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Abstract

Background: Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity
and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue
incidence in order to provide timely forewarnings in the Philippines.

Methods: Model inputs were chosen based on studies indicating variables that may impact dengue incidence. The method
first uses Fuzzy Association Rule Mining techniques to extract association rules from these historical epidemiological,
environmental, and socio-economic data, as well as climate data indicating future weather patterns. Selection criteria were
used to choose a subset of these rules for a classifier, thereby generating a Prediction Model. The models predicted high or
low incidence of dengue in a Philippines province four weeks in advance. The threshold between high and low was
determined relative to historical incidence data.

Principal Findings: Model accuracy is described by Positive Predictive Value (PPV), Negative Predictive Value (NPV),
Sensitivity, and Specificity computed on test data not previously used to develop the model. Selecting a model using the
F0.5 measure, which gives PPV more importance than Sensitivity, gave these results: PPV = 0.780, NPV = 0.938,
Sensitivity = 0.547, Specificity = 0.978. Using the F3 measure, which gives Sensitivity more importance than PPV, the
selected model had PPV = 0.778, NPV = 0.948, Sensitivity = 0.627, Specificity = 0.974. The decision as to which model has
greater utility depends on how the predictions will be used in a particular situation.

Conclusions: This method builds prediction models for future dengue incidence in the Philippines and is capable of being
modified for use in different situations; for diseases other than dengue; and for regions beyond the Philippines. The
Philippines dengue prediction models predicted high or low incidence of dengue four weeks in advance of an outbreak
with high accuracy, as measured by PPV, NPV, Sensitivity, and Specificity.
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Introduction

Dengue fever is a common human viral disease transmitted via

the bite of infected Aedes mosquitoes, typically Aedes aegypti. These

mosquitoes are capable of breeding in uncovered containers

holding rain water, such as tires, buckets, flower pots, etc., that are

commonly found in urban areas in the tropics [1]. Dengue

incidence has increased 30-fold over the last 50 years, is endemic

in more than 100 countries, and causes an estimated 50 million

infections annually [2]. Dengue has been cited as the most

important arthropod-borne viral disease of humans, with an

estimated 2.5 billion people globally at risk [3]. Bhatt et al. [4]

recently used a cartographic approach to estimate that there may

be as many as 390 million dengue infections annually, which is

more than three times the global dengue burden estimated by the

World Health Organization (WHO).

Dengue has a wide clinical spectrum ranging from asymptom-

atic to severe clinical manifestations [2]. The classic presentation

(called dengue fever or DF) begins with an abrupt onset of high

fever, often accompanied by erythema, severe muscle and joint

pain, headache, nausea, and vomiting [5]. Recovery is prolonged

and marked by fatigue and depression [6]. There are four known

serotypes of the virus, although the initial clinical presentations are

almost identical [3]. A severe presentation, known as dengue

hemorrhagic fever (DHF) occurs primarily in patients who are re-

infected with a different serotype [7]. DHF includes increased

capillary permeability with potentially significant vascular leakage

that compromises organ function and may lead to shock

PLOS Neglected Tropical Diseases | www.plosntds.org 1 April 2014 | Volume 8 | Issue 4 | e2771

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0002771&domain=pdf


[2–3,5–7]. Mortality in DHF has been reported as high as 10–20%

and over 40% if shock occurs [8]. Prevention methods currently

rely on vector control until such time as a specific anti-viral

therapy or a licensed vaccine becomes available [9]. Therefore,

public health agencies see potential benefit if a means could be

found to predict dengue outbreaks with enough advance time to

allow for the planning and implementation of mitigation strategies.

An effective prediction model would be particularly helpful in

areas where resources for such efforts are limited and in locations

where medical treatment facilities may become overwhelmed by

an outbreak.

Many published studies have described the association of

different parameters with dengue outbreaks. Most of these studies

have examined the environmental factors that influence mosquito

vector populations [e.g., 1,10,11]. While some studies used only

simulated data to develop methods for capturing seasonal forcing

[e.g., 12], others used real data. In 2008, Runge-Ranzinger et al.

[13] performed a systematic literature review in order to identify

dengue outbreak prediction models or detection methods. One

outcome of this literature review was the observation that most

studies were retrospective and primarily focused on dengue

outbreak detection and surveillance, rather than prediction.

Furthermore, it was determined that most studies lacked an

appropriate determination of sensitivity and specificity. A more

recent literature review of decision support systems for the

prediction, prevention, and control of vector-borne diseases was

carried out in 2011 by Eisen and Eisen [14]. While the focus of this

literature review was on geographic information systems and

remote sensing data, it was determined that the studies reviewed

provided useful risk maps, but did not provide actual predictions

or forewarnings of future outbreaks. Finally, in addition to the

studies evaluated in these two literature reviews, there are a variety

of published methods for the surveillance and detection of an

outbreak that has just begun but is not yet obvious [e.g., 15].

However, there seem to be fewer methods described in the

literature for predicting a dengue outbreak well before it has begun

(i.e., prediction). Among the latter is a study by Yu et al. [16] that

analyzed climate data (including temperature, rainfall, and

Southern Oscillation Index), mosquito larvae abundance, and

human health data to develop a Bayesian Maximum Entropy

model to predict dengue outbreaks one week in advance. Unlike

most studies, Yu et al. developed their model on one set of data but

tested it on a different set of data, thereby avoiding the

exaggerated performance metrics that may occur when the same

dataset is used for both development and testing. They found that

the probabilities that a dengue outbreak actually occurred given a

positive prediction and given a negative prediction were 0.5541

and 0.031, respectively. A study by Hii et al. [17] described a time

series Poisson multivariate regression model to predict weekly

dengue cases in Singapore using temperature, rainfall, and

previous dengue incidence. After developing this model using

2000–2010 dengue data, it was used to predict dengue incidence

during the first six weeks of 2011. They then used observed

weather data and the previously predicted dengue incidences for

prediction of dengue incidence during weeks 7–16 of 2011. A

recent study by Lowe et al. [18] described using a Bayesian

generalized linear mixed model approach to produce probabilistic

predictions of monthly dengue incidence in Brazil. It is noteworthy

that, like the present study, these authors used different data for

development and testing, thereby allowing for more realistic

accuracy assessments.

