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ABSTRACT: A mass spectrometry (MS) method is described
here that can reproducibly identify hundreds of peptides across
multiple experiments. The method uses intelligent data
acquisition to precisely target peptides while simultaneously
identifying thousands of other, nontargeted peptides in a single
nano-LC−MS/MS experiment. We introduce an online peptide
elution order alignment algorithm that targets peptides based
on their relative elution order, eliminating the need for
retention-time-based scheduling. We have applied this method
to target 500 mouse peptides across six technical replicate nano-
LC−MS/MS experiments and were able to identify 440 of
these in all six, compared with only 256 peptides using data-
dependent acquisition (DDA). A total of 3757 other peptides
were also identified within the same experiment, illustrating that
this hybrid method does not eliminate the novel discovery advantages of DDA. The method was also tested on a set of mice in
biological quadruplicate and increased the number of identified target peptides in all four mice by over 80% (826 vs 459)
compared with the standard DDA method. We envision real-time data analysis as a powerful tool to improve the quality and
reproducibility of proteomic data sets.
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■ INTRODUCTION

Large-scale proteomic studies make use of a variety of tools and
techniques to achieve depth and wide coverage of proteomes.
The most popular method for sequencing proteomes is
shotgun sequencing where peptides are digested from extracted
proteins, separated with chromatography (HPLC), and then
mass-analyzed using mass spectrometry (MS).1,2 Since complex
proteomes can encompass thousands of proteins, leading to
millions of peptides, deciding how to allocate the limited mass
spectrometer bandwidth is key to successful analysis.3 By far the
most successful method for this time management is data-
dependent acquisition (DDA), where intact peptide precursors
are first mass-analyzed (MS1), specific m/z features are then
selected to undergo fragmentation, and finally the fragment
ions are mass-analyzed again (MS/MS). This process is
repeated throughout the LC separation, resulting in a large
collection of MS and MS/MS spectra. Peptides are eventually
identified from the fragmentation spectra and then assembled
into protein groups.4−8 This approach has produced out-
standing results in the past decade, but due to a variety of

reasons (e.g., large protein dynamic range, speed of MS
instrumentation, separation efficiency, etc.) undersampling of
proteomes is very common. In other words, not every peptide
is identified in every nano-LC−MS/MS experiment. Incom-
plete data sets limit the questions researchers can answer; in
particular, when biological replication is used to increase
statistical power, many measurements become worthless if they
cannot be measured reproducibly.9 Because proteomics seeks
to answer global biological questions, reproducible peptide
identification between data sets is mandated.10−12

Many studies have outlined the problem of poor peptide
reproducibility.13−17 Aebersold succinctly summarized that
irreproducibility is a multifaceted issue, depending on user
experience, equipment, and data analysis, among others.18 He
outlines that there are two main approaches in tackling
irreproducibility. First, exhaustively identify every peptide in a
samplean approach that is becoming more feasible as
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technology improves.19−21 The more common approach, as
many other researchers have embarked on, is to focus on a
smaller subset of peptides and to thoroughly identify and
quantify those using targeted methods.22 Methods such as
selected reaction monitoring (SRM)23 are powerful and
reproducible but are low-throughput, targeting a few hundred
peptides at most in a single nano-LC−MS/MS experi-
ment.24−27 Targeted methods almost exclusively rely on
retention-time-based scheduling to improve identification
reproducibility and throughput, segmenting the MS duty
cycle among the target peptides. In SRM methods, a series of
MS/MS transitions for each targeted peptide is automatically
collected at the appropriate retention time (RT), removing the
dependence on MS1 detection. This requires precise knowledge
of the peptide RT for the LC−MS system and is low-
throughput because only one set of transitions is monitored at a
given point in time. Recent work on intelligent SRM (iSRM)
increases throughput by monitoring only a subset of transitions
for each target, switching to normal SRM when these
transitions are detected.28 We sought to expand upon the
idea of intelligent real-time switching of methods by combining
the enhanced reproducibility of targeted scheduled methods
with the novel discovery advantages of DDA in a single hybrid
method. Our goals were three-fold: first, to develop a method
that increases the throughput of targeting; second, to replace
retention-time based scheduling and its laborious method
development with a more robust and straightforward peptide
elution ordering; and last, to maintain the discovery aspect of
DDA sampling while simultaneously targeting a subset of
peptides.
In the past decades, a few computational approaches have

