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ABSTRACT: Knowledge of particulate matter concentrations <2.5 μm in diameter (PM2.5) across the United States is limited
due to sparse monitoring across space and time. Epidemiological studies need accurate exposure estimates in order to properly
investigate potential morbidity and mortality. Previous works have used geostatistics and land use regression (LUR) separately to
quantify exposure. This work combines both methods by incorporating a large area variability LUR model that accounts for on
road mobile emissions and stationary source emissions along with data that take into account incompleteness of PM2.5 monitors
into the modern geostatistical Bayesian Maximum Entropy (BME) framework to estimate PM2.5 across the United States from
1999 to 2009. A cross-validation was done to determine the improvement of the estimate due to the LUR incorporation into
BME. These results were applied to known diseases to determine predicted mortality coming from total PM2.5 as well as PM2.5
explained by major contributing sources. This method showed a mean squared error reduction of over 21.89% oversimple
kriging. PM2.5 explained by on road mobile emissions and stationary emissions contributed to nearly 568 090 and 306 316 deaths,
respectively, across the United States from 1999 to 2007.

■ INTRODUCTION

Chronic exposure to ambient PM2.5 is linked to increased
morbidity and mortality in many epidemiological studies1,2 and
results in high population burden,3,4 making it a large public
health concern. Hence quantifying accurate air pollution
exposure has become paramount and has prompted different
approaches to estimate chronic PM2.5 levels across space and
time.
As our awareness of the impact of air pollution has increased,

so has the interdisciplinary nature of exposure assessment.
Researchers from these disciplines range from air pollution
scientists to epidemiologists to risk assessors who are all
involved in better understanding air pollution processes and its
health effects. Disciplines also extend to cost-benefit analysts,
policy makers and regulators whose goals are air pollution
abatement through policy to efficiently diminish its burden on
the population. Because of the wide range of groups involved
there is a critical need for methods that are accurate in
estimating chronic levels of PM2.5 and are both accessible and
interpretable by a wide audience. It is this wide audience which

we are keeping in mind in advancing methods used to estimate
chronic PM2.5 levels.
Existing methods used to estimate PM2.5 levels fall in several

classes that include (1) chemical transport models (CTM), (2)
land use regression (LUR), (3) satellite data, and (4) different
geostatistical approaches. LUR is a regression model which
estimates air pollution as a function of explanatory variables.
LUR takes characteristics from the study area (traffic count,
road length, distance to nearest road, elevation, land cover,
household density, wind, etc.) and develops a multiple linear
regression model which aims at describing a pollutant of
interest.5−7 Most LUR models are geared toward a model that
explains the most variability of the dependent variable (i.e., the
model with the highest possible r2) on a relatively small scale.8

LUR has been widely used for exposure estimation.9 Each of
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these methods has its distinct characteristics and corresponding
utility. They range from process-based prediction methods to
data-driven statistical estimation methods. The first two classes
of methods are defined by their ability to predict levels based
on a model representation of the processes that lead to air
pollution. This is useful in estimating contributions from
various emission sources. The latter two classes are driven by
observations, such as satellite readings or measurement from
ground monitoring stations. These are useful for obtaining
estimates grounded to physical measurements of PM2.5.
Although no categorization is without exception or entirely
distinctive, these classes demonstrate possible methodological
procedures. These four classes also differ widely in terms of
accuracy, complexity, numerical cost and accessibility (see
Supporting Information (SI)).
Geostatistical approaches provide, like satellite data, ob-

servationally driven estimates of PM2.5. They usually consist of
linear kriging estimators of PM2.5 calculated from measure-
ments at ground monitoring stations. These methods provide
accurate estimates in the vicinity of monitoring stations and are
simple to use, thereby providing a widely utilized approach.
However, like any observationally driven estimation method,
geostatistical methods alone cannot be used to explain
contributions from major contributing sources.
While work has been done to develop methods individually

within the four classes mentioned above, there is also interest in
combining approaches across classes to create an estimation
framework that combines the strengths of the respective
groups. The goal of this work is to combine a process based
method and an observationally based estimation method to
create a combined estimation method that can be used by a
wide audience to accurately estimate the distribution the annual
PM2.5 concentration across the continental United States (U.S.)
from 1999 to 2009, and to quantify how much of the estimated
annual PM2.5 concentration can be explained by the major
contributing sources of on road mobile emissions and
stationary emissions.
We will achieve our goal by using the Bayesian Maximum

