS2.Count) in Study 5
were removed because of the high correlation with
RT.MSMS.Q2 (Pearson correlation > 0.99). Multivariate
analysis loses very little information from this removal because
one can predict the values for these stripped variables almost
perfectly from the retained information.
Factor analysis provides another means for dimensional

reduction. The technique evaluates the relationship between
unobservable, latent variables (factors) and the observable,
manifest variables (QuaMeter metrics). It describes the
covariance relationships among observed metrics in terms of
a few underlying, but unobservable, quantities called factors.
Unlike principal components analysis, however, factor analysis
emphasizes the relationship among a small set of metrics
associated with each factor. The factor analysis is carried out on
the sample correlation matrix estimated using robust methods.
The number of factors may be chosen to provide a reasonable
amount of explanatory power for the total variability in the
original data. The maximum likelihood method is used to
estimate the loading matrix and other parameters in the factor
model. To facilitate the selection of important metrics, we
employ the varimax criterion19 to disperse the squares of
loadings as much as possible. Factor analysis should reveal
combinations of key metrics that can be used to monitor
performance.
Dissimilarity. The dissimilarity between two experiments is

measured by the Euclidean distance between the robust PCA
coordinates for each LC-MS/MS experiment. Euclidean
distance is an appropriate metric because dissimilarity is a
comparison of only two experiments. Thus, any abnormal
experiment will influence only the dissimilarity measures that
include that experiment. Mathematically, the dissimilarity
between two p-dimensional coordinates x1 and x2 is

− + − + −x x x x x x( ) ( ) ...( )p p11 21
2

12 22
2

1 2
2

The larger the dissimilarity values are, the less similar the two
experimental runs. This measure of dissimilarity can be further
developed into statistical distance when stable estimation of
correlation is available.
This distance measure is designed to be automatically outlier-

proof as pairwise comparison does not require a benchmark
profile. Any abnormal experiments (outliers) can be easily
identified by their large distances from other experiments, while
clusters of experiments can be identified by small dissimilarity
values among a set. These pairwise comparisons also facilitate
examination of key factors, such as run order, digestion
methods, and mass spectrometers. When a benchmark is
needed in the analysis, such as in ANOVA, careful
consideration is needed in the selection of the benchmark.
One key issue is that the benchmark cannot be very sensitive to
any outlying experimental run. This is why we employed L1
distance rather than Euclidean distances in the nested ANOVA
below.

Nested ANOVA Model. The ANOVA model decomposes
the total variability among the metrics into different sources. It
is applied here to study the mass spectrometer and batch
effects. Experiments in Study 1 were designed to be carried out
in two-week intervals. The actual time was frequently longer
and more scattered. In Study 5, 3A and 3B samples were both
separated to two batches. To examine the mass spectrometer
and batch effects, we calculated the multivariate median for all
experiments and the L1-distance of each experiment from the
multivariate median. If all experiments produced similar data,
we would expect their vectors of metrics to randomly distribute
around a central vector of metrics (the median vector). Any
nonrandom pattern in the performance of experiments could
impose a pattern on the distances of the vector metrics of
affected runs from the center. For example, if the performance
depends on the individual mass spectrometers, we would expect
the metric vectors to cluster together for different mass
spectrometers. We choose to use the L1 distance, as it is less
influenced by experiments with idiosyncratic performance and
combines metric distances for a simple univariate ANOVA
analysis. L1 distance can also provide information on outliers
and clusters, though it is less sensitive than the Euclidean
pairwise comparison detailed above. The inability to take into
account the direction of change is a drawback of using L1
distance. As a result, the analysis may not be able to
differentiate effects that contribute equal distances but in
opposite directions, producing a false negative. Multivariate
ANOVA analysis is a possible way to overcome this no-
direction problem; however, with a large set of metrics to
examine simultaneously, it is computationally and methodo-
logically more challenging, and the estimates may involve a
large magnitude of uncertainty.
As the experiments were carried out during different time

spans for different mass spectrometers, the batches are nested
within each mass spectrometer. A nested ANOVA model was
developed as follows:20