been aimed at solving the problem of poor reproducibility. The
concept of accurate mass tags (AMTs) was first introduced by
Smith et al. as a means to identify peptides in multiple runs
based on accurate mass and RT.29 This concept was further
expanded with PepMiner and PEPPeR, tools for clustering
features among multiple data sets.30,31 Most notably, Prakash et
al. introduced the concept of aligning multiple MS data sets
based on peptide relative elution order (EO) into signal
maps.32 To date, these and other computational methods33−38

have been performed postacquisition, attempting to improve
already collected data. We seek to improve the reproducibility
at the source by improving the algorithms the MS uses to select
precursors to fragment. We and others have proposed using
real-time data analysis and dynamic MS control as a means for
improving the quality of acquired spectra.39−41 These methods
rely on determining peptide spectrum matches (PSMs) in real
time and using those identifications to make informed, dynamic
decisions. However, real-time identification has some setbacks:
(1) MS/MS spectra are not always identified leaving the data
incomplete, (2) wrongly assigned PSMs could negatively affect
performance, and (3) a reduction in the instrument duty cycle
decreases the number of MS/MS performed. These, and other
issues, have lead us to investigate alternative ways for detecting
peptides in real-time, primarily through accurate mass measure-
ments. Here we present our findings on combining accurate
mass, EOs, and real-time data analysis to improve the sampling
reproducibility of the MS.

■ EXPERIMENTAL PROCEDURES

Yeast Culture

Saccharomyces cerevisiae strain BY4741 was grown in yeast
extract peptone dextrose media (YPD) (1% yeast extract, 2%
peptone, 2% dextrose). A starter culture was added to 2 L of
media and was propagated for ∼12 generations (20 h) to a total
OD600 of ∼2. The cells were pelleted with centrifugation at
5000 rpm for 5 min, the supernatant was decanted, and the
pellet was resuspended in chilled NanoPure water. Washing
with water was repeated twice, and the final pelleting was
performed at 5000 rpm for 10 min. The pellet was resuspended
in lysis buffer composed of 50 mM Tris pH8, 8 M urea, 75 mM
sodium chloride, 100 mM sodium butyrate, protease, and
phosphatase inhibitor tablet (Roche). Cell lysing was
performed with glass bead milling in a stainless-steel container
(Retsch). A 2.5 mL aliquot of resuspended yeast was shaken
with 2 mL of acid-washed glass beads at 30 Hz for 4 min,
followed by 1 min of rest, for eight cycles.
Mouse Handling and Tissue Isolation

Four male C57BL/B6 mice were bred from in-house colonies
and housed in an environmentally controlled facility with free
access to water and standard rodent chow (Purina #5008).
Mice were kept in accordance to the University of Wisconsin-
Madison Research Animals Resource Center and NIH
guidelines for care and use of laboratory animals. At 10
weeks of age, mice were sacrificed by decapitation after a 4 h
fast. Eight tissues were dissected from the mice (cerebellum,
cerebrum, kidney, heart, liver, lung, extensor digitorum longus,
and spleen), flash frozen in liquid nitrogen, and stored at −80
°C. Tissues were homogenized in 1 mL of lysis buffer/100 mg
tissue (8 M urea, 50 mM Tris, 100 mM NaCl, 1 mM CaCl2,
100 mM sodium butyrate, 5 μMMS-275, 0.2 μM SAHA, Roche
protease, and phosphatase inhibitor tablets).
Sample Preparation

Protein was quantified by BCA (Pierce) and reduced with 5
mM dithiothreitol and incubated for 45 min at 55 °C.
Alkylation was performed with 15 mM iodoacetamide for 30
min in the dark and quenched with 5 mM dithiothreitol. Urea
concentration was diluted to 1.5 M with 50 mM Tris pH 8.0.
Proteolytic digestion was performed by the addition of Trypsin
(Promega), 1:50 enzyme to protein ratio, and incubated at
ambient temperature overnight. For quantitative studies, the
resulting peptides were labeled with TMT 8-plex (Pierce)
isobaric tag and mixed.42,43 All samples were desalted using C-
18 solid-phase extraction (SPE) columns (Waters, Milford,
MA) prior to nano-LC−MS/MS analysis.
Nano LC−MS/MS Analysis

