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Outcome misclassification is widespread in epidemiology, but methods to account for it are rarely used. We

describe the use of multiple imputation to reduce bias when validation data are available for a subgroup of study

participants. This approach is illustrated using data from 308 participants in the multicenter Herpetic Eye Disease

Study between 1992 and 1998 (48% female; 85% white; median age, 49 years). The odds ratio comparing the

acyclovir group with the placebo group on the gold-standard outcome (physician-diagnosed herpes simplex virus

recurrence) was 0.62 (95% confidence interval (CI): 0.35, 1.09). We masked ourselves to physician diagnosis

except for a 30% validation subgroup used to compare methods. Multiple imputation (odds ratio (OR) = 0.60; 95%

CI: 0.24, 1.51) was compared with naive analysis using self-reported outcomes (OR = 0.90; 95% CI: 0.47, 1.73),

analysis restricted to the validation subgroup (OR = 0.57; 95% CI: 0.20, 1.59), and direct maximum likelihood

(OR = 0.62; 95% CI: 0.26, 1.53). In simulations, multiple imputation and direct maximum likelihood had greater

statistical power than did analysis restricted to the validation subgroup, yet all 3 provided unbiased estimates of

the odds ratio. The multiple-imputation approach was extended to estimate risk ratios using log-binomial regres-

sion. Multiple imputation has advantages regarding flexibility and ease of implementation for epidemiologists

familiar with missing data methods.

bias(epidemiology); logistic regression; Monte Carlo method; sensitivity and specificity

Abbreviations: CI, confidence interval; HSV, herpes simplex virus; SE, standard error.

Misclassification of outcome variables is common in epi-
demiology and threatens the validity of inferences from epi-
demiologic studies (1, 2). However, standard approaches to
epidemiologic data analysis typically assume outcome mis-
classification is absent. Although approaches to account for
bias in crude effect estimates due to use of a misclassified
binary outcome have existed for more than half a century
(2), these methods are rarely used because epidemiologists
commonly wish to present results that have been adjusted
for several confounding variables. More recently, investiga-
tors have developed maximum likelihood approaches (2, 3)
to produce odds ratio estimates that account for outcome
misclassification while adjusting for relevant confounders
using logistic regression, but these methods have not been
widely applied in the epidemiologic literature. Here we
describe an alternative approach to account for outcome

misclassification using missing data methods that are famil-
iar to epidemiologists.
Methods to account for misclassification rely on informa-

tion relating the observed outcome to the gold-standard
outcomemeasure. This relationship can be estimated by com-
paring the observed outcome to the gold-standard outcome
in a validation subgroup that is a random subset of the main
study or in external data. In the present study, we focused on
the former case, in which internal validation data are avail-
able for a subgroup of the population under study. We
treated outcome misclassification as a missing data problem
in which the true outcome status is known only for partici-
pants in the validation subgroup and is missing for all other
participants (4). This perspective allowed misclassification
bias to be addressed by applying well-established methods
for handling missing data (5–7). In the sections that follow,
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we described an approach to account for outcome misclassi-
fication using multiple imputation to estimate odds ratios
and risk ratios, provided examples using cohort data (8), and
explored some finite sample properties of the proposed
method by Monte Carlo simulation.

MATERIALS AND METHODS

Study population

We illustrate the use of multiple imputation to account for
outcome misclassification using data from the Herpetic Eye
Disease Study, a randomized trial of acyclovir for the pre-
vention of ocular herpes simplex virus (HSV) recurrence at
58 university and community-based sites in the United
States (9). Participants were 12 years of age or older and had
an episode of ocular HSV in the 12 months before the study,
but their disease had been inactive during the 30 days pre-
ceding the study. During the study, the 703 participants
received either oral acyclovir or placebo for 12 months. The
goal of the study was to compare the 12-month incidence of
ocular HSV recurrence between the group randomized to
receive acyclovir and the group randomized to receive the
placebo. Information was also collected on age, race, sex,
and number of ocular recurrences before randomization.
Here, we restricted analyses to the 308 of 703 participants
who co-enrolled in a study that collected weekly diaries
about ocular HSV symptoms and possible triggers between
1992 and 1998 (10).