Some recent studies have applied data mining techniques to

human health and environmental data to support the predictive

modeling of dengue outbreaks [19,20]. Traditional regression-

based methods may be difficult to use with nonlinear models and

high dimensional data containing many potentially interacting

predictor variables [21]. Data mining techniques are particularly

appropriate for large datasets with variables that may interact in

complicated ways. These techniques automatically search for

relationships that may include potentially large numbers of main

effects and complex interactions. Only the association rules whose

metrics meet the pre-determined criteria of significance are

selected, thus ensuring that variables that are not strongly

correlated are excluded from the final model.

As an example of a data mining/machine learning

technique, Bakar et al. [19] developed five types of classifiers

for predicting dengue outbreaks: Decision Tree, Rough Set

Classifier, Naı̈ve Bayes, Association Rules-based classifier, and

a multiple classifier that combined results from each of the

aforementioned classifiers. Medical records of dengue patients

from the Selangor area in Malaysia served as the data source

for this approach. Their classifiers did not predict area

outbreaks for dengue but instead predicted whether or not a

patient was a repeat dengue case. Finally, Buczak et al. [20]

developed data mining techniques for the prediction of multi-

week dengue incidence in Peru four to seven weeks in advance.

The objective of the present study is to describe further

development of these techniques and their application to the

prediction of weekly dengue incidence in specific Philippines

provinces four weeks in advance.

Materials and Methods

The prediction method uses types of data selected from studies

in the literature that have shown significant correlation with

dengue incidence. These data include previous dengue incidence

data, remotely sensed meteorological data (i.e., land surface

temperature, rainfall), remotely sensed vegetation data, climate

data (sea surface temperature anomalies, Southern Oscillation

Index), and socio-economic data (population, sanitation). The data

sources for the different variables are shown in Table 1. It should

be noted that complex mechanisms and interactions might lead

Author Summary

A largely automated methodology is described for
creating models that use past and recent data to predict
dengue incidence levels several weeks in advance for a
specific time period and a geographic region that can be
sub-national. The input data include historical and recent
dengue incidence, socioeconomic factors, and remotely
sensed variables related to weather, climate, and the
environment. Among the climate variables are those
known to indicate future weather patterns that may or
may not be seasonal. The final prediction models adhere
to these principles: 1) the data used must be available at
the time the prediction is made (avoiding pitfalls made by
studies that use recent data that, in actual practice, would
not be available until after the date the prediction was
made); and 2) the models are tested on data not used in
their development (thereby avoiding overly optimistic
measures of accuracy of the prediction). Local public
health preferences for low numbers of false positives and
negatives are taken into account. These models appear to
be robust even when applied to nearby geographic
regions that were not used in model development. The
method may be applied to other vector borne and
environmentally affected diseases.
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these variables to be significant indicators of future dengue

activity.

Epidemiological and Socioeconomic Predictor Data
The mosquito vector acquires the dengue virus from biting a

human and maintains disease endemicity by passing it to another

human [1]. Therefore, previous human incidence rates reflect the

presence of the virus in the local human population. The presence

of the virus may also be assessed by the determining the number of

infected mosquitoes, but these data are time-consuming and

expensive to obtain for a large geographic area such as Philippines

[1] and we did not have access to such data. Socio-economic

conditions may also contribute to human exposure to the mosquito

vector [22].

Data collection. The socioeconomic data of Philippines

included poverty index, electricity access, drinking water access,

sanitation index, and child development indices (child health, child

education, quality of life), and these data were downloaded from

the Philippines National Statistics Office website [23]. While these

data have different geographical resolutions, they have been

mapped to the resolution of a Philippine province (see Standard-

ization of Geographic Information section below). Data for

missing years are linearly interpolated from the existing years

and extrapolated for the current year.

The epidemiological data were provided by the National

Epidemiology Center of the Republic of the Philippines (RP)

Department of Health. Before 2008, dengue data were collected

under the National Epidemic Sentinel Surveillance System

(NESSS), which used data from multiple hospital surveillance

sites. Following the 2002 emergence of Severe Acute Respiratory

Syndrome (SARS), the Asian Development Bank funded a

Regional Technical Assistance for Strengthening Epidemiologic

Surveillance and Response (ESR) for Communicable Diseases in

Indonesia, Malaysia, and the Philippines. NESSS and other

disease surveillance systems in the RP were subsequently merged

into PIDSR (Philippines Integrated Disease Surveillance and

Response system), which became operational in 2008 and 2009.

Some of the data collection, processing tools, and methods were

changed under this new system, resulting in increased reporting of

suspected dengue visits and the collection of more complete

information. Available health data thus represented suspected

dengue hospital visits from NESSS and PIDSR from the beginning

of 1993 to the end of 2011. The NESSS data were primarily

provided in an Epi Info [24] format; however, all data since 2003

were packaged in Microsoft (MS) Access tables.

Data validation and processing. SAS (Statistical Analysis

Software) version 9.3 [25] was used for the pre-processing of

epidemiological data. Data from different years were combined

using a set of common variables from relevant fields that were

consistently filled: Region, Province, Municipality, Barangay,

Address, Outcome, Sex, Age, Hospital name, and Case classifi-

cation. To take into account the transition from NESSS to PIDSR

around 2008, the dengue reporting data was evaluated for

consistency over the full range of years. The data from 1993

through 2002 were deemed to be too dissimilar from the later

years in terms of fields populated and reporting characteristics and

were thus excluded from the study. A data quality check and

discussion with the RP data providers revealed some additional

reporting problems in later years. The most significant was a

reporting gap starting around the middle of October to the end of

December in 2010 (noticeable on Figures 1 and 2). For that

reason, data from 10/17/2010 to 3/21/2011 were excluded, with

the additional weeks allowing for a buffer period to absorb the

effect of bad reporting. Except for this exclusion, data from 2003

through 2011 were used in this study because these data had

similar fields and reporting characteristics.