Entropy (BME) knowledge synthesis framework10,11 to
combine LUR with geostatistical estimation. BME utilizes
Bayesian epistemic knowledge blending to combine data from
multiple sources. For our process-based method we select LUR
over CTMs because of its ability to use readily available
information about on road mobile emissions and stationary
emissions to predict annual PM2.5. For our observationally
based method we rely on a geostatistical analysis of ground
observations of PM2.5 concentrations because of the relatively
large number of monitoring stations providing accurate
measurements across the U.S. By combining methods like
LUR and BME we can create a model that is numerically
efficient, applicable and interpretable over a large domain size.
The knowledge base considered in the BME method consists

of general knowledge describing generalizable characteristics of
the space/time PM2.5 field (such as its space/time trends and
dependencies, its relationship with respect to various emissions,
etc), and site specific knowledge that include hard data (data
without measurement error) and soft data (data with
measurement errors which can be non-Gaussian). The strategy
we will use in this work is to employ LUR to describe the
general trends of annual PM2.5 concentrations over the entire
U.S. and model the PM2.5 residuals (obtained by removing the
LUR offset) using BME. This will allow us to rigorously
account for the non-Gaussian uncertainty associated with

annual PM2.5 concentration calculated from daily concen-
trations where some daily concentrations may be missing.12

One outcome of our work is the development of an LUR for
the prediction of annual PM2.5 concentrations across the
continental U.S., which is a geographical domain of a fairly large
size. While many previous studies have developed LUR models
over small geographical domains where high predictability can
be achieved,13 each specific LUR model is usually only valid for
the small region for which it was developed.6 In other words
high predictability is achieved by sacrificing generalizability14,15

(see SI). There have been comparatively fewer studies that
developed an LUR with lower predictability but higher
generalizability. The LUR we present fills that knowledge
gap, with a specific focus on using annual PM2.5 explained by on
road mobile emissions and stationary emissions as its
predictors.
Another outcome of our work is the sequential integration of

two classes of methods (LUR and geostatistical) to create a
combined LUR/BME estimation method that borrows
strengths from each of its constituent. Combining methods is
a growing research area and our work contributes to that field.
While very few works have looked at combining LUR and BME
approaches16,17 or LUR and kriging approaches,18 more studies
are needed in order to explore the various ways by which to
combine these methods. We focus specifically on using LUR to
provide general knowledge about PM2.5, using BME to account
for the incompleteness of daily samples, and making the
combined method accessible to a wide audience. Other
strategies and focus will undoubtedly have to be investigated
in future works, for example creating more elaborate LUR
models17 including those which use meteorological data.19

Finally we use our LUR/BME model to perform a risk
assessment that differentiates the number of annual PM2.5
predicted deaths that can be explained by on road mobile
emissions and stationary emissions. The dichotomous assign-
ment of PM2.5 to these two sources allows for straightforward
abatement strategies. This assessment is useful on its own to
generate research questions that can improve methods used to
calculate death reductions achieved under various scenarios of
source reductions.

■ MATERIALS AND METHODS
PM2.5 Data. Raw daily federally referenced method (FRM)

PM2.5 monitoring data collected from 1999 to 2009 were
obtained from the EPA’s Air Quality Systems (AQS) database
across the contiguous United States.20 Whenever a daily PM2.5
monitoring value reported below the detection limit of its
monitor, it was replaced by the mean of a log-normal
distribution that was fit to all reported below-detect values.
Daily values were averaged whenever two or more daily PM2.5
monitoring values were reported by collocated monitors on a
given day/site.
Annual PM2.5 were calculated from daily PM2.5 monitoring

values as follows: every day for which a station reported a daily
PM2.5 monitoring value, a corresponding annual PM2.5 was
calculated by taking the arithmetic average of all the daily
monitoring values reported at that station over the previous
year (i.e., 365 days) including that day. Note that this one year
period could include time before January 1, 1999 (i.e., the first
day for which daily monitoring data were available).
The intended sampling frequency of a given daily monitoring

station was used to calculate how many daily monitoring values
should have been reported in a given year period. Comparing
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this number to the actual number of reported monitoring
values informs us about the incompleteness of intended
sampling over that given year. We use this to assess the
uncertainty associated with the corresponding annual PM2.5.
LUR Data. The LUR model predicts annual PM2.5 given a

series of predictive LUR independent variables that characterize
the effect of (a) elevation, (b) on road mobile emissions, and
(c) stationary emissions. A detailed explanation of all data
sources for each LUR independent variable is described in the
SI.
We focus on on road mobile emissions and stationary

emissions because they are two major contributors to
anthropogenic pollution. For stationary emissions, we used
data from the EPA’s National Emissions Inventory21 (NEI),
which provides inventories of stationary emissions (in tons/
year) of the main constituents of PM2.5 (i.e., SO2, NH3, PM2.5-
primary and NOX). These inventories are reported in a manner
that is consistent across the U.S. We assume that at space/time
location p = (s, t), the effects of stationary source emissions
decrease exponentially with distance between the source and
the location p, as given by the equation Vi,p = ∑n = 1