−

= +

+ +

log(L1 distance )

overall mean mass spectrometer

batch (mass spectrometer) residuals

ijk

i

j i ijk
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where mass spectrometeri represents the effect of the ith mass
spectrometer, batchj(mass spectrometeri) represents the jth
batch effect on the ith mass spectrometer, and residualsijk is the
residual for the kth experiment in the jth batch on the ith mass
spectrometer. In this ANOVA model, both the mass
spectrometer and the batch effects were assumed to be
random. The estimated variance of these random effects can
evaluate which factor contributes the most variability in
experimental performance. A statistical significance test can
also be carried out to test if mass spectrometer and batch effects
are significant. The ANOVA model could be extended to
include more factors such as instrument types and the sample
types.
Peptide Identification. Tandem mass spectra from each

Study 1 mass spectrometer were identified using spectral library
search. The Pepitome algorithm21 compared spectra to the
NIST human ion trap library, using a 1.5 m/z precursor
tolerance for average masses and a 1.25 m/z precursor
tolerance for monoisotopic masses. Each peptide in the library

was included in normal and scrambled form to allow for decoy
measurement.22 Fragments in all cases were allowed to vary
from their expected positions by up to 0.5 m/z; while these
settings for precursor and fragment tolerances may not have
been as tight as optimal for each instrument, the much smaller
search space of spectral libraries protected against significant
reductions in identification efficiency. Peptides were allowed to
be semitryptic or modified if the spectrum library contained
those possibilities. Identifications were filtered and assembled in
IDPicker 3.0, build 520, using a 0.02 PSM q-value threshold23

and requiring 10 spectra to be observed for each protein. These
settings resulted in a 4.11% protein FDR, with 373 distinct
proteins identified (picking up extra proteins from carryover, in
some cases) that spanned 3266 distinct peptides and 232 351
identified spectra. A total of 1040 distinct peptides and 217 157
spectra (93.6%) were accounted for by the NCI-20 proteins.
Only the hits to the following RefSeq entries were accepted as
legitimate for further analysis: NP_000468.1 (albumin);
NP_001054.1 (serotransferrin); NP_000499.1, NP_005132.2,

Figure 1. The plot of the first two principal components. The upper two panels are for the 16 electrospray mass spectrometers from CPTAC Study
1. The left panel is for Sample 1A (digested on-site) and the right panel is for Sample 1B (centrally digested at NIST). The lower two panels are for
the six mass spectrometers from CPTAC Study 5. The left panel is for Sample 3A (the yeast reference material) and the right panel is for Sample 3B
(yeast reference material spiked with bovine serum albumin). The first three experiments are labeled as blue (“early”), and the last three experiments
are labeled as red (“late”).
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and NP_000500.2 (fibrinogen alpha, beta, and gamma,
respectively); and NP_004039.1 (beta-2-microglobulin). A
spreadsheet of hits for each experiment in terms of distinct
peptides, identified spectra, and matches (subvariants of
peptides by precursor charge or PTM-state) is available in
the Supporting Information.
Data from Study 5 were also identified by Pepitome. The

search for samples 3A and 3B included the NIST ion trap
libraries for yeast and BSA, mapped to the UniProt reference
proteome set for yeast plus the sequence for bovine serum
albumin. The search for sample 1B employed the same library
as in Study 1. When Orbitraps were able to provide confident
monoisotopic measurements, a precursor mass tolerance of 10
ppm was applied; otherwise, a 1.5 m/z precursor mass
tolerance was applied. For samples 3A and 3B, IDPicker 3.0
employed a 0.01 PSM q-value threshold and required six
spectra per protein, yielding a 2.55% protein FDR. To achieve a
protein FDR under 5% for the sample 1B report allowed a 0.05
PSM FDR threshold and required three spectra per protein for
a 3.64% protein FDR. Only the hits to NCI-20 proteins and
bovine trypsin were included in identification counts; when all
data were included for sample 1B, a total of 79 human protein
groups were detected, along with three decoys and trypsin,
though spectral counts were far lower for proteins not found in
the NCI20. A spreadsheet of the NCI20 identifications
resulting from each experiment is available in the Supporting
Information.