Peptides were separated with online reverse-phase chromatog-
raphy using a nanoACQUITY UPLC system (Waters, Milford,
MA). Peptides were first loaded onto a precolumn (75 μm ID,
5 cm Magic C18 particles, Bruker, Michrom) for 10 min at 1
μL/min flow rates. Peptides were then separated on a 30 cm
analytical column (75 μm ID, 5 cm Magic C18 particles) for
either 100 or 165 min over a linear gradient from 8 to 35%
acetonitrile at 300 nL/min. Mass analysis was performed on an
LTQ Orbitrap Elite44 mass spectrometer (Thermo Fisher
Scientific, San Jose, CA) using 60 000 resolving power (RP)
MS1 scans. Peptides selected for MS/MS analysis used a 2 Th
isolation width, were fragmented with HCD (NCE = 35), and
were analyzed in the Orbitrap at 15 000 RP or 30 000 RP for
quantitative experiments. Unless otherwise noted, data-depend-
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ent analysis was performed selecting the top 15 most intense
m/z features (charge state >1) for MS/MS analysis. Dynamic
exclusion settings were enabled for 35 s at ±10 ppm mass
window, 1 occurrence with a maximum of 500 exclusions at any
given point in time. Automatic gain control (AGC) was
enabled, and MS1 targets were set to 1 × 106 and MS/MS
targets were set to 5 × 104. Accurate mass inclusion list
experiments would prioritize MS/MS sampling from a list of
targets at ±10 ppm mass tolerances. Remaining MS/MS events
were filled with normal top-N DDA approaches. Intelligent data
acquisition control was implemented using the ion trap control
language (ITCL, Thermo Fisher Scientific), and the
pseudocode of these modifications is included in the
Supporting Information. In brief, following MS1 analysis, the
spectra were analyzed using algorithms written in ITCL to
select targets for MS/MS analysis (described herein). Any
remaining MS/MS slots would be filled by the unmodified
DDA firmware code. For information on implementing the
modified firmware code, please contact Thermo Fisher
Scientific. All nanoLC−MS/MS experiments in the Thermo
.raw format are located on the Chorus Project Website
(https://chorusproject.org/) under the ‘Elution Order Algo-
rithm’ project.
Data Analysis

Thermo .raw files were processed using the Coon OMSSA
Proteomic Analysis Software Suite (COMPASS)45 and in-
house software. In brief, raw files were converted to the dta file
format (DTA Generator) and were searched using the Open
Mass Spectrometry Search Algorithm (OMSSA, v 2.1.9).46

Yeast data were searched against a target-decoy47 database of
yeast ORFs (www.yeastgenome.com, February 3, 2011) and
mouse data from UniProt canonical database. Peptides were
generated from a tryptic digestion with up to three missed
cleavages, carbamidomethylation of cysteines as fixed mod-
ifications, and oxidation of methionines as variable modifica-
tions. For quantitative experiments, a fixed modification of 8-
plex TMT tag was added to lysines and peptide n-terminus,
with a variable modification of 8-plex TMT tag on tyrosines.
Precursor mass tolerance was 100 ppm using the multiisotope
function (-tem 4 -ti 4), and product ions were searched at 0.015
Da tolerances. Peptide spectral matches (PSMs) were reduced
to unique peptide sequences (I/L ambiguity removed) and
validated using FDR Optimizer based on q values and precursor
mass accuracy (<10 ppm) at a 1% peptide-level false discovery
rate (FDR).48−50 Protein groups were constructed from
peptide identifications according to the law of parsimony and
filtered to a 1% protein-level FDR (Protein Hoarder). For
quantitative data sets, peptides were quantified with TagQuant
(v1.4) using the generated TMT 8-plex reporter ions, corrected
for isotopic impurities, and normalized to total protein
abundance. Quantitative significance (p value) was determined
by the Student’s t test with Storey correction assuming equal
variances.51 Peptide EO determination algorithms were
performed by custom software developed in C# with the
Microsoft .NET Framework version 4.5. This software is
available for download by visiting www.chem.wisc.edu/∼coon/
software.php.