Standardization of geographic information. The geo-

graphic divisions of the Philippines consist of 17 regions divided

into 80 provinces and the Manila Metropolitan Area. The

provinces consist of roughly 1,650 cities and municipalities, which

in turn comprise about 42,000 barangays (i.e. neighborhoods).

The numbers of municipalities and barangays fluctuate from year-

to-year. Examination of the geographic information contained in

the dengue data revealed that smaller political subdivisions (i.e.

finer spatial resolution) have a greater percentage of missing

geographic data (see Table 2). To fill some of these missing data,

spatial information from the dengue data was matched to freely

available data from the Philippines Geographic Information

System (GIS) Data Clearinghouse [26].

Province information was missing for approximately 1% of

the dengue data. After the pre-processing step, which includes

the removal and replacement of special characters and

capitalization, approximately 200 mismatches remained among

the values in the province field. Some of these mismatches were

due to abbreviations, typos, lower case letters, and outdated

information. All of the mismatches had an obvious designation

in the GIS file. For example, ‘‘Davao, North’’ was ‘‘Davao Del

Norte’’ and ‘‘Western Samar’’ was ‘‘Samar.’’ Therefore, the

province name was replaced with the corresponding spelling

used in the GIS file. Some of the missing province information

Table 1. Data sources.

Data type Source

Rainfall NASA Tropical Rainfall Measuring Mission http://mirador.gsfc.nasa.gov

Temperature USGS Land Processes Distributed Active Archive Center https://lpdaac.usgs.gov/get_data

Typhoon Status and Wind Unisys Weather http://weather.unisys.com/hurricane/w_pacific

NDVI USGS Land Processes Distributed Active Archive Center https://lpdaac.usgs.gov/get_data

EVI USGS Land Processes Distributed Active Archive Center https://lpdaac.usgs.gov/get_data

Southern Oscillation Index US National Center for Atmospheric Research http://mirador.gsfc.nasa.gov

Sea Surf. Temp. Anomaly NASA Global Change Mastery Directory https://lpdaac.usgs.gov/get_data

Altitude NOAA National Geophysical Data Center http://www.ngdc.noaa.gov/mgg/topo

Socio-economic Philippines National Statistics Office http://census.gov.ph

Political Stability Worldwide Governance Indicators Project http://info.worldbank.org/governance/wgi/index.asp

doi:10.1371/journal.pntd.0002771.t001
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Figure 1. Weekly incidence for Cebu and Laguna provinces.
doi:10.1371/journal.pntd.0002771.g001

Figure 2. Philippines dengue incidence per province.
doi:10.1371/journal.pntd.0002771.g002
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was imputed from the available municipality geographic

information.

Municipality information was missing about 3% of the time,

and about 4000 of the municipality values also differed from those

in the GIS municipality table after pre-processing. As was done in

the case of provinces, each mismatch was examined separately.

After the municipality name was replaced with the one designated

for it in the GIS table, the match rate with GIS data improved to

96%.

A summary of the results of matching patient address location at

different spatial resolutions to the GIS data file is presented in

Table 2. The decision was made to use the province as the basic

spatial unit for analysis because province data contained a greater

proportion of matched data and a better density of visits over the

study period than smaller political divisions (e.g., barangay). In

order to estimate incidence rates for each of the years from 2003 to

2011, the denominators were derived from a linear fit to values for

province populations from the official RP census for 1995, 2000,

and 2007. Finally, daily dengue incidence data were pre-processed

into weekly data in order to mitigate issues, such as missing data

and day-of-week effects, and to increase compatibility with weekly

environmental data.

Selection of provinces for analysis. For each RP province,

weekly dengue incidence rates were determined and plotted as a

time series in order to assess whether the data were stable enough

to be used for modeling. Analysis of weekly incidence rates of

province-level data revealed inconsistencies and frequent changes

in reporting. For example, the weekly dengue incidence for the

provinces of Laguna and Cebu are plotted on Figure 1. While the

incidence rate is relatively stable throughout the analysis period for

the Cebu province, there is a significant trend for Laguna province

resulting from increased reporting in the later years. For all the RP

provinces, we identified those that had significant reporting trend

(often due to the fact that additional hospitals started reporting),

reporting variability, data drop-offs, and inconsistencies from the

time series plots. Unfortunately, there were no province-level data

for confirmed dengue incidence to make reliable distinction

between reporting trend and elevation of disease incidence. As a

result of this analysis, it was determined that 40 out of 81 provinces

had relatively robust reporting. Table 3 shows the resulting

provinces that were selected for further analysis.

Threshold determination. The threshold between Low
and High incidence needs to be determined before the rules are

extracted from the data and the classifiers performing predictions

are built. While the threshold could be set based upon an outbreak

definition, several different outbreak definitions exist, depending

upon the context and the disease [27,28], and are often

determined by such factors as expert advice or assuming the

incidence is Gaussian. Generally, a threshold should be set high

enough to reduce the chances of statistical and non-outbreak

fluctuations in incidence data causing outbreak alarms. If the

threshold is set too low, situations of ‘‘alarm fatigue’’ may occur

[29]. In resource-limited settings, having a low false alarm rate

helps to conserve those resources for situations in which the

accurate prediction of an outbreak is more likely. Therefore, the

threshold needs to be meaningful to the user and linked to the

action to be taken when the predicted value exceeds the threshold.

The threshold between Low and High incidence was

determined based on historical data and on feedback from local

Table 2. Matched geographic information between dengue
visits data and GIS file.