■ RESULTS AND DISCUSSION
The reproducibility of LC-MS/MS experiments has been a
controversial subject. Most analyses of this topic, however, have
limited themselves to the peptide and protein identifications
produced from these data sets. By using the “IDFree” metrics
produced by QuaMeter to characterize data, however, this
study examines the signals recorded in LC-MS/MS rather than
the derived identifications. QuaMeter produced metrics for 16
of the 17 electrospray instruments for Study 1 (ProteoWizard14

did not support centroiding algorithms for Waters instru-
ments). Because all six mass spectrometers in Study 5 were
Thermo instruments, QuaMeter was able to produce metrics
successfully from all experiments. This analysis begins with
dimensionality reduction and data visualization, then quantifies
the relationship between experiments, and finally builds a
hierarchical model to test the impact of multiple factors on
experimental outcomes. At the end, the correlation between
ID-free and ID-based evaluations is discussed.
Dimensionality Reduction and Data Visualization.

Univariate analysis would look at each QuaMeter metric in
isolation to find differences between experiments, but multi-
variate analysis is able to combine the information on multiple
metrics, recognizing correlations among them. Principal
Components Analysis (PCA) is a widely used dimensionality
reduction method that summarizes multidimensional inputs to
a set of uncorrelated components, sorting them by the fraction
of variance accounted for by each. The first two components of
the robust PCA (PC1 and PC2) for the QuaMeter IDFree
metrics from Studies 1 and 5 are visualized in Figure 1.
The PCA plot yields a good snapshot for data exploration. In

general, the experiments for a particular mass spectrometer
group together. This grouping can reflect the similarity of
metrics that are characteristic of the instrument type where the
same method is applied. That being said, different users of the
same model of instrument may be quite separate in the plot;

the five LTQ laboratories in Study 1 range considerably on the
first two principal components. Because PCA was conducted
jointly for lab digestion protocols (1A) and for centrally
digested samples (1B) in Study 1 and the yeast (3A) and the
spiked yeast sample (3B) in Study 5, comparing placements
between plots for a given site is possible. While it is tempting to
say that instruments like QSTARx54 were more variable than
QTRAP52 on the plots for Study 1 because of how their
symbols distribute, one needs to take the other principal
components into account before framing this interpretation.
For Study 1, the first two principal components account for

22% and 19% of the variability in the QuaMeter metrics,
respectively. For Study 5, these proportions are 42% and 23%.
PC1 and PC2 in Study 5 account for a larger proportion of
metric variability than in Study 1, which may be impacted by
the lack of an SOP guiding Study 1. Since the first two metrics
account for only part of the total variance, the PCA plot can be
deceptive; experiments that appear close together on the plot
might look quite distant when a third or fourth dimension is
taken into account. The third principal component, in this case,
would describe an additional 10% of total variability in Study 1
and 20% of total variability in Study 5. As Ringneŕ suggests,17 it
is critical to systematically check different combinations of
components when visualizing data by PCA.
Seeing the same symbol for each experiment flattens the

available information to mask important attributes. Clearly, one
should expect that laboratories that use the same kinds of
instruments or separations are likely to produce more similar
results than those using different instruments or separations, a
fact not represented by each site having an independent
symbol. When data are produced in rapid succession (perhaps
even without interleaved blanks), one can expect them to be
more similar than when they are produced with more than a
month of intervening time (see results in the Nested ANOVA
Model section). Incorporating factors of this type can yield a
more much subtle analysis of variability for a multi-instrument
study of this type.
To understand the underlying process that influences