N emi(en,t)-
p((−3∥en − p∥)/(dri)), where, i = SO2, NH3, PM2.5, NOX,
emi(en,t) is the emissions in tons/year of constituent i at
stationary source emissions location en and time t and dri is the
exponential decay range in km. It would be difficult to
consistently and accurately measure on road mobile emissions
across the entire U.S. Thus for on road mobile emissions we
use data estimating vehicular traffic (annual average daily traffic
counts for each major highway road segment in the U.S. as
estimated through linear referencing22) and population density
(people/km2) to construct variables that estimate total traffic
(TT), average congestion (AC), and emission efficiency (EE)
based on population density. Emission efficiency is added to
correct for the assumption that every mile driven produces the
same amount of emissions regardless of vehicle type by
hypothesizing that areas with high population density tend to
have vehicles better suited for urbanized environments, which
(in general) are more fuel efficient. These traffic and emission
efficiency variables are then combined to provide an estimate of
on road mobile emission, thereby bypassing the laborious task
of obtaining on road mobile emission data directly for a
nationally sized domain.
Large Area Variability LUR Model. Our large area

variability LUR expresses the annual PM2.5 at space/time
location p = (s,t), where s = (s1,s2) is the spatial coordinate and
t is time, as a linear combination of the corresponding LUR
independent variables at p. The first independent variable
consists of the elevation VElevv,p at p. The next three
independent variables characterize the effect of on road mobile
emissions. They are denoted as the column vector Vmobile,p =
[VTT,p VAC,p VEE,p]

T, where the subscript T denotes the
transpose, and VTT,p, VAC,p and VEE,p are variables characterizing
total traffic, average congestion, and emission efficiency,
respectively, at p. The last four independent variables
characterize the effect of stationary emissions. They are
denoted as Vstationary,p = [VSO2,p VNH3,p VPM2.5,p VNOX,p], where
VSO2,p, VNH3,p, VPM2.5,p and VNOX,p are variables charactering the
concentrations of SO2, NH3, PM2.5, and NOX, respectively at
space/time location p.
We consider models that include the elevation variable, at

least 1 out of the 3 on road mobile emission variables, and at
least 1 out of the 4 stationary emission variables, which results

in a total of × ∑ × ∑ = × × == =( ) ( )i i1 3 4 1 7 15 105i i1
3

1
4

candidate models. These models are expressed by the following
equation

β

β

β β

ε

= + + · ×

+ · × +

Z V I V

I V

( )

( )

p p mobile p

stationary p p

0 Elev Elev, mobile mobile,

point point , (1)

where Zp is annual PM2.5 at p, β0 is the equation intercept, βElev,
βmobile = [βTT βAC βEE] and βstationary = [βSO2 βNH3 βPM2.5 βNOX]
are linear coefficients for the independent variables VElev,p,
Vmobile,p and Vstationary,p, respectively, Imobile = [ITT IAC IEE] and
Istationary = [ISO2 INH3 IPM2.5 INOX] are vectors of indicator values
(0 or 1) such that at least one element in both Imobile and Ipoint
must be 1, the “·×” operator denotes the element-by-element
multiplication between same-sized vectors and εp is a
homoscedastic error term.
Due to the large overlap in annual PM2.5, only a subset of

annual PM2.5 was used to construct the LUR model to avoid
collinearity. Namely, only the last annual PM2.5 in a calendar
year was used from each station (approximately 11 000 data
values), encompassing all daily values.
Each of the 105 candidate LUR models were optimized by

selecting hyperparameter values that maximized the LUR r2. A
hyperparameter is a physical parameter within each variable
that is allowed to adjust based on predictability of annual PM2.5.
Hyperparameters for annual PM2.5 include the radii ar1, ar2 and

ar3 for the buffers used to calculate total traffic, average
congestion, and emission efficiency, respectively, and the
exponential decay ranges for stationary source variables (i.e.,
dri described in the SI). The fminsearch function of MATLAB
was used to search for hyperparameter values that maximized
the LUR r2. The search was started given an initial selection of
hyperparameters described in SI.
The Akaike Information Criteria (AIC) and all variance

inflation factor (VIF) values were found for each of the 105
optimized candidate LUR models. AIC is a measure of
parsimony of a model and VIF is a measure of collinearity of
a model. Out of the 105 optimized models, our final model has
the lowest AIC value among models with VIF values <10 and
with physically plausible βs. The βs have to be positive in order
to be plausible, with the exception of negative βs for emission
efficiency and elevation.