Geography Total # Missing Match (after standardization)

Region 17 0% 100%

Province 80 1% 99%

Municipality 1,650 3% 96%

Barangay 42,000 30% 35% (No matching done)

doi:10.1371/journal.pntd.0002771.t002

Table 3. Provinces selected for further analysis.

Selected Not Selected

Abra Aklan

Agusan del Norte Antique

Agusan del Sur Apayao

Albay Basilan

Aurora Batanes

Bataan Batangas

Benguet Bohol

Biliran Camiguin

Bukidnon Capiz

Bulacan Cavite

Cagayan Davao del Sur

Camarines Norte Davao Oriental

Camarines Sur Dinagat Islands

Catanduanes Eastern Samar

Cebu Ilocos Sur

Compostela Valley Kalinga

Cotabato La Union

Davao del Norte Laguna

Guimaras Lanao del Norte

Ifugao Lanao del Sur

Ilocos Norte Maguindanao

Iloilo Marinduque

Isabela Metro Manila

Leyte Negros Oriental

Masbate Northern Samar

Misamis Occidental Nueva Ecija

Misamis Oriental Oriental Mindoro

Mountain Province Palawan

Negros Occidental Pangasinan

Nueva Vizcaya Quezon

Occidental Mindoro Quirino

Pampanga Rizal

Samar Romblon

Sarangani Siquijor

Sorsogon South Cotabato

Surigao del Sur Southern Leyte

Zambales Sultan Kudarat

Zamboanga del Norte Sulu

Zamboanga del Sur Surigao del Norte

Zamboanga Sibugay Tarlac

Tawi-Tawi

doi:10.1371/journal.pntd.0002771.t003
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public health professionals regarding what is operationally

meaningful. As described in Lowe et al. [18], it is important that

such thresholds are carefully designed to minimize false alarms

and false negatives and to reflect the response capabilities of the

local public health professionals. Figure 2 shows the historical

incidence for the 40 selected provinces for the period January 2003

through December 2011. The historical mean and standard

deviation of the incidence data were computed for the period

January 2003 through December 2011. Based upon user feedback,

the threshold between Low and High was set at the mean plus 1.5

standard deviations, which corresponds to a weekly incidence of

4.554 per 100,000 population.

Use of dengue data from adjacent provinces. In addition

to the past dengue incidence data described above, four derived

predictor variables describing dengue incidence in adjacent

provinces were calculated. Each province was defined by its shape

in the Philippines GIS database and adjacent provinces were

identified by running a Structured Query Language (SQL)

statement on this GIS database. Then, for each province, the

dengue incidence rates in its neighbors were aggregated to form

four predictor variables: mean, maximum, median, and overall adjacent

incidence. The mean, maximum, and median adjacent incidence

rates were defined, respectively, as the mean, highest, and median

values of dengue incidence of all the neighboring provinces

combined. The overall adjacent dengue incidence was computed as the

sum of dengue case counts in the neighboring provinces divided by

the sum of populations of those provinces.

Environmental Predictor Data
Abnormally high or low temperatures may reduce mosquito

longevity and reproduction because of their effect on biological

parameters such as the extrinsic incubation period of the mosquito

[1,10]. Eight-day mean land surface temperature data were

obtained from the United States Geological Survey (USGS) Land

Processes Distributed Active Archive Center (LPDAAC), which

provides data remotely sensed by the Moderate Resolution

Imaging Spectroradiometer (MODIS) instrument onboard two

US satellites [30]. Land elevation also results in variations in

seasonal temperatures. Therefore, land elevation data were

obtained from the US National Oceanic and Atmospheric

Administration National Geophysical Data Center (NGDC) [31].

For the completion of its life cycle, the mosquito vector requires

breeding sites, such as stagnant water in containers and natural

pools, which can be filled by rainfall. Heavy rainfall may wash the

larvae away, whereas too little rainfall may limit the breeding sites

[1]. Rainfall rate data derived from measurements made by the

NASA Tropical Rainfall Measuring Mission (TRMM) satellites

were obtained from the NASA Goddard Earth Sciences Data and

Information Services Center [32]. Typhoons, which frequently

pass nearby or make landfall in the Philippines, bring heavy

rainfall and high winds that may result in infrastructure damage.

After storm passage, infrastructure damage and remaining

stagnant pools of water may lead to increased exposure of the

human population to the mosquito vector. Therefore, typhoon

intensity and associated wind data were obtained from the US

Naval Oceanographic Command Joint Typhoon Warning Center

(JWTC) Best Track data [33]. These data consist of the entire

typhoon path coordinates and times, and the maximum sustained

wind speed at each storm location. The time resolution of the

storm position was six hours. Using a radius of 80 km around each

storm path coordinate, it was determined whether the interior of

this circle intersected a Philippines province. If the intersection of

this circle with land for a province was a non-empty set, the

typhoon status variable was assigned a value according to the US

Naval Oceanographic Command Joint Typhoon Warning Center

typhoon categorization (dissipated, tropical depression, tropical

storm, typhoon-1, typhoon-2, typhoon-3, typhoon-4, and

typhoon-5) and the maximum sustained wind data were included

in the predictor variable data. Otherwise, the typhoon status and

maximum sustained wind variables were set to null values.

Vegetation type and biomass may be indicative of the amount of

moisture in the soil and may also reflect human activity such as

deforestation. Satellite measurements of vegetation indices have

been used to assess green leaf biomass, photosynthetic activity, and

the effects of seasonal rainfall, which are then related to vector

habitat characteristics and disease outbreaks [34]. Sixteen-day

mean vegetation index data, which are measured by the MODIS

instrument, were obtained from the United States Geological

Survey (USGS) Land Processes Distributed Active Archive Center

(LPDAAC) [30]. These vegetation index data include the

Normalized Difference Vegetation Index (NDVI) and the

Enhanced Vegetation Index (EVI). NDVI is closely related to

photosynthetic activity, vegetation type, and landscape disturbance

[35]. EVI is similar to NDVI but corrects for atmospheric effects,

is more sensitive to variations in canopy structure, and provides for

a higher resolution vegetation index scale in regions of dense

biomass [36].