experimental performance, we also carried out exploratory
factor analysis. In Study 1, the six-factor model represented
more than 60% of the total variability. Almost all variability
(95%) was accounted for by a six-factor model in Study 5.
Examination of the loading matrix in Table S4 of the
Supporting Information may help to understand the key
aspects that differentiated mass spectrometer performance. In
Study 1, the factor accounting for the greatest overall variability
(18%) was associated with intense precursor ions (XIC-Height-
Q2, -Q3, -Q4), TIC concentration in the middle two quartiles
of retention time (RT-TIC-Q2, -Q3), and a high rate of MS/
MS acquisition (MS2-Count, MS2-Freq-Max). The second
factor, accounting for an additional 10.6% of variability, favored
wider peaks (XIC-fwhm.Q2) and MS scans that were heavily
populated with ions for fragmentation (MS1-Density-Q1, -Q2).
While all of these elements may seem equally associated with
experiments producing large numbers of identifications, they
varied separately among different experiments, allowing them
to be separated to different factors. In Study 5, the first factor
accounted for more than 40% of the total variability. Its features
included narrow chromatographic peaks (XIC-fwhm-Q2), good
contrast in peak heights (heightened XIC-Height-Q3) without
extremes (lower XIC-Height-Q4), continued MS/MS acquis-
ition during late chromatography (lower RT-MSMS-Q1, Q2,
and Q3) and greater contrasts in MS total ion current (higher
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Figure 2. continued
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MS1.TIC.Q3, Q4), and sparse MS scans (low MS1-Density)
accompanied by MS/MS scans populated with many peaks
(high MS2-Density). The contrasts in metrics produced from
both studies demonstrate that that correlation structure among
metrics can differ significantly under different experimental
protocols. No single combination of factors would be
appropriate for all possible purposes to which these quality
metrics may be applied.
Dissimilarity Evaluation. When QuaMeter produces its

metrics for a given experiment, it reduces it to a vector of
numbers, each representing a metric value. That vector can be
thought of as a coordinate in a multidimensional space. PCA
transforms from one set of dimensions to another, but each
point in the new space continues to represent an individual LC-
MS/MS experiment. The distance metrics described in the
Experimental Section find the distance between a pair of those
points just as the Pythagorean theorem finds the length of the
hypotenuse in a right triangle.
Relationships between pairs of LC-MS/MS experiments can

take place at several levels. In the case of Study 1, when a
particular mass spectrometer produced multiple replicates for
sample 1A (digested on-site) and for sample 1B (digested
centrally), the data for those experiments were likely to yield
high similarity since the same operator employed the same
mass spectrometer. That said, comparisons for a given sample
type will also share a digestion technique and may reduce
variability further. These comparisons can be found in Figure
2A. At a higher level, one can group together the data from all
instruments of a particular type, in this case generalized to
QTRAP, QIT (Quadrupole Ion Trap), Orbi, and QqTOF
(Quadrupole-collision cell-Time-of-Flight). These comparisons,
within and between the two sample types, appear in Figure 2B.
In cases where an individual laboratory employed instruments
of different types, comparisons between experiments from the
two instruments could determine the extent to which common
operation imposed greater similarity (Figure S1A in the
Supporting Information). Finally, mass spectrometers of
different types employed by different laboratories might be

assumed to produce the largest degree of expected difference in
performance (Figure S1B in the Supporting Information). In
each case, the three panels separate all possible pairs of sample
1A experiments, all possible pairs of sample 1B experiments,
and all possible pairs of sample 1A and 1B experiments.
Several conclusions emerge from the Study 1 dissimilarity

analysis. When experiments are compared within the 1A or 1B
sample type, median dissimilarity values are approximately half
the values seen when a 1A experiment is compared to a 1B
experiment (see Table S5A for summary statistics). This
demonstrates that trypsin digestion protocols can contribute
substantial variability even when the starting protein mix is
identical; alternatively, this result may suggest that shipping
samples as peptides induces different effects than shipping
samples as proteins. For some instruments, outliers are obvious
in this analysis. For LTQ73, the “sample_1A205_03” experi-
ment was very distant from every other produced by this
instrument. One can also observe that some instruments are
more inherently variable than others. QSTARx54 produced
substantially higher mean distances than others. When classes
of instruments were considered rather than individual instru-
ments (Figure 2B), the AB SCIEX QTRAP 4000s produced
relatively small distances from one experiment to the next; the
three QTRAPs were operated under nearly identical methods
from lab to lab.
Figure 2C and D show the dissimilarity analysis on samples

3A and 3B in Study 5. There were no abnormal runs based on
the distance measures. Compared with that of Study 1, a
striking decrease in the dissimilarity for experiments on the
same spectrometer was observed (Figure 2C). Table S5B lists
the medians and interquartile ranges from QIT and Orbitrap
instruments in Study 1 as well as those from Study 5 within and
across mass spectrometers. The consistency among exper-
imental runs and higher similarity suggests that the
implementation of an SOP reduced the level and spread of
the dissimilarity between experiments. The distance for
experiments from different mass spectrometers of the same
instrumental type was also reduced, but with a much smaller