■ RESULTS AND DISCUSSION

Irreproducible Peptide Identification

In DDA peptide precursors are selected for fragmentation
based on intensity in a MS1 survey scan. This straightforward

approach has proven to be a simple and powerful technique.
However, it is pestered with inconsistent sampling and
therefore irregular peptide identification between experiments.
The DDA method is inherently stochastic in nature, depending
heavily on the consistency of the input data (MS1) to deliver
reproducible peptide identification (MS/MS). Even the
slightest change in the chromatography or ionization
efficiencies will have repercussions on the collection of the
whole data set, as selecting m/z features for MS/MS analysis is
often dependent on previous decisions (e.g., dynamic
exclusion). To characterize the extent these minor changes
have on the reproducibility of peptide identifications, six
replicate injections of a tryptic digest of yeast whole cell lysate
were analyzed using DDA on the same nano-LC−MS/MS
system over a span of 10 days. On average, each experiment
identified 13 289 ± 340 unique peptide sequences (I/L
ambiguity removed) at a 1% peptide-level FDR, indicating a
highly consistent separation and nearly identical instrument
performance. Of the 23 919 unique peptides identified in total,
only 5404 (22.6%) of those peptide were identified in all six
experiments (Figure 1). A significant portion were only

identified once (7474, 31.2%), while the remaining peptides
were divided between two and five experiments. This clearly
demonstrates the irreproducibility of DDA sampling on the
same peptide solution. The reproducibility of identified protein
groups fares better; 1708 of 3054 (56%) protein groups were
identified in every experiment. The higher overlap percentage is
because many different peptides can make up one protein
group, minimizing the importance of identifying the same
peptides in all experiments. However, post-translation mod-
ification (PTM) analysis requires identification of the same sites
to compare between experiments, demanding the need for high
peptide overlap. PTM analysis and quantitation is becoming
more prominent in the literature, thus making this a growing
problem in the field. Two reasons can be attributed to the poor
reproducibility of stochastic DDA sampling. First, precursors
having low signal-to-noise (S/N) are affected first by changes in
chromatography and ionization. For example, a precursor with
a maximal S/N of four may have been sampled and identified in
one experiment, but in the next experiment, the S/N may have
dropped below the detection threshold and excluded from
being sampled. This is evident when 8883 MS1 features from
peptides identified in one or all of the six experiments were
examined for their maximal S/N (Supplemental Figure 1 in the

Figure 1. Overlap of peptide identification among the analysis of six
technical replicates. Six nano-LC−MS/MS experiments produced 23
919 unique peptide identifications in total, but only one-fifth of the
identifications were observed in all six replicates. A large percentage
(31.2%) of the peptides were only detected in one of the six
experiments.
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Supporting Information). For peptides identified once, 2707
(30.5%) had a maximal S/N ≤ 4, while only 814 (9.2%)
precursors identified in every experiment had similar maximum
S/N. The other reason for inconsistent peptide identification is
increased MS1 spectral complexity, specifically its effect on
charge-state assignment. In proteomic MS/MS workflows,
precursors are often only selected when they exhibit a well-
defined charge stateusually where z > 1, as singly charged
precursors fragment poorly and usually do not lead to positive
identifications. Increases in spectral complexity hinder the
charge-state determination algorithms, especially for low S/N
precursors. This results in skipping precursors even if its signal-
to-noise is above the sampling threshold.

Retention-Time-Based Targeting

When good peptide identification reproducibility is needed,
RT-based targeting, that is, scheduling, has been the method of
choice. Here peptides of interest are assigned an expected
elution time and MS/MS is triggered, regardless of MS1

detection, during the appropriate time range. This avoids the
two issues with DDA sampling previously described and
enables much higher reproducibility. However, such methods
are laborious to construct and maintainidentical LC and MS
parameters must be kept between experiments to minimize any
variances in RTs of the peptides.
To assess the degree of variance in peptide RTs that occurs

in normal nano-LC−MS/MS experiments, two of the yeast
DDA experiments described above, performed 10 days apart,
were compared. The first experiment (July 22, D0) produced
13 529 unique peptides, and the second experiment (July 31,
D9) identified 13 433 yeast peptides. Together, 7589 peptides
were in common and the apex RT of their elution in each
experiment is plotted in Figure 2A. The relationship between
RTs of matched peptides is highly linear (R2 = 0.9989) but has
a nonunity slope and nonzero intercept (m = 1.033; b =
−0.647). While the slope is very close to 1, even the slightest
deviation (0.033), compounded over time, leads to large RT
differences late in the separation (e.g., ∼1.6 min shift at 70
min). On the whole, the average RT deviation was nearly 1 min
(μ = −0.805 min) with a broad distribution over a 2 min range
(Figure 2B). Typically, the assigned peptide elution times must
be corrected to encompass this shift.
We hypothesize thatdue to the degree of linearity in