The Southern Oscillation Index (SOI) is a single global number

derived from the atmospheric pressure difference between Darwin,

Australia, and Tahiti, French Polynesia. As wind blows from high

to low pressure, the strength of the pressure difference influences

the strength of the wind and the wind-driven movement of the

surface water. These conditions influence both regional and global

weather patterns. The sign of the SOI determines whether

conditions are neutral, El Niño, or La Niña, while the magnitude

of the SOI indicates the strength of the El Niño and La Niña. El

Niño and La Niña conditions typically result in rainfall anomalies

(e.g., heavy rain, drought) and temperature anomalies a few

months later in regions both nearby and some considerable

distance from the tropical Pacific [37]. Sea Surface Temperature

Anomaly (SSTA) data are also used as more local indicators of

near-term future rainfall anomalies [38]. Higher sea surface

temperatures (e.g., warm SSTA) result in more convection and the

creation of rain-forming clouds. These clouds will be blown by the

winds either away from or toward land, resulting in changes in

rainfall patterns that may not be seasonal. Therefore, the SOI and

SSTA data are used in order to provide leading indicators of

future weather patterns that may not always be seasonal. Monthly

SOI [39] and weekly SSTA data [40] are reported by the US

NOAA National Weather Service Climate Prediction Center.

The data described above were pre-processed to fit a single

spatiotemporal resolution: one week and one Philippine province

(political divisions of the Philippines will be described below under

Standardization of Geographic Information). This pre-processing

involved aggregation and/or interpolation of data into weekly

values for each province in the Philippines, the details of which are

found in Buczak et al. [20].

Prediction Methodology
The prediction method performs data mining from a large

number of data sources, following the steps shown in Figure 3. The

three main steps are summarized here and described below.

1. Identification of Predictor Variables

2. Model Builder

a. Data pre-processing and fuzzification

b. Rule extraction using Fuzzy Association Rule Mining

c. Rule selection using specific metrics

Prediction of High Incidence of Dengue
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3. Prediction Generator

1) Identification of the Predictor Variables: The identi-

fication of the predictor variables is a manual process in which

a literature review is performed to identify the environmental

and socio-economic variables that are correlated with the

given disease incidence. After the identification of data sources

for predictor variables, data are downloaded. The variables

used for dengue prediction were described in the previous

sections.

2) Model Builder: The Model Builder is the principal part of the

method and is where all the data mining elements reside. The

data are pre-processed and used to find fuzzy association rules.

A subset of these rules that satisfy certain criteria is then selected

to create a classifier that becomes the Prediction Model.

a) Data pre-processing and fuzzification: The predictor variable

data are pre-processed to convert them into the desired

spatio-temporal resolution, as described in detail in Buczak et

al. [20]. For the Philippines, the spatial resolution is one

province and the temporal resolution is one week.

The data are then transformed into membership values

(i.e., fuzzified) using fuzzy set theory [41]. Fuzzy mem-

bership functions are defined for each variable. As an

example, four fuzzy membership functions (SMALL,

MED, LARGE, VERY LARGE) for the variable Rainfall

are shown in Figure 4. Fuzzification is defined as the

process in which a number (e.g. rainfall value in mm) is

transformed into a membership value lying between 0 and

1, thereby allowing for a smooth transition between full

membership (1) and non-membership (0). The degree of

membership in a set is generally considered to be the

extent to which a corresponding fuzzy set applies. In

Figure 4, a Rainfall of 50 mm will be transformed into

two membership functions SMALL with a degree of

membership 0.5 and MED, with a degree of membership

0.5.

b) Rule extraction: Rule extraction from the training data is the

most important part of the entire method. It is performed using

Fuzzy Association Rule Mining (FARM) [42], a set of data

mining methods that use a fuzzy extension of the Apriori

algorithm [43] to automatically extract from data the so-called

fuzzy association rules. Fuzzy association rules are of the form:

IF X is Að Þ? Y is Bð Þ

where X and Y are variables, and A and B are membership

functions that characterize X and Y respectively. X is called an

antecedent and Y is called a consequent of the fuzzy

association rule. An example of a fuzzy association rule (not

used in dengue prediction) is:

IF Rainfall is LARGEð Þ and Temperature is HOTð Þ

? Humidity is HIGHð Þ

This rule uses the linguistic term (fuzzy set) HOT for

temperature, wherein temperatures of 70F, 80F, and 100F

could each be considered to have a degree of membership of

0.1, 0.8, and 1, respectively, in the fuzzy set HOT. An

important advantage of the fuzzy association rules is that they

are easily understood by humans because of the linguistic

terms that they employ (e.g., LARGE, HOT, HIGH).

For the disease prediction application, the rules of interest

are called fuzzy class association rules (FCARs), meaning that

they have only one consequent: the class. An example of a

FCAR extracted by FARM is:

IF Past Dengue Incidence T{1 is HIGHð Þ AND

Adjacent Dengue Incidence T{1 is HIGHð Þ

AND Max Typhoon Status T{3 is NOð Þ AND

Week is WEEK 30{33ð Þ?

Predicted Dengue Incidence Tz4 is HIGHð Þ,

confidence~0:9, support~0:002, lift~27:4

The above rules states that if Dengue Incidence one week ago

(T-1) was HIGH and Adjacent Dengue Incidence one week

ago (T-1) was HIGH and Typhoon Status three weeks ago (T-

3) was NO and the week for which the prediction is made is

Figure 3. Dengue prediction method.
doi:10.1371/journal.pntd.0002771.g003
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between 30 and 33 (these numbers refer to US CDC

epidemiological weeks), then the Dengue incidence will be

HIGH 4 weeks from now (T+4). The terms confidence,

support, and lift are metrics used in the rule selection to be

described next.

c) Rule selection: In order to build the classifier that will

perform the final prediction, it is necessary to

determine which rules, of the thousands extracted by

FARM, should be used and in which sequence to use them.