BME Methodology. BME is a mathematically rigorous
geostatistical space/time framework developed by Christa-
kos.10,23 BME can incorporate information from many different
sources and BME is implemented using the BMElib suite of
functions in MATLAB.11 The buttress of BME has been
detailed in other works,11,23,24 and can be summarized as
performing the following steps: (1) gathering the general
knowledge base (G-KB) and site-specific knowledge base (S-
KB) about the mapping situation, (2) using the Maximum
Entropy principle of information theory to process the G-KB in
the form of a prior probability distribution function (PDF) f G,
(3) integrating S-KB using an epistemic Bayesian conditional-
ization rule on data f S with and without measurement error to
create a posterior PDF f K, and (4) creating space/time
estimates based on the analysis. We use a space/time random
field (S/TRF) to describe the variability of annual PM2.5 across
the U.S. Our notation a for S/TRF will consist of denoting a
single random variable Z in capital letters, its realization, z, in
lower case; and vectors and matrices in bold faces (e.g., Z =
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[Z1,...,Zn]
T and z = [z1,...,zn]

T). Let Z(p) = Z(s,t) be a space/
time random field (S/TRF) representing annual PM2.5.
We define the transformation of the PM2.5 data zh observed

at locations ph as

= − o px z ( )h h Z h (2)

where oZ(p) may be any deterministic offset that can be
calculated without error as a function of the space/time
coordinate p. We then define X(p) as the S/TRF representing
the variability and uncertainty associated with the transformed
data xh, and we let Z(p) = X(p)+oZ(p) be the S/TRF
representing PM2.5.
In this work, we consider two choices for oZ(p): (1) a

constant value and (2) the LUR estimate zL̂UR,P given by

β

β

β β̂ = ̂ + ̂ + ̂ * ̂

+ ̂ * ̂
z V I V

I V

( . )

( . )

p p p

p

mobile

stationary

LUR, 0 Elev Elev, mobile mobile,

stationary stationary, (3)

where the estimated Iŝ indicators and β̂s coefficients are those
derived in our final annual PM2.5 LUR model. We can then
calculate zk̂, the estimated annual PM2.5 at unmonitored
location pk by obtaining the BME estimate x ̂k for the
transformed S/TRF X(p) at the estimation point pk, and
adding back oz(pk), the offset calculated at pk.
The G-KB for the transformed S/TRF X(p) consists of its

expected value mx(p) and covariance function cX(p,p′) (see SI).
The S-KB for X(p) consists of hard and soft data. The hard

data xh = zh − oZ(ph) are obtained based on annual PM2.5 values
zh calculated at hard data points ph where at least 75% of
intended samples were collected, in line with EPA regulations
pertaining to valid design values.25 Data points not meeting this
completeness criterion are classified as the soft data points ps,
with an uncertainty attributed to the incompleteness of
intended sampling. Following Akita et al,12 the uncertainty
associated with the annual PM2.5, zs for station i and date t is
described by a Gaussian PDF truncated below zero, with mean
μi,t and standard deviation σi,t. The mean μi,t is simply the
sample mean of the ni,t daily concentrations (zi,j, j = 1,...,ni,t)
recorded at station i over 1 year preceding date t. The epistemic
uncertainty associated with the incompleteness of intended
sampling is characterized by the difference between ni,t and the
intended number of samples ni* ≥ ni,t that would have been
collected if the station worked as intended in accordance with
the monitor’s sampling frequency. Therefore a reasonable
choice for the standard deviation quantifying that uncertainty is

σ
μ
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∑ − −
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where the first factor is the standard deviation of the sample
mean and the second factor is a population correction factor
that accounts for the incompleteness of intended sampling from
a population of size ni*. The PDF for xs is then derived from
the PDF for zs by simply using the transformation xs = zs −
oz(ps).
The G-KB and S-KB for the S/TRF X(p) can overall be

written as G = {mX(p),cX(p,p′)} and S = {xh, f S (xS)}, and in
this case the BME posterior PDF for X(pk) at estimation point
pk is given by f K(xk) = A−1 ∫ dx f S(xS) f G(x) where x =
(xk,xh,xs) is a realization of X at points p = (pk, ph, ps) and A is a

normalization constant.10,25 Finally the PDF for zk is obtained
by simply using the back-transformation zk = xk + oz(pk).