peptide RTswe could avoid these corrections by scheduling
peptides based on their relative EO, opposed to their absolute
RT. Under similar LC conditions (i.e., same particles,
temperature, column length, phase, etc.) peptides elute in the
same relative order regardless of separation duration or slope.
For example, if peptide ‘A’ elutes before peptide ‘B’ in a 30 min
LC gradient, the same ordering is preserved with a 60 min LC
gradient, even if the absolute RTs vary greatly. When many
peptides’ EOs are taken into account (e.g., thousands of
peptides), they provide a simple way to correct for elution
variation dynamically. This is evident when we took the 7589
peptides and rank ordered them based on their apex RTs for
both the D0 and D9 experiments and plotted the difference
between matched peptides (Figure 2C). Here the values are
normally distributed around zero (μ = −1.097) with a full
width at half-maximum (fwhm) of only ∼100. EO can be useful
even under extreme differences under chromatographic
conditions as well.
To simulate dynamic chromatographic conditions, we

separated yeast peptides under two different LC gradient

profiles. The resulting peptide identifications were again
matched between the runs, and the RT difference was plotted
(Supplemental Figure 2A in the Supporting Information).
These data show an average deviation of 10 min between the
two gradients (Supplemental Figure 2B in the Supporting
Information), but when ranked by their EOs, the two
experiments show a linear slope of 1 with a normal distribution
of ranked EOs around zero (Supplemental Figure 2C,D in the
Supporting Information).
Real-Time Elution Ordering Alignment

We reasoned that using EO could improve the irreproducible
sampling of DDA, similarly to scheduled methods, but on a
larger scale and more robustly. The question shifts from “What
RT is it?” as scheduled methods ask, to “What is the current
EO?” By knowing which peptides are currently eluting from the
LC, combined with the a priori knowledge of their EO, we
predict with high fidelity what peptides are going to
subsequently elute.

Figure 2. To assess the deviation in retention times for matched
samples, we ran two identical nano-LC−MS/MS experiments 10 days
apart on the same LC−MS system. (A) The relationship between apex
retention times of the 7589 unique peptides common between
experiments displays a high degree of linearity (R2 = 0.9989) but a
skewed slope and nonzero intercept (m = 1.033; b = −0.647). (B)
Average deviation from unity was nearly a minute off (μ = −0.805
min), with a broad distribution over 2 min wide. (C) Peptides ranked
by their relative elution order exhibit a normal distribution around zero
(μ = −1.097).
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Prior knowledge is needed of the sample to adequately
calculate the EOs of the peptides in the sample. With time-
based scheduled methods, many cursory experiments are
performed to optimize the RTs of the targeted peptides. To
reduce variances in RTs, it is vital that these initial experiments
are conducted exactly the same as the targeted experiments. In
stark contrast, EOs can be determined using a variety of
methods. First, much work has been devoted to determining
peptide hydrophobicities from theoretical calculations of the
amino acid sequence.52−55 A simple list of peptides, ordered by
their hydrophobicities, can produce a highly linear elution
ordering. Second, previously collected data of the sample can
produce an accurate elution ordering as long as the LC
conditions are similar enough. This enables the combination of
multiple data sets to produce a single EO versus m/z map
(elution order map, EOM), regardless of their individual
separation durations. This is accomplished by rank ordering all
peptide identifications in a given run and normalizing their
orderings between 0 and 100 (where 100 represents the last
eluting peptide). These normalized values are then matched
between experiments and aligned using a simple algorithm to
produce the final EOM as shown in Figure 3A. Lastly, the most
robust method for determining peptide EOs is to perform a
discovery experiment right before the targeted experiment.
Regardless of how EO is determined, the final EOM is

uploaded onto the instrument and is accessed throughout the
course of the subsequent analyses.
Prior to targeted analysis, a list of peptide targets, along with