Outcome ascertainment and validation

The outcome of interest was a binary indicator of HSV
recurrence over the 12-month study period (any recurrence
versus none) assessed in 2 ways. Study-certified ophthal-
mologists examined participants using microscopy when
symptoms were apparent or at planned study visits in
months 1, 3, 6, 9, and 12. In addition, participant-reported
HSV recurrence was obtained from a weekly diary. We con-
sider participant-reported HSV recurrence to be the observed,
and possibly mismeasured, version of the outcome variable
(W = 1 if the participant reported any recurrence, W = 0 oth-
erwise), and physician-diagnosed HSV recurrence to be the
gold standard (D = 1 if the ophthalmologist diagnosed a
recurrence, D = 0 otherwise). We randomly sampled 30%
(n = 91) of the 308 participants to treat as a validation sub-
group. In the present analysis, we assumed thatW was avail-
able for all participants and D was observed only for those
selected to be in this hypothetical validation subgroup.

Statistical methods

We used logistic regression to estimate the odds ratio
comparing ocular HSV recurrence between participants ran-
domly assigned to acyclovir and those assigned to placebo.
We compared the results of an ideal analysis on the full
cohort of 308 participants using the physician diagnosis as
the outcome variable with results from 4 methods for
handling outcome misclassification: 1) the naive analysis,
in which W represented the outcome status for all 308

participants; 2) the validation subgroup, in which the physician-
diagnosed outcomes (D) were compared between those
receiving acyclovir and those receiving placebo in the vali-
dation subgroup of 91 participants; 3) a direct maximum
likelihood approach (3) to account for outcome misclas-
sification and; 4) multiple imputation to account for out-
come misclassification. Direct maximum likelihood and
multiple-imputation approaches were evaluated under the
assumptions of both differential and nondifferential misclas-
sification of the outcome with respect to treatment group.
We further extended the direct maximum likelihood and
multiple-imputation approaches to estimate risk ratios using
log-binomial regression.

The direct maximum likelihood approach accounted for
outcome misclassification using the method described by
Lyles et al. (3). This approach included data from all partici-
pants, with those in the validation subgroup providing data
on the correctly classified outcome and those not in the vali-
dation subgroup providing data on the misclassified out-
come. In contrast, the naive analysis included data from all
participants but used only the misclassified outcome, and
the validation analysis included data from participants in the
validation subgroup only but used the correctly classified
outcome. To account for nondifferential misclassification in
the direct maximum likelihood approach, we estimated the
sensitivity and specificity from the records in the validation
subgroup. These values were used to compute the likelihood
to be maximized, which was a product of the main study
likelihood and the validation sample likelihood, as detailed
in Web Appendix 1 (available at http://aje.oxfordjournals.
org/). To relax the assumption of nondifferential misclassifi-
cation, we added treatment group to the model for sensitivity
and specificity.

Multiple imputation is a standard technique for handling
missing data (7, 11). We use multiple imputation to account
for outcome misclassification by exploiting the relationships
between D, W, treatment group (X), and other covariates (Z)
among participants in the validation subgroup to impute
values for D for all other participants.

The first step is to model the relationship between
physician-diagnosed HSV recurrence and participant-reported
HSV recurrence in the validation subgroup. In this example,
we use the logistic regression method for monotone missing
data (7). To do this, we regress physician-diagnosed HSV
recurrence (D) on participant-reported HSV recurrence (W),
treatment group (X), and other covariates (Z) using a logistic
regression model:

PðD ¼ 1jW;X;ZÞ

¼ expða0 þ a1W þ a2X þ a3WX þ a4ZÞ
1þ expða0 þ a1W þ a2X þ a3WX þ a4ZÞ : ð1Þ

We then draw a set of regression coefficients for each of K
imputations from the posterior predictive distribution of the
parameters. We set K = 40 in this analysis. We assume param-
eters follow a multivariate Gaussian distribution with mean
vector ðâ0; â1; â2; â3; â4Þ and covariance matrix ðŜwxzÞ esti-
mated from the logistic regression model above. Drawing
regression coefficients for each imputation allows uncertainty
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about the relationship between W, X, and D to propagate
through the analysis (7).
A new variable, D0

k, is created to represent the imputed out-
come. For participants in the validation subgroup, D0

k ¼ D;
where k indexes the number of imputations. For participants
not in the validation study, values for D0

k are imputed based
on the regression coefficients drawn for that imputation. For
each imputation, D0

k is assigned by a random draw from a
Bernoulli distribution with probability pk, where

pk ¼ expðâk
0 þ âk

1W þ âk
2X þ âk

3WX þ âk
4ZÞ

1þ expðâk
0 þ âk

1W þ âk
2X þ âk

3WX þ âk
4ZÞ

: ð2Þ

The analysis model is then used to compare imputed out-
comes between treatment and placebo groups conditional on
other covariates. In the example, we first use a logistic regres-
sion model to estimate the odds ratio comparing imputed
HSV recurrence for participants assigned to acyclovir and
those assigned to placebo in each imputation and combine
results using standard multiple-imputation techniques (11).
The logistic models for the imputed outcome given treatment
group and relevant covariates for k = 1 to 40 are

PðD0
k ¼ 1jX;ZÞ ¼ expðbk

0 þ bk
1X þ bk

2ZÞ
1þ expðbk

0 þ bk
1X þ bk

2ZÞ
: ð3Þ

The estimated odds ratio is

expð�b1Þ ¼ exp K�1
XK
k¼1

b̂
k
1

 !
; ð4Þ

where b̂
k
1 is the natural log of the estimated odds ratio from

the kth imputed dataset. The variance for �b1 is given by

Vð�b1Þ ¼
1
K

XK
k¼1

V̂ðb̂k
1Þ þ 1þ 1

K

� �
1

K � 1

� �XK
k¼1

ðb̂k
1 � �b1Þ2 :

ð5Þ

In a closed cohort, it may be preferable to estimate the risk
ratio instead of the odds ratio (12–14). To illustrate the ability
of the proposed multiple-imputation approach to estimate dif-
ferent parameters of interest, we also use a log-binomial
regression model to estimate the risk ratio comparing imputed
HSV recurrence for participants assigned to acyclovir and
those assigned to placebo in each imputation. To estimate a
risk ratio, the binomial model for the imputed outcome given
the treatment group and relevant covariates for k = 1 to 40 is
used in place of the logistic model shown in equation 3:

PðD0
k ¼ 1j X;ZÞ ¼ expðbk

0 þbk
1Xþbk

2ZÞ: ð6Þ

Multiple imputation can be used to account for misclassif-
ication of the outcome that is differential or nondifferential
with respect to the treatment group. The assumption of
nondifferential misclassification implies that α3 = 0 in the

imputation model (equation 2). In models in which α3 was
allowed to be different from 0 because the validation sub-
group was relatively small, we used Firth’s correction (15) to
prevent separation of data points (16). Firth’s correction uses
a modified score function to obtain maximum likelihood esti-
mates when response variables can be perfectly predicted by a
linear combination of risk factors (16), a situation known as
separation (17) or monotone likelihood (18). Firth’s correction
may be viewed as a multivariable extension of a continuity
correction. Web Appendix 2 provides the SAS code for multi-
ple imputation to account for outcome misclassification. Alter-
natively, one could use standard programs for multiple
imputation that are included in many statistical software pack-
ages, such as SAS’s PROC MI (SAS Institute, Inc., Cary,
North Carolina) or IVEware (University of Michigan, Ann
Arbor, Michigan).
Although the cohort originated as part of a randomized

trial, selection into the cohort for analysis was dependent on
the participant keeping a weekly diary, which could have
been influenced by several covariates. To estimate measures
of association that were not biased by this selection, we
adjusted for age, sex, and number of previous HSV occur-
rences by including these covariates in the Z vector in all
analyses.