Comparison of Methods Using Cross-Validation
Analysis. In order to test the estimation improvement of
LUR and BME, a cross-validation was performed to compare
three different methods used in this study: (a-constant/hard)
setting the deterministic global (i.e., covering a substantial
domain where variability within the domain can be largely
diverse) offset oZ(p) to a constant value and considering all data
as hard, (b-LUR/hard) setting the global offset to the LUR
model and considering all data as hard and (c-LUR/hard and
sof t) setting the global offset to the LUR predicted value and
considering data as hard and soft as defined in the previous
section. For each of these methods, the cross validation
procedure consists of randomly selecting 20 000 hard data
points, removing each one at a time, and re-estimating it from
the remaining annual PM2.5. The cross-validation statistics
investigated include mean squared estimation error (MSE),
root mean squared estimation error (RMSE), mean absolute
estimation error (MAE), mean of the root variance of the
posterior PDFs (MR), the square of Pearson’s correlation
coefficient, and the square of Spearman’s correlation coefficient.
Equations for each measure are defined in the SI. Along with
the leave-one-out cross validation (LOOCV) of 20, 000 hard
data point, a 10-fold spatial cross-validation was also performed.

Risk Assessment Application. The incorporation of the
LUR model into the BME methodology has many potential
applications including determining the mortality of various
diseases attributable to PM2.5. Excess mortality was calculated
using the methodology presented by Li,26 assuming linearity, in
order to quantify total mortality, mortality from ischemic heart
disease (IHD) and mortality from lung cancer (LC). Relative
risks for these diseases were obtained from Krewski et al.27

Deaths at the county level were obtained from the CDC.28

Excess deaths were calculated for (1) annual PM2.5, (2) annual
PM2.5 explained by on road mobile emissions, and (3) annual
PM2.5 explained by stationary emissions.
Let zl̂ (p) denote our estimate of annual concentrations,

where l = total for total PM2.5, l = mobile for PM2.5 explained by
on road mobile emissions, and l = stationary for PM2.5
explained by stationary emissions. For l = total we simply use
zt̂otal (p) = zL̂UR/BME,p, where zL̂UR/BME,(p) is the LUR/BME
estimate of annual PM2.5 described earlier. For l = mobile we
use the LUR in a relative manner to estimate the ratio
αLUR mobile(p) = ((Im̂obile ·× β̂mobile)Vmobile,p)/(zL̂UR,p) corre-
sponding to the proportion of PM2.5 that the LUR model
explains from on road mobile emissions. We then multiply that
ratio with the LUR/BME estimate of annual PM2.5, so that
z ̂mobile(p) = z ̂LUR/BME,pαLUR mobile(p). Likewise we use
zŝtationary(p) = zL̂UR/BME,pαLUR stationary(p, with αLUR stationary(p) =
((Iŝtationary ·× β̂stationary)Vstationary,p)/(zL̂UR,p)). The mortality for a
specific cause of death (e.g., total mortality, IHD, LC)
attributed to an annual concentration zl̂ (p) is given by Li et
al.26

Δ = × × − β− ̂ −y I P (1 e )z z
l

p
0

( ( ) )l b
(5)

where I0 is the baseline incidence rate for the cause of death of
interest, β is the corresponding concentration response
coefficient, P is the population at the county level, and zb is
the background concentration. Sources have suggested a
background level in the U.S. for PM2.5 of 3−5 μg/m3.29 We
use zb = 5 μg/m3.
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■ RESULTS
Annual PM2.5. There were 1 478 149 annual PM2.5 data

points from 1999 to 2009 coming from 1576 monitoring
stations. These include 406 962 (27.53%) soft data points. The
mean of the annual PM2.5 is 12.44 μg/m3, the variance is
11.57(μg/m3)2, the skewness is 0.56 and the kurtosis is 5.57.
The minimum annual value is 1.63 μg/m3 and the maximum
annual value is 75.40 μg/m3.
Large Area Variability LUR Model. The final LUR model

had six independent variables: elevation, three on road mobile
emission variables (total traffic, average congestion, emission
efficiency), and two stationary emission variables (NH3 and
SO2) (Table 1). Table 1 describes the optimal hyperparameters

for each variable along with their corresponding β̂ values. This
LUR model has an r2 = 0.53, providing generalizable
predictability of annual PM2.5 over the entire U.S. from 1999
to 2009.
LUR/BME Model. The combination of the LUR and BME

methods through methods (a) to (c) led to a refined estimation
of annual PM2.5 as seen in Figure 1 showing estimated levels
across the U.S. for May 1, 1999. Method (a-constant/hard)
using a constant offset and using all data as hard does not
differentiate well the annual PM2.5 across southern California
and estimates fairly benign levels for several states west of the
Mississippi river. By incorporating the LUR offset, method (b-
LUR/hard) provides estimates of annual PM2.5 that are more
refined and localized. By further incorporating the soft data to
the hard data and LUR offset, method (c-LUR/hard and sof t)
further refines the description of hot spots across the country.
Method (c) is able to pick up finer scale variation in
concentrations compared to methods (a) and (b). This finer
scale variation can also be seen in subsequent months (SI
Figure S5).
Cross validation statistical measures indicated a consistent