their relative EOs, is also uploaded to the instrument (Figure
4B). Each target is assigned an EO range (first and last
appearance) depending on its length of elution in the discovery
experiments. (See Figure 4C for zoom in.) Maintaining a
dynamic EO range for each peptide is needed as different
peptides elute for different amount of time during the
separation. During the targeted analysis, instead of relying on
absolute RT to trigger targeted MS/MS scans, determining the
current EO becomes the main goal of the method. We have
designed an online peptide elution order alignment (EOA)
algorithm that takes a single MS1 spectrum and computes the
current EO therefrom. In brief, following MS1 acquisition, the
EOA algorithm takes the most intense m/z feature and extracts
all EO values from the uploaded EOM at a narrow m/z
tolerance (e.g., 10 ppm) (Figure 3A). Each m/z feature is
matched in a similar fashion, and the resulting EO values are
stored in a separate array (Figure 3B). In this example MS1, 21
m/z features matched a total of 80 EO values. When binned
into 1 EO-wide bins, 41 of these values are contained within a
single bin at 50 EO units. This indicates with high confidence
that the current EO is somewhere near 50. To determine the
EO precisely, the algorithm then calculates the 95% confidence

Figure 3. Real-time elution order alignment algorithm. 46.3 min into a nano-LC−MS/MS experiment, an MS1 scan is performed (A) and m/z
features are matched to a 2D ion map stored on the instrument. (B) 21 of the peaks match 80 features in the ion map at a 10 ppm tolerance. Of
these, over half (41 of 80) were mapped to one elution order bin (51 elution order). (C) A rolling elution order range is continually updated
throughout the nano-LC−MS/MS experiment.

Figure 4. Following determination of the current elution order range (A), target peptides (B) sharing a similar elution order value are selected (C,
rectangles represent individual peptides). Peptide targets within the elution order range are filtered based on when they were last sampled for MS/
MS (D), leaving only targets that have been waiting the longest (e.g., > 5 s, highlighted rectangles). Those filtered peptides are then immediately
sampled by MS/MS, regardless of MS1 detection (D). Unfilled MS/MS events are automatically filled with m/z features picked by the intensity-
based DDA algorithm using normal sampling parameters (e.g., dynamic exclusion, intensity threshold, charge state exclusion, etc.).
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interval around the max EO bin and stores the minimum
(50.02) and maximum (51.64) EO. This process is repeated for
each MS1, and over time the calculated EO range constructs a
rolling average, as shown in Figure 3C. The EOA algorithm is
expedient, taking on average 26 ms per MS1 to execute and
does not induce a statistically significant change in the total
number of MS/MS scans performed (Supplemental Figure 3 in
the Supporting Information).
Once the current EO range is determined, peptides sharing a

similar EO are selected for MS/MS analysis. In brief, the
current EO range is intersected with the target peptides already
uploaded on the instrument (Figure 4B), and peptides whose
EO overlaps the current EO range are stored as potential
targets (Figure 4C). These peptides have a high probability of
imminently eluting because they share very similar EO values
with the current overall EO value. To prevent oversampling of
any given target, potential targets are filtered based on how
long since they were last sampled. Peptides that have been
waiting the longest (e.g., >5 s) are automatically triggered for
MS/MS analysis regardless of MS1 detection. Unfilled MS/MS
events are then populated using normal DDA top-N
approaches, excluding any m/z previously selected to be
targeted (Figure 4D). This data collection scheme enables
repetitive, consistent targeting of multiple peptides over their
elution while allowing DDA scans to facilitate discovery. The
EOA algorithm is compatible with other quantitative strategies
such as parallel reaction monitoring (PRM),56,57 where peptide
targets are repeatedly sampled (MS/MS) over their elution,
and the resulting fragment ions are extracted to provide
quantitative information (Supplemental Figure 4 in the
Supporting Information).

Improving Peptide Identification in Multiple Experiments

We reasoned that the EOA algorithm would improve the
reproducibility of peptide identification across multiple runs.
Additionally, we increased the proteomic complexity by using a
mammalian system (mouse) instead of yeast to determine how
sample complexity affects the algorithm. Here a male C57BL/
B6 mouse was sacrificed at 10 weeks, eight organs were
harvested, and peptides from a tryptic digestion of each organ
were labeled with a TMT 8-plex tag. First, six DDA top-15
nano-LC−MS/MS experiments were performed on the peptide
sample. From the results of these discovery experiments, 500
peptidesidentified in only three of the six experimentswere
randomly selected to serve as peptide targets. These targets
represent peptides that are difficult to identify reproducibly
using standard DDA methodology. Additionally, we chose 500
targets because this represents the limit of the number of
targets one could target with an inclusion list on the Orbitrap
Elite MS in a single nano-LC−MS/MS analysis. Each target
peptide’s EO was calculated from the three discovery
experiments they were identified in, combined into a single
EOM, and then uploaded to the instrument prior to targeting
(Figure 4B). The same vial of mouse peptides, kept at 4 °C in
an autosampler, used in the discovery experiments was then
analyzed using DDA, followed by an accurate mass inclusion
list (INC) and last intelligent data acquisition (IDA). This
sequence was repeated for six technical replicates. On average,
only 256 (51%) of the targeted peptides were identified in each
of the DDA experiments (Figure 5A, 1% peptide-level FDR,
error bars represent one σ). This is consistent with targeted
peptides, as they originated from three of the original six
discovery experiments (50%). The accurate mass inclusion list