An automatic method is used to choose a small subset of

rules that minimizes the misclassification error on the fine-

tuning data set. The rule choices are based on selection

criteria using the three most important metrics for fuzzy

association rules: confidence, lift, and support.

Confidence can be considered to be the conditional

probability that, if the antecedents are true, then the

consequent is true. A rule with confidence of 1 is always

true. Support is a measure of how general a given rule is.

Support can be considered to be the probability of

occurrence of records with given antecedents and consequent

in a particular data set. A support of 0.01 means that a given

rule describes 1% of a particular data set. Lift represents the

extent to which the antecedents and the consequents are not

independent. The higher the lift, the more dependent the

variables are. A thorough description of the rule metrics and

associated equations can be found in [43,20].

The method for building the classifier is based on

extensions of the method of Liu et al. [44], as described

in Buczak et al. [20]. The following extensions were

developed:

N Order all the rules first by confidence, next by lift, and finally

by the number of antecedents.

N Weight the misclassification error. The user has the

opportunity to give a much higher weight for misclassifying

the cases with a small number of exemplars than with a

large number of exemplars. This is related to the fact that, in

the datasets used, about 96% of the data were from class

LOW.

The classifier is an ordered set of rules. Once new data arrive

and are preprocessed, the highest ranked rule in the classifier

that matches the antecedent of the rule is executed. The

consequent of that single rule constitutes the prediction for

the given data point. The last rule in the classifier, in addition

to antecedents and consequent, has also a default class. The

default class is invoked only when the input data do not fit the

antecedents of any rule in the classifier. In this case, if the

default class is LOW, then the prediction is LOW; if the

default class is HIGH, the prediction is HIGH. The final

classifier selected based on the criteria described above

constitutes the Prediction Model.

3) Prediction Generator: The Prediction Generator is a

straightforward process that periodically computes predictions

using the Prediction Model built in Step 2. Because the

temporal resolution is one week, a new prediction can be

computed weekly when new input data are available. It is

important to emphasize that this model only uses data that

would actually be available on the date the prediction was

generated. For example, when doing a prediction during week

T if some weekly data for week T-1 were typically not

available (e.g. temperature data is only available for week T-2

because of latency of with which that data can be accessed),

then that data would not be used as input to this model. Once

available, these new data automatically undergo pre-process-

ing and are fed into the Prediction Model that computes

predictions, which are then displayed on a map. The outcome

variable (predicted dengue incidence) is converted to a binary

variable, either HIGH or LOW dengue incidence (where the

threshold between high and low values was quantitatively

defined as the historical mean dengue incidence plus two

standard deviations).

Figure 4. Membership functions for the variable Rainfall: SMALL, MED, LARGE, VERY LARGE.
doi:10.1371/journal.pntd.0002771.g004
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Classifier and Rule Generation Improvements
For the present study, enhancements were made to the classifier

building algorithm described in Buczak et al. [20]. The first

enhancement was to automate the process of finding optimal

misclassification weights. As described in [20], user-specified

weights on the misclassification errors were employed in order to

place a higher penalty on misclassifying one class over another,

thereby affecting which rules get selected for the classifier.

Originally, these weights were selected manually, which relied

on human intuition and resulted in a tedious, reiterative process of

selecting weights, building a model, and testing it on the fine-

tuning data set in order to find the best classifier on the fine-tuning

data set. The enhancement automates the process of accepting

user-specified ranges for the weights on each class. Using this

enhancement, all possible models were built and tested on the fine-

tuning data set. Models that maximized certain metrics were

retained.

The second enhancement was to implement an additional

classifier, named the Weighted Voting Classifier. Unlike other

classifiers that make a prediction using only the highest ranked

rule, this classifier instead finds all rules in the classifier that match

the antecedents, and combines these rule predictions into the final

prediction. The Weighted Voting Classifier is built in a similar fashion

to but applied differently from the original classifier described in

Buczak et al. [20]. All rules in the classifier that match the data

point are found, and each of these rules casts a vote for its

consequent that is weighted by the product of the rule’s confidence

and the rule’s fuzzy support on that data point. The class with the

highest vote total is used as the prediction for the given data point.

Both the original classifier and the Weighted Voting Classifier are used

with different support metrics to build the full range of models, all

of which are tested on the fine-tuning data set to find the best

model. The results are then reported on previously unused testing

data set.

Performance Metrics
Four metrics commonly used to represent accuracy were used to

assess the accuracy of the prediction:

N Positive Predictive Value (PPV): PPV~
TP

(TPzFP)
which is

the proportion of positive predictions that are outbreaks;

N Negative Predictive Value (NPV): NPV~
TN

(TNzFN)
which

is the proportion of negative predictions that are non-

outbreaks;

N Sensitivity: Sensitivity~
TP

(TPzFN)
which is the proportion of

correctly predicted outbreaks (also called Probability of

Detection);

N Specificity: Specificity~
TN

(TNzFP)
which is the proportion

of correctly predicted non-outbreaks; 1- Specificity is the False

Alarm Rate;

where TP, TN, FP, and FN represent, respectively, True

Positive, True Negative, False Positive, and False Negative. It

should be kept in mind that, while these metrics are often used in

medical diagnostic testing, the context here is one of predicting a

future condition as opposed to detecting whether a condition is

already present or not.