improvement in mapping accuracy from method (a) to (c)
(Table 2). Measures of estimations errors (MSE, RMSE, MAE,
MR) decreased from method (a) to (b) and from method (b)
to (c), while measures of correlation (Square Pearson’s Corr.
Coeff. and Square Spearman Corr. Coeff.) increased from
method (a) to (b) and from method (b) to (c). Incorporating
the LUR offset while using only hard data (i.e., going from
method (a) to (b)) resulted in a reduction of 21.89% in MSE.
Further incorporating soft data (i.e., going from method (b) to
(c)) resulted in an additional reduction of 4.87% in MSE. The
reduction in MSE from method (b) to (c) is more pronounced
when performing cross-validation on points that contain a

higher percentage of soft data (SI Table S3). This reduction is
more pronounced still when estimation neighborhoods around
cross-validation locations are forced to have soft data points (SI
Table S4).
The r2 correlation (Square Pearson’s Corr. Coeff.) changes

from 0.88 for the LOOCV to 0.78 for the 10-fold cross
validation. This corresponds to 12.8% shrinkage in r2, which is
reasonable since the training set for the 10-fold cross validation
is substantially smaller than that of the LOOCV.

Risk Assessment. Using eq 5 with zt̂otal(p) we find that the
number of deaths from 1999 to 2007 predicted from annual
PM2.5 exposure in excess of background levels is 905 560. These
results were validated using the EPA’s BenMAP program30 and
are consistent with other estimates.31

We then used eq 5 with zm̂obile(p) (PM2.5 explained by on
road mobile emissions) and zŝtationary(p) (PM2.5 explained by
stationary emissions). The mean of the zm̂obile(p) across all the
space/time data points is 3.4 μg/m3, while the mean of
zŝtationary(p) across the same points is only 1.15 μg/m3.
Accordingly the number of deaths attributed to PM2.5 explained
by on road mobile emissions is greater than the number of
deaths attributed to PM2.5 explained by stationary emissions
(Table 3). For instance, the number of deaths attributed to
PM2.5 explained by on road mobile emissions is 568 090 from
1999 to 2007, which is 1.85 times more than the 306 316
deaths attributed to PM2.5 explained by stationary emissions.
Similarly, on road mobile emissions explained 1.86 times the
number of IHD deaths and 1.98 times the number of LC
deaths compared to deaths explained by stationary emissions.
The number of deaths assumes that the relative risk used in eq
5 can be applied to the entire population and that estimated
ambient concentration is a surrogate for exposure. This risk
assessment does not incorporate the varying toxicity of PM2.5.
This finding is interesting because, according to the NEI,

primary PM2.5, NO2, SO2, and NH3 coming from on road
mobile emissions sum up to 70 834 thousand tons from 1999
to 2007 while primary PM2.5, NO2, SO2, and NH3 coming from
stationary emissions sum up to 293 446 thousand tons for the
same time period (SI Table S2). Hence, even though on road
mobile emissions emit only about a quarter of the mass emitted
by stationary emissions, the number of deaths predicted from
PM2.5 explained by on road mobile emissions is almost twice
that predicted from PM2.5 explained by stationary emissions.

■ DISCUSSION
The first major outcome of our work is the creation of a global
LUR model that predicts large area variability of PM2.5 across
the entire contiguous United States from 1999 to 2009. Only a
handful of studies have developed LUR models that can be
classified as “general” in that they produced results general-
izable to domain sizes as large as ours (SI Figure S1). Although
the LUR may perform better in some areas than others, the
model is “generalizable” in a relative fashion when compare to
LUR models developed over a smaller domain. To the best of
our knowledge, the closest LUR models developed over such a
large domain size are Hart et al.15 and Beelen et al.14 for annual
PM10, and Beckerman et al.17 for monthly PM2.5.
The Hart et al.15 and Beelen et al.14 studies developed

regression models to predict annual PM10 concentrations across
the United States from 1985 to 2000 and across 15 European
countries for 2001, respectively. Even though their models
differed (i.e., the Hart et al.15 model used traffic related
variables while the Beelen et al.14 model used meteorology and