modestly increases identifications to an average of 280 (56%)
targets per experiment. The biggest improvement is realized
with IDA, where 440 of 500 targets (88%) were identified on
average in each nano-LC−MS/MS experiment. When all six
experiments for each method were combined and analyzed
together, IDA identified 483 target peptides at least once, while
INC identified 456 and DDA identified 426 at least once.
Notably, 69 of the targets were only identified by IDA and not
by DDA, while only 13 unique targets were discovered by DDA
and not identified by IDA (Figure 5C and Supplemental Figure
5 in the Supporting Information). These results indicate that
both DDA and the inclusion list undersampled the targeted
peptides; presumably this is a result of either low S/N or poor
charge-state determination of the precursor ions in the MS1.
The IDA method avoids both of these issues by sampling
regardless of MS1 detection, depending only on the target’s
expected elution ordering.
Since the IDA method enables simultaneous DDA MS/MS

sampling, comparisons of the total number of peptide
identifications between the three acquisition methods can be
made (Figure 5B). Each method produced nearly the same
number of PSMs. A difference appears at the unique PSMs level
(i.e., peptides), where both DDA and INC produced similar
number of identifications (∼5800 peptides) but dropped to
∼3700 using IDA. We attributed this decline primarily to the
redundant sampling of target peptides with the IDA method
compared with the other methods. IDA identified each target
4.3 times on average, compared with 0.59 and 0.63 for DDA
and INC, respectively, a ∼7:1 ratio. This is in agreement with

Figure 5. Subset of 500 mouse peptides were targeted with DDA, an
accurate mass inclusion list (INC), and our intelligent data acquisition
(IDA) method in hexplicate. (A) IDA identified the most target
peptides of the three methods (error bars represent the 1 σ). (B)
Discovery identifications by three methods show only a slight decline
in the total number of peptides identified using IDA. (C) 74% of the
targets were observed in all six technical replicates when IDA was used
compared with <20% for the inclusion list or data-dependent
acquisition.
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the ratio of dynamic exclusion times between methods; IDA
uses 5 s for each target compared with the longer dynamic
exclusion time (35 s, 1:7) used in the DDA and INC methods.
The oversampling of target peptides in IDA increases the
likelihood of identification. We feel that it is an acceptable
trade-off between maximizing reproducibility for a subset of
peptides and a slight decline in total identified peptides. The
increased reproducibility is demonstrated in Figure 5C; the
IDA method identified 370 (74%) of the same peptides in all
six experiments. The same cannot be said for DDA or INC;
they managed to identify only 69 and 84 peptides in all six
experiments, respectively. This represents an increase of over
340% in the number of peptide targets that were seen in all
replicates.