While these four metrics can be used to determine prediction

accuracy, there is also a need to judge which of the created models

is better in terms of how these results will be used in practice. For

example, a high incidence prediction could lead to a public health

department using its limited resources to deploy costly measures

(e.g., mosquito spraying). One consideration is whether it is more

important to use a model with a high PPV or a high Sensitivity. A

high PPV indicates that, when the model predicts high incidence

rate, high incidence is very likely to actually occur. When disease

prevention and mitigation resources are limited, it is very

important to have high PPV. Based on feedback from the local

public health departments in Peru, there was a desire for a dengue

prediction model with high PPV [20]. To reduce morbidity and

mortality, public health departments also want to be able to

mitigate any real outbreaks without being caught unprepared. A

high Sensitivity indicates that the model predicts a high percentage

of the outbreaks that actually occur. If PPV is high and Sensitivity

is low, it means that when an outbreak is predicted, the probability

is high that it will occur, but only a small percentage of actual

outbreaks are predicted. In an attempt to illustrate these

differences, the F-score [45] was introduced.

The F-score is a measure that considers both PPV and

Sensitivity:

Fb~(1zb2)
(PPV � Sensitivity)

(b2 � PPVzSensitivity)

By varying the value of b, the resulting F-score will reflect the

relative importance given to PPV and Sensitivity. When b equals

one, PPV and Sensitivity are weighted equally. Assigning b a value

less than one or greater than one gives more importance to PPV or

Sensitivity, respectively. Therefore, F0.5 and F3 values give more

Table 4. FARM prediction results for Philippines optimized
for F0.5.

Data set PPV NPV Sensitivity Specificity F0.5

Fine-tuning set 0.852 0.969 0.836 0.972 0.848

Test set (2011
– 40 provinces)

0.780 0.938 0.547 0.978 0.719

Test set (2011
– all provinces)

0.766 0.927 0.467 0.980 0.679

Test set (2012
– 40 provinces)

0.766 0.874 0.405 0.971 0.650

Test set (2012
– all provinces)

0.787 0.867 0.410 0.972 0.664

doi:10.1371/journal.pntd.0002771.t004

Table 5. FARM prediction results for Philippines optimized
for F3.

Data set PPV NPV Sensitivity Specificity F3

Fine-tuning set 0.656 0.990 0.952 0.904 0.911

Test set (2011
– 40 provinces)

0.778 0.948 0.627 0.974 0.639

Test set (2011
– all provinces)

0.748 0.938 0.555 0.973 0.570

Test set (2012
– 40 provinces)

0.733 0.884 0.467 0.960 0.484

Test set (2012
– all) provinces

0.762 0.877 0.463 0.964 0.482

doi:10.1371/journal.pntd.0002771.t005
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importance to PPV and Sensitivity, respectively, and the

performance of the models with the best F0.5 and F3 values will

be presented in this paper.

Training, Fine-tuning, and Testing Data Sets
The data were divided into three sets: training, fine-tuning, and

testing. The training data were used to develop the models. In

supervised learning, an automated classifier uses the training data

set to learn about the nature of the problem. In the rule mining

approach, all the rules with a support higher than the pre-defined

support threshold and with a confidence higher than the pre-

defined confidence threshold are extracted from the training data

set and can potentially be used in the classifier. Classifiers are

automatically built from subsets of these extracted rules using the

training data. Candidate classifiers are scanned to pick the best

classifier by minimizing a user-defined error on the fine-tuning data

set (the error measures that we are maximizing are F0.5 and F3).

Once the best two classifiers (optimizing the F0.5 and F3, to give

more importance to PPV and Sensitivity, respectively) are selected,

their performance is measured on the testing data set and reported

as the classifier performance in terms of PPV, NPV, Sensitivity,

and Specificity. The testing data set must be disjoint from training

and fine-tuning data sets in order to provide a fair and objective

indicator of the classifier performance on new/unseen data. In

principle, the test error is considered to be an unbiased estimate of

the true model error. As mentioned above, the test data used as

model input are only those data that would actually have been

available at the time the prediction was made.

Results

The training data included 40 provinces and spanned January

2003–October 2010. The fine-tuning data included October

2009–October 2010 data for the same 40 provinces. The testing

data spanned March 2011–December 2011 for 40 provinces. The

results reported below are based only on the performance of the

models in predicting the 2011 incidence data that were not used

for model development. In addition to the results for 40 provinces

with good data reporting, the results for all 81 provinces are also

provided in order to determine how well the model can generalize

to provinces that were never used in model development.

Four Weeks Ahead Prediction Results
The method builds a large number of models (i.e., classifiers)

that differ because of different rule selection parameters (i.e.,

criteria for selecting and excluding rules based on support,

confidence, etc.) and different misclassification weights. The

metrics (PPV, NPV, Sensitivity, Specificity, F0.5 and F3) for all

classifiers are first computed on the fine-tuning data set. The two

classifiers with the highest F0.5 (emphasis on PPV) and the highest

F3 (emphasis on Sensitivity) on the fine-tuning data are selected as

the final models computing predictions on the test data set.

The results obtained when optimizing for PPV and when

optimizing for Sensitivity are shown in Tables 4 and 5,

respectively. The most important results are the ones for the first

test data set: this is the data set that is not used in training and fine-

tuning the model, and that contains the same 40 provinces whose

older data were used to develop the model.

For the model with the optimized PPV (Table 4), the test set

PPV was 0.780 and the Sensitivity was 0.547. When all 81

provinces, including the ones with unreliable data reporting, were

tested, both the PPV and Sensitivity showed small declines to

0.766 and 0.467, respectively. Thus, this model was able to

generalize well even for provinces that were not used in training

the model. Results obtained from the model optimized for

Sensitivity on the test data from the 40 provinces in 2011

(Table 5) show a PPV and Sensitivity of 0.778 and 0.627,

respectively. The PPV and Sensitivity for the 2011 data for all 81

provinces were 0.748 and 0.555, respectively.

Once the prediction models described above were developed

and finalized, data were obtained for 2012. These new data were

pre-processed and used as input to the models previously trained

(i.e., no re-training was performed) to obtain predictions for 2012.

The results show that the model optimized for PPV (Table 4),

without any retraining, remains relatively robust: results are only

slightly lower for 2012 than for 2011 data.