Table 1. Hyperparameters and Corresponding β for the
Final LUR Model

final LUR model

variable range (km) β̂ (μg/m3 per variable unit)

intercept NA 7.54 × 1000

elevationa 0 −8.87 × 10−04

total trafficb 694 3.04 × 10−03

average congestionc 33 2.54 × 10−05

emission efficienyd 730 −1.76 × 10−02

SO2
e 210 1.10 × 10−04

NH3
e 11.5 1.49 × 10−06

aMeters. bkm driven/km2. ckm driven/km. dPeople/km2. eThousand
tons/year.
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land use), they produced similar r2 of 49% and 41%,

respectively. These studies provided substantial contribution

to the literature on annual PM10. However, there is a lack of

comparable global models for PM2.5. Our study is successful in

helping to fill that knowledge gap by providing a general LUR

for PM2.5 that achieves an r
2 of 53% that is comparable or better

than that for annual PM10.
Of the limited general LUR models developed for the long-

term average concentration of PM2.5, the LUR-without-remote-
sensing model developed by Beckerman et al.17 is the most
comparable to ours. The explanatory variables of that model are

Figure 1. BME predicted annual PM2.5 (μg/m3) concentration estimation map across the contiguous U.S. on May 1, 1999 for the following
methods: (a) constant offset/hard data; (b) LUR offset/hard data; and (c) LUR offset/hard and soft data.
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traffic within 1km and green space within 0.1km. The r2 of that
model was 3% for their training data set and 5% for their
validation data set. This provides a substantial contribution to
the literature because it describes the small area variability at a
scale of 0.1−1km which is attributable to primary PM2.5 emitted
as ultrafine particles and specific metals that are responsible for
a large portion of observed health impacts.17 Hence their
relatively small r2 of 3−5% makes sense since on road emission
of primary PM2.5 makes up only a small fraction of annual
PM2.5. By contrast, our explanatory variables capture the large
area variability of PM2.5, as demonstrated by our hyper-
parameter values ranging from ten to hundreds of km (Table
1). These values are characteristic of the transport of secondary
PM2.5 over long distances. Hence our model describes the large
area variability of secondary PM2.5. Since the majority of PM2.5
comes from secondary formation, it makes sense that our
model achieves a higher r2 (53%) than that of Beckerman et
al.17 (3−5%). Therefore their model describes short-area
variability due to the local effect of traffic coming from primary
PM2.5, while our model describes the large area variability of
PM2.5 due to the long-range effect of secondary PM2.5 created
from on road mobile emissions and stationary emissions. To
the best of our knowledge no other LUR models have predicted
the large area variability of secondary PM2.5 and our model is
the first to address this important knowledge gap. Our LUR
model estimated PM2.5 coming from on road mobile emissions
using TT, AC, and EE. However, due to the complex nature of
PM2.5, these variables may capture other sources outside of on
road mobile emissions. We hypothesized that EE using
population density corrects for over prediction of on road
mobile emissions coming from TT and AC. Indeed, out of the

× + + × ∑ = × × == ( )i1 (1 2 1) 4 1 4 15 60i 1
4 mode l s

that had the EE variable, βEE was positive for the 1 × (1 + 1
+ 0) × 15 = 30 models where EE appears without TT and it

consistently switched to being negative for the 1 × (0 + 1 + 1)
× 15 = 30 models that contain both the EE and the TT
variable. This suggests that EE alone is a surrogate for on road
mobile emissions. However, when paired with the TT traffic
variable, EE corrects the overestimation of these variables. This
finding is in agreement of our hypothesis and therefore
supports the conclusion that population density can be used as
a surrogate for increased EE of the vehicle fleet. Obtaining
accurate estimates of on road mobile emissions along all roads
is a difficult task. By using population data to calculate EE, we
facilitate this task and as a result we ensure the accessibility of
our model to a wider audience.
While previous LUR models represent important contribu-

tions to the field, our model differs in several important ways:
(1) our model describes large area variability of PM2.5, which
characterizes the secondary component of this pollutant, (2)
the explanatory variables are constructed from data that are
easily obtainable by a wide audience and (3) our model allows
to distinguish between PM2.5 explained by on road mobile
emissions and PM2.5 explained by stationary emissions. To our
knowledge this is one of the first LUR models to capture
secondary PM2.5 using easily obtainable explanatory variables
describing on road mobile emissions and stationary emissions.
The second major outcome of this work is the combination

of our LUR model with BME to create a combined LUR/BME
hybrid estimation method for annual PM2.5. In this hybrid
approach, LUR is used as a first step to characterize global
trends in PM2.5 and BME is used to extract unexplained
variability in the residuals. Our results (Table 2) demonstrate
that LUR/BME is successful at combining the strengths of each
of its component methods. Indeed, LUR/BME results in a
21.89% reduction in MSE and a 28.94% increase in r2 over
BME alone, which is itself more accurate than LUR alone. The
population correction factor presented in the soft data variance
in eq 4 does not account for the fact that annual PM2.5 averages
are correlated in time. As well, the number of daily values
within a year ni,t does not account for the seasonality of missing
values.
Others have combined LUR/BME such as Beckerman et al.