Figure 2. Dissimilarity measures. Each panel evaluates the distance between metrics in PC space for every possible pair of files. A: Study 1
experiments from the same mass spectrometer (in the same lab). B: Study 1 experiments from the same type of instruments but different
laboratories. C: Study 5 experiments from the same mass spectrometer (in the same lab). D: Study 5 experiments from the same type of instruments
but different laboratories. Note that the x-axis scale differs between Study 1 and Study 5.
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magnitude. As shown in Table S5B, while the level of the
dissimilarity does not change greatly compared with QIT and
Orbi instruments in Study 1, the variability of the distance is
reduced from 3.5−3.8 to 1−2. These results show that the
implementation of SOP can greatly increase the reproducibility
and repeatability of the experiments within and across
laboratories, even though a large amount of variability is still
retained for different mass spectrometers.
Mass Spectrometer and Batch Effects. Statistical testing

on the mass spectrometers and batch effects was carried out
using a nested ANOVA model. In Study 1, we choose the first
three and the last three experiments for each mass spectrometer
to produce a balanced design with two batches labeled “early”
and “late.” By this criterion, a total of 90 experiments from 15
mass spectrometers were selected for Study 1. The

experimental design of Study 5 allows for the inclusion of all
runs on Samples 3A and 3B in the analysis from six mass
spectrometers. A snapshot of Study 1 is shown in Figure 3,
displaying all experiments that were completed within 15 days
of November 6, 2006, the starting date of the study. As shown
in Figure 3, almost every laboratory produced data for 1A
consecutively and data for 1B consecutively. As a result,
potential batch effects were confounded with sample effects
(i.e., if the platforms were varying in performance through time,
it might easily appear as if it were varying in response to
different samples). To avoid the possible confounding problem,
only data from sample 1B were selected for ANOVA analysis.
Consequently, we were not able to characterize the effect of
digestion method on variability in Study 1. Figure S2 in the
Supporting Information shows the time points for each of the

Figure 3. Snapshot of Study 1. Each dot represents a CPTAC Study 1 experiment that was conducted within 15 days of the starting date on
November 6, 2006. Black dots represent sample 1A, while red dots represent sample 1B.

Figure 4. The L1-distance. Left panel: the L1 distance for 90 experiments within 70 days used in ANOVA model for the mass spectrometer and
batch effect study for Study 1. Right panel (upper): L1 distance for Sample 3A in Study 5. Right panel (lower): L1 distance for Sample 3B in Study 5.
Distances observed for Study 1 ranged much higher than for Study 5.
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experiments from the six different mass spectrometers in Study
5. The yeast only sample (3A, red) and the yeast spiked with
BSA sample (3B, blue) were analyzed in two batches of three
consecutive experiments. The sample effect is again con-
founded with the batch effect. Thus, ANOVA was performed
separately on Samples 3A and 3B.
Figure 4 shows the typical L1-distances produced by different

mass spectrometers in Study 1 and Study 5. The blue dots
represent early experiments (first three), while the red triangles
represent late experiments (last three). The distances vary

across mass spectrometers and batches. In Study 1, the
ANOVA on the multivariate L1 distance confirmed that both
the mass spectrometer and the batch effects were significant
with p values < 1 × 10−06. The mass spectrometer accounted
for 52.3% of variability (see bottom bar of Figure 5), and the
batch nested within each mass spectrometer accounted for
30.3% of variability, with the remaining 17.4% unexplained.
Results from Study 5 also showed strong mass spectrometer
effects (p value < 0.0001) but no significant batch effect within
mass spectrometers (p value > 0.10). Proportionally, the mass

Figure 5. Proportion of variability accounted by mass spectrometer effect, nested batch effect, and random errors (residuals) estimated using the
nested ANOVA model on each individual metric. Left: CPTAC Study 1 (within 70 days). Middle: Sample 3A CPTAC Study 5. Right: Sample 3B
CPTAC Study 5. The final row of the graph reflects the combination of all metrics.