Improved Reproducibility in Biological Systems

All data previously described have consisted of technical
replicates of the same sample, injected with the same HPLC
and analyzed using the same MS. These technical replicates are
ideal to develop acquisitions methods on, primarily because the
same peptides should exist in each injection, which removes
sample variability from obfuscating the results. However,
biological replication in proteomic studies is becoming more
prevalent due to the increase in statistical power it affords. Four
male C57BL/B6 mice were sacrificed at 10 weeks, eight organs
were harvested, and peptides from a tryptic digestion of each
organ were labeled with a TMT 8-plex tag to test whether
intelligent data acquisition improves reproducibility in bio-
logical systems (Figure 6A,B). The tagged peptides from each
mouse were mixed together and separated over a 165 min
gradient and sampled using a DDA top-15 method to generate
a list of peptide targets. An average of 8683 ± 313 peptide
sequences were identified in each mouse for a total of 13 502
unique sequences. Of these, only 3969 (29.4%) peptides were
identified in every mouse (Figure 6C). A subset of 1500
peptides was selected from the peptides detected in either two
or three of four mice and sorted based on their assigned EOs
(Figure 6D). Here peptide targets were chosen to be evenly
distributed in the EO dimension to limit the number of
coeluting peptides at given point. In subsequent targeting
experiments, each mouse sample was analyzed twice, once
using DDA and the other IDA, for a total of eight experiments.
When the DDA targeting experiments were analyzed, an
average of 810 (54%) target peptides were identified (Figure
7A, 1% peptide-level FDR, error bars represent one σ). Using
IDA, this number increases to 1072 (71.5%). In total, over half
of the targeted peptides (826, 55.1%) were identified in all four
mice when using IDA compared with only 30.6% (459) using
DDA (Figure 7B). The IDA method represents a nearly 80%
improvement over DDA in the number of peptide targets it
identifies in all mice. This increase in reproducible identification
improves the quantitative results as well. When each tissue is
compared with liver, the number of quantified peptides that are
statistically significant (p value <0.05, Student’s t test with
Storey Correction) is on average 227 greater with IDA
compared with DDA (Figure 7C). For example, when the
quantitative data for muscle is compared with that for liver
(Figure 7D), IDA produced 826 significantly different peptides
while only 531 were significant for DDA, a 56% increase. This
can be directly attributed to increased reproducibility in
identification across biological samples.

■ CONCLUSIONS
The ability to identify the same peptides in multiple
experiments reproducibly is increasingly important in proteo-
mic analysis because increased statistical power is demanded.
Historically, the most common acquisition method, DDA, has
been used to sample large portions of proteomes, but it lacks
adequate peptide identification reproducibility. We expand
upon our previous IDA work and introduce the concept of
using EO as a way to schedule and target peptides. Here we
have described an online EOA algorithm that automatically
adjusts to different chromatographic conditions to deliver
consistent scheduling and robust reproducibility. The method is
capable of targeting large number of peptides (>500) in a single
run with minimal upfront preparation and effort. Using this
method, we have shown improvements in peptide identification
overlap among multiple experiments compared with DDA
(88% compared with 50% identification overlap in six
experiments). The EOA algorithm is capable of improving
reproducibility even for highly variable samples. In four mice,
our method was able to identify 806 target peptides compared
with only 459 using normal DDA sampling.

Figure 6. (A) Four C57Bl/6 mice were sacrificed at 10 weeks of age,
and eight organs were harvested from each mouse. (B) Peptides
resulting from a tryptic digestion of lysates from each organism were
labeled with TMT 8-plex tags in a randomized order. (C) 165 min
nano-LC−MS/MS experiments using DDA top-15 method identified
only 3969 peptides in all four mice. (D) A subset of 1500 peptide
targets was selected from peptides detected in only two or three of all
four mice.
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We believe that such technologies can now be applied to
traditional SRM methods that use triple quadrupole mass
spectrometers. Here periodic full MS scans could be performed
and analyzed to calculate the current EO and adjust the timing
of the SRM transitions. One challenge would be the decreased
specificity in determining EO from low-resolution scans.
However, using a more adaptable metric for scheduling
(elution ordering vs RT) could potentially increase the
portability and robustness of SRM methods while reducing
development time. Additionally, improved quantitative results
could be obtained by deliberately oversampling one particular
peptide target during its elution and quantifying with PRM or
label-free methods.
Unlike SRM methods, where every MS/MS scan is

predetermined, a novel aspect of our method is the flexibility
of combining both targeted and discovery analysis in a single
nano-LC−MS/MS experiment. The MS intelligently switches
between targeted and discovery modes depending on what
peptides are currently eluting, without any human intervention.
In one experiment, over 3700 unique mouse peptides were
discovered while simultaneously targeting 500 other peptides.
Such hybrid MS methods enable both a focused and holistic
view on the same sample, something that is welcomed when
sample-limited.
Until comprehensive proteomic coverage is routinely

obtained, targeted methods will be heavily used and developed.
We have explored increasing the intelligence of MS methods as
a means to improve the throughput and power of peptide
targeting without sacrificing the novel discovery aspect of DDA
sampling. Future work includes improvements to the
determination of EOs, increasing the success rate of target
identification, exploring additional quantitative strategies (e.g.,
PRM, label-free), and maximizing the throughput to target
larger portions of the proteome without laborious upfront
work.
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