Their work saw an r2 of 0.79 using a validation data set
comprised of about 10% of the data. By comparison we
achieved an r2 of 0.78 using a 10-fold cross validation, where
each of validation points had similar distance-to-closest-
monitor as those of Beckerman et al. A key difference between
our works is that we extended their work by incorporating non-
Gaussian soft data that rigorously accounted for the uncertainty
associated with the incompleteness of daily samples. Our r2

indicates that our model was successful in this novel
incorporation of non-Gaussian soft data in the LUR/BME
framework, which resulted in one of the most accurate LUR/
BME estimations to date of annual PM2.5 as supported by the
fact that our r2 is similar to that of Beckerman et al. A unique
strength of our model is that these highly accurate LUR/BME
estimates of annual PM2.5 can be separated into the portions
explained by on road mobile emissions and stationary
emissions, which to our knowledge had not been done before
to a similar level of precision.
Building on the novel contributions of the first two outcomes

of our work, an important third outcome of this work is a risk
assessment of annual PM2.5 exposure explained from major
contributing sources. Estimating annual PM2.5 is useful for
assessing long-term exposure needed to investigate chronic
diseases. Others have already used LUR estimates in

Table 2. Cross Validation Statistical Measures and Percent
Change for Three Estimation Methods

method
LUR
only

(a)
constant/
hard

(b)
LUR/
hard

(c)
LUR/
hard

and soft

%
change
from (a)
to (b)

%
change
from (b)
to (c)

MSEa 7.04 1.69 1.32 1.26 −21.89 −4.87
RMSEb 2.65 1.30 1.15 1.12 −11.62 −2.46
MAEb 1.97 0.79 0.63 0.63 −20.73 −0.45
MRb 1.86 1.87 1.12 1.07 −40.25 −4.08
Square
Pearson’s
Corr.c

0.50 0.68 0.87 0.88 28.94 0.78

Square
Spearman’s
Corr.c

0.55 0.67 0.89 0.89 32.13 0.32

a[μg/m3]2. bμg/m3. cUnitless.

Table 3. Death Counts Predicted from Annual PM2.5
Explained by on Road Mobile and Stationary Emissions

predicted from on road
mobile emissions

predicted from
stationary emissions

1999−2007 all cause
mortality

568 090 306 316

1999−2007 ischemic
heart disease deaths

415 163 223 341

1999−2007 lung cancer
deaths

85 044 43 035
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epidemiological studies.32−35 From 1999 to 2007 there were
568 090 deaths attributed to PM2.5 explained by 70 834
thousand tons of primary PM2.5, NO2, SO2, and NH3 emitted
by on road mobile emissions, which correspond to a ratio of
8.02 deaths/thousand tons for on road mobile emissions. By
contrast there were 306 316 deaths attributed PM2.5 explained
by 293 446 thousand tons of primary PM2.5, NO2, SO2, and
NH3 emitted by stationary emissions, which correspond to a
ratio of 1.04 deaths/thousand tons for stationary emissions.
These results are informative because they imply that
mechanisms involved in the creation and long-range transport
of secondary PM2.5 lead to substantially differing health impacts
depending on whether emissions originate from on road mobile
emissions or stationary emissions.
Other works have also examined excess mortality due to

current emissions levels. When investigating Massachusetts
power plants Levy and Spengler36 found that current power
plant emissions in the surrounding area that emitted above the
best available control technology (BACT) resulted in
approximately 70 deaths per year in a ∼ 600 km by 600 km
region which includes areas of Massachusetts and New York
where the power plants were located. According to the BACT
of 3 lb/MWh of SO2 and 1.5 lb/MWh of NOX, there would be
a reduction of 43 951 tons of SO2 and 4376 tons of NOX from
the two power plants mentioned in the study. This would result
in 1.34 deaths/thousand tons of SO2 and 2.51 deaths/thousand
tons of NOX due to power plants emissions in the area being
above the BACT. That work used the CTM CALPUFF in
which emission levels can be zeroed out while our work uses an
LUR model which measures annual predicted PM2.5. Levy
only investigated power plants while our work looked at major
contributing sources. Even though LUR cannot be directly
compared to CTMs, our LUR results are useful in a relative
manner as they allow us to contrast on road mobile emissions
and stationary emissions which have not been done before.
In order to reduce the number of deaths due to PM2.5

exposure, our results indicate a reduction in one ton of on road
mobile emissions would be eight times more beneficial than a
one ton reduction in stationary emissions. This may be
accomplished though any number of actions such as increased
accessibility and reliance on public transportation in areas of
high population density to more stringent emission standards
that would further promote fuel efficiency.
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