Figure 6. Numbers of peptides vs type of mass spectrometers employed in Study 1. The number of distinct peptides identified in each experiment
bore a clear relationship to the type of instrument employed. While in each case instrument vendor libraries performed operations such as charge
state determination and peak picking, the peak lists for identification may not have been optimal for a variety of reasons. For this informatics
workflow in Study 1 (the upper panel on the left), the Orbitrap and LTQ-class instruments from Thermo identified a greater diversity of peptides
than did the instruments from other manufacturers. Study 5 results (Sample 1B, the lower panel on the left; Sample 3A, the upper panel on the right;
Sample 3B, the lower panel on the right) show that the Orbitrap has a larger number of peptides identified than LTQ. Orbi@86 yielded very high
sensitivity for samples 3A and 3B, with OrbiP@65, OrbiW@56, and LTQc@65 trailing behind but still yielding more diverse peptide collections
than the other LTQs.
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spectrometer accounted for most of the variability (66% in 3A
and 68% in 3B), with residuals representing a much smaller
fraction (27% in 3A and 25% in 3B). The upper bars of Figure
5 show the extent of impact for mass spectrometers and for
nested batch on each of the metrics individually, for finer
resolution. Significant associations between these sources and
individual metrics are shown in Table S6 in the Supporting
Information.
Much less variability separated early and late batches for each

mass spectrometer in Study 5 than in Study 1. This reduced
batch effect may reflect the imposition of an SOP or may reflect
the shorter time between batches. However, repeating the same
sample in a consecutive series is still not good practice, even
within a short span of time duration and SOP in place.
Artifactual differences may arise due to the run order of
experiments (see Figure 10 of the CPTAC Repeatability
article4). An ANOVA model on each site with batch as a factor
showed that in Sample 3A, Orbi86 yielded a significant
difference in performance between its two batches (p value =
0.00612), and LTQ73 also exhibited a difference (p value =
0.0425). In Sample 3B, LTQc65 produced a p value of 0.03,
which also demonstrates a potential batch effect. Since only a
few hours separated early from late batches, the ability to find
significant differences in identification-independent metrics is
somewhat surprising.
Correlating Identification-Free Quality Metrics to

Identifications. Identifications of tandem mass spectra are
the most common way that data quality is evaluated in
proteomics. For Study 1, three values were produced for each
file: the number of MS/MS scans that were confidently
identified to the known content of NCI-20, the number of
matches (peptide variants in precursor charge and PTMs) that
were detected, and the number of distinct peptide sequences
that were observed. Unsurprisingly, these three measures
exhibit a high degree of correlation. In Study 1, a Pearson
correlation of 0.99 showed strong correlation between peptides
and matches. Peptides and spectra produced a value of 0.84,
and matches and spectra yielded a correlation of 0.85. The
values were even higher when Sample 1B was evaluated in
isolation. For Study 5, the correlations among the distinct
peptides, distinct matches, and the filtered spectra were almost
perfectly linear (>0.989). For subsequent analysis, only distinct
peptide sequences were considered, since this value reasonably
well reflected the information content of an identification
experiment.
The numbers of distinct peptides were clearly associated with

the type of mass spectrometers employed in Study 1 (see
Figure 6). A regression was framed using an indicator variable
value of “1” for Thermo instruments and “0” for non-Thermo
instruments, using the indicator plus the principal component
values (PC1 and PC2) to explain the expected number of
distinct peptides identified. The indicator variable was highly
significant, with a p value of 2 × 10−16. The PC1 score
correlated significantly with the type of instruments. A one-way
ANOVA analysis revealed that around 43% variability in PC1
was caused by the type of instrument in Study 1. However,
even after the instrument manufacturer was taken into account,
the first two principal components were significant. Looking
across the entirety of the data set, the first principal component
(PC1) was significantly positive (p value = 0.000425), while the
second component (PC2) was significantly negative (p value =
0.000223). The loadings of the first two components are listed
in Figure 7. The loadings ranged from 0.3 to −0.3. The first PC,