The model optimized for Sensitivity (Table 5) shows more

variation from 2011 to 2012 than the model optimized for PPV:

Specificity and PPV stay at about the same level, whereas NPV

and Sensitivity are decreased. This variation is also shown as a

drop in F3 values from 0.639 to 0.484. Overall, the models are

relatively robust: their performance decreases gracefully when

testing on data two years after the model training data, and when

testing on data from provinces that were never used in training.

Figure 5. Incidence rate and predicted incidence rate for the
province of Abra. Green bars correspond to prediction of LOW and
red bars correspond to prediction of HIGH. When the incidence rate
exceeds the threshold and a red bar is present, this corresponds to a TP;
when the incidence rate is below the threshold and a green bar is
present, this corresponds to a TN; when the incidence rate is above the
threshold and a green bar is present, this corresponds to a FN.
doi:10.1371/journal.pntd.0002771.g005

Figure 6. ROC curve for Philippines’ predictions four weeks in
advance.
doi:10.1371/journal.pntd.0002771.g006
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Figure 5 shows the actual and predicted weekly incidence (4

week ahead prediction) for the province of Abra using the

prediction model from Table 4. There are two missed weekly

HIGH incidences near 27 May 2011 and 27 September 2011, but

most of the predictions are correct.

Figure 6 shows the Receiver Operating Characteristic (ROC)

curve for the dengue prediction models developed by the method

presented. Figure 7 shows a map with the model prediction for the

week 8/7–8/13/2011 made using data that would actually have

been available on 7/10/2011. For 12 provinces, the predictions

are HIGH incidence (shown in red) and for the remaining

provinces the predictions are LOW incidence (shown in green).

This type of map could be useful for public health professionals

who would then have four weeks in which to prepare and

implement mitigation strategies for the provinces predicted to have

HIGH incidence.

For comparison of these results with another simpler method,

predictions were also made using a seasonal moving average

method that uses only the weekly incidence values from the

previous five years for prediction:

Predicted Incidence(weekk, yearl)

~(1=5) � (Past Incidence(weekk{5, yearl)

z
X4

i~1

Past Incidence(weekk, yearl{i))

When making a prediction for week k of the current year, note

that week k-5 represents the most recent data values available for

making a prediction 4 weeks in advance (similar to what our

method uses). This seasonal moving average prediction (SMAP) is

the average of the week k-5 dengue data from the current year and

the week k dengue data from the four previous years. The results

of the seasonal moving average prediction are shown in Table 6.

Figures 8 and 9 show a comparison between the SMAP model and

FARM models optimized for PPV and Sensitivity, respectively.

The FARM model performs better in terms of Sensitivity, F0.5,

and F3 on all data sets, and has a higher PPV on 2 out of 4 data

sets. On the remaining two data sets, the higher PPV for the

Figure 7. Four-week ahead prediction for the Philippines for the week 8/7–8/13/2011.
doi:10.1371/journal.pntd.0002771.g007

Figure 8. Comparison of F0.5 using four data sets for simple
autoregression (SP) and the FARM method used in this paper.
doi:10.1371/journal.pntd.0002771.g008
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SMAP method is achieved at the expense for a very low Sensitivity

and low F0.5 compared to the FARM method.

Discussion

The work presented herein describes a method that uses

novel data mining techniques to sift through large quantities of

disparate data in order to find associations among these data.

The method automatically selects those associations that meet

certain pre-defined criteria, and uses these selections as rules

for a prediction model. This procedure thus limits the number

of rules and variables to those that are most important for the

prediction. The resulting model is objective and reproducible.

Past disease incidence data, along with environmental and

socio-economic variables that have been shown in the

literature to influence potential exposure to the virus, should

provide enough information to allow a prediction of whether

there is likely to be high incidence of dengue at a specific time

and place in the future. This prediction model should not be

confused with a detection model, as it is not designed to be

used for early detection of a possible outbreak that has already

begun and is not yet obvious because it is in a prodromal stage,

etc. Although it may complement such detection, this method

is instead designed to predict whether or not a high incidence

of disease (such as that due to an outbreak) will be occurring

several weeks in the future.

As long as there are strong associations between the predictor

data and the information to be predicted (e.g., outbreak of a

certain disease), the method should be able to automatically build

a prediction model with reasonable accuracy. The accuracy of the

model depends also on the quality of the data (i.e., the higher the

quality, the more accurate the model). This is especially important

for the epidemiological data that may have inconsistent reporting

over many years. For example, the number of cases may seem to

be increasing, but this could be because cases were under-reported

previously, or because disease reporting was recently improved by

the addition of funding or other resources. Therefore, special care

should be taken to see if such discrepancies are present in the data

used to develop and fine tune the model. The data mining

techniques used in this method are general in the sense that they

can use any data. Provided that data of reasonable quality are

available, using this method to predict high/low disease incidence

for other mosquito-borne diseases is expected to provide similar

performance; for example, our preliminary unpublished results for

malaria appear promising. The models developed are robust and

able to predict with reasonable accuracy even for those Philippine

provinces that were never used in model development.

Model input data were those that would actually be available on

the date the prediction was made (e.g., if T-1 data were typically

not available at T, then the most recently available were used).

This was done to make the metrics representative of actual use and

to avoid what would effectively be a retrospective prediction. It is

also important to note that prediction accuracy was measured

using data never before seen by the model. As emphasized in Lowe

et al. [18], doing so provides a more rigorous and objective test of

model performance. The novel method described herein showed

good performance in predicting multi-week dengue incidence four

to seven weeks in advance in Peru [20], and current results

demonstrate that the model predicts weekly dengue incidence in

Philippines provinces four weeks in advance with high accuracy.

Such advance notification could provide valuable time for public

health professionals and others to prepare for and employ disease

mitigation strategies, thereby reducing morbidity and mortality.

Because the effectiveness of such mitigation could be expected to

increase as advances in disease prevention become available for

local public health departments, this ability of predictive modeling

to gain time for mitigation and consequence management

planning should become more valuable.
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