which accounted for the most variability in the original metrics
data, was a linear combination of all 33 metrics, with heavier
weights on XIC.Height.Qx, RT.TIC.Q1, RT.TIC.Q3 (in the
opposite orientation), RT.MSMS.Q2, MS1.count, MS1.Densi-
ty.Qx, MS2.Count, and MS2.Freq Max. An examination of the
1B sample only obtained comparable results, though the PC
effects were weaker.
A similar multiple linear regression model can be constructed

with the QuaMeter metrics directly (along with the Thermo
indicator variable) rather than through the principal compo-
nents derived from them. This analysis for Study 1 shows a
significantly positive relationship (p value less than 0.05) for the
XIC.WideFrac and MS1.TIC.Change.Q3 metrics, while pro-
ducing p values below 0.001 for positive relationships with the
Thermo indicator variable and the log of MS2.Count. A
significant negative relationship (p value less than 0.05) was
observed for MS1.TIC.Change .Q2, MS1.TIC.Q3,
MS1.TIC.Q4, and MS1.Density.Q3. In analytical chemistry
terms, this would translate to getting high identification rates
when peak width is distributed among many different precursor
ions, with changing signal seen in more than half of the MS1
scans and a copious number of MS/MS acquisitions. Lower
identification rates, on the other hand, correspond to changing
signal in less than half of the MS1 scans and seeing lots of signal
in MS scans throughout the LC gradient.

■ CONCLUSION
This study demonstrates robust multivariate statistical methods
to assess mass spectrometer and batch effects for proteomics
using a collection of identification-free metrics. The adoption of
multivariate statistics makes it possible to jointly model

Figure 7. The loadings for the first two PCs for CPTAC Study 1
(Samples 1A and 1B conjointly).
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multiple aspects of an LC-MS/MS experiment, easing the
visualization, comparison, and analysis of variance in exper-
imental performance. Most of the methods presented here aim
to detect outlying experimental runs and identify the main
sources of experimental variability, which is crucial for any QC
study. Each method has its own niche. Robust PCA reduces
and visualizes multivariate data. The dissimilarity measure is
designed to be robust and can be easily applied to experimental
profiles with any sample size and scope. The nested ANOVA,
coupled with L1-distance, provides statistically rigorous analysis
of the potential sources of experimental variability. The
evaluation demonstrated that ID-free metrics are predictive of
identification success, though ID-free metrics also provide
information for more comprehensive analysis.
This research emphasized multisite studies, but the general

type of analysis is applicable in a wide variety of contexts. When
data collection for a project has spanned multiple weeks (or
been stopped and then restarted), researchers need to know if
batch effects render the early experiments incomparable to late
experiments. When an instrument has undergone service,
technicians need to know whether its performance has shifted
substantially to know whether preceding experiments should be
rerun. This strategy should be very useful for recognizing when
a subset of experiments in a large set comprise outliers due to
unusual instrument conditions. In all cases, biological mass
spectrometry is most useful when data differ due to biological
effects rather than technical variation; these metrics and
statistical models enable researchers to recognize when the
less desirable outcome has occurred.
Because Study 5 was generated under the control of an SOP,

one might expect that different mass spectrometers would
exhibit far greater similarity than was seen in Study 1. This is
confirmed by the dissimilarity analysis. The dissimilarity
analysis confirms that the SOP and short time frame
significantly improved the within mass spectrometer variability
and also reduced the variability among mass spectrometers to a
limited extent. While principal components were related to
identification success after controlling for instrument type in
Study 1 data, the same could not be said of Study 5. However,
ANOVA showed that the across mass spectrometer effects are
still a significant factor in experimental variation when one
looks beyond identifications. ANOVA for Study 1 demon-
strated that the greater the time elapsing between experiments,
the greater the experimental variability apparent in the
QuaMeter metrics. Had sample run orders been randomized
in this study, the effects of centralized vs on-site digestion might
have been disentangled from batch effects.
In the evaluation of both Study 1 and Study 5, contextual

data were not available to establish a “stable profile.” As a result,
these data cannot be evaluated against the normal range of
variation for these experiments. Even without such a profile,
dissimilarity analysis can still help to identify outlying
experiments. Future work will develop quality control models
for dynamic performance monitoring and will also allow for
systematic incorporation of the insights of laboratory
technicians.
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