Simulation study

The bias, 95% confidence interval coverage, mean
squared error, and statistical power for each method were
evaluated under 15 simulation scenarios (Web Appendix 3).
Each scenario represented different values of key parame-
ters: sensitivity, specificity, size of the validation subgroup,
and total sample size. One set of simulations was designed
to mimic the example; that is, for each trial, 300 participants
were generated with values for treatment group, true disease
status, reported disease status, and whether that individual
was in the validation subgroup.
Another set of scenarios used the same parameter values

but simulated a study of 1,000 participants. For each simula-
tion, we randomly selected either 10% or 30% of partici-
pants for the validation subgroup. In each scenario, the odds
ratio for the effect of acyclovir on ocular HSV recurrence
was estimated using each of the 4 methods described above
and summarized over 10,000 simulations. In a separate sce-
nario assuming no exposure effect in 10,000 cohorts of 1,000
participants with 30% validation subgroups, we assessed the
type-1 error rates of the maximum likelihood and multiple
imputation approaches. For both approaches, the type-1 error
rate was 0.051.

RESULTS

Study participants had a median age of 49 years; 48%
were female and 85% were white. Table 1 presents the data
on self-reported recurrence (W) and physician-diagnosed
ocular HSV recurrence (D) from the Herpetic Eye Disease
Study. Of the 308 study participants for whom both outcome
measures were available, 91 were randomly selected for the
hypothetical validation subgroup. Of the 14 participants in
the validation subgroup who reported HSV recurrences, 8
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were diagnosed with HSV recurrence by a physician; of the
77 participants who did not report HSV recurrence, 65
had no physician-diagnosed recurrence. Specificity of self-
reported HSV recurrence was 0.9 (95% confidence interval
(CI): 0.8, 1.0) and did not differ by treatment group. Sen-
sitivity appeared to be higher for participants assigned to
acyclovir (sensitivity = 0.5; 95% CI: 0.3, 0.6) than for partic-
ipants assigned to placebo (sensitivity = 0.3; 95% CI: 0.2,
0.5), though the difference was imprecise (P = 0.2). The sen-
sitivity and specificity of self-reported HSV recurrence in
the validation subgroup were similar to the sensitivity and
specificity in the full cohort.

Table 2 presents estimates of the odds ratio from each
method to account for outcome misclassification. In the
complete data, the odds ratio comparing the gold-standard
outcome measure, physician-diagnosed HSV recurrence,
between treatment groups was 0.62 (95% CI: 0.35, 1.09;
standard error (SE), 0.29). The odds ratio comparing self-
reported HSV recurrence between participants assigned to
acyclovir and those assigned to placebo was 0.90 (95% CI:
0.47, 1.73; SE, 0.33). Restricting the analysis to the 91 par-
ticipants in the validation subgroup yielded an odds ratio
estimate of 0.57 (95% CI: 0.20, 1.59; SE, 0.52). Although
this result was similar to the estimate from the complete
data, it was less precise, as was expected based on the

smaller sample size. Assuming outcome misclassification
was nondifferential with respect to treatment group, the
direct maximum likelihood approach estimated an odds
ratio of 0.62 (95% CI: 0.26, 1.53; SE, 0.46). Assuming dif-
ferential misclassification, the estimated odds ratio from the
direct maximum likelihood approach was 0.59 (95% CI:
0.22, 1.55; SE, 0.49). Accounting for outcome misclassifica-
tion through multiple imputation produced estimated odds
ratios of 0.60 (95% CI: 0.24, 1.51; SE, 0.47) and 0.62 (95%
CI: 0.24, 1.61; SE = 0.49) assuming nondifferential and
differential misclassification, respectively. Estimates from
the direct maximum likelihood and multiple imputation
approaches were similar in magnitude to estimates from the
validation subgroup alone and marginally more precise.
Table 3 presents results from several analyses of the risk
ratio. Direct maximum likelihood and multiple imputation
produced estimates of the risk ratio that were similar to the
estimate of the risk ratio from the complete data using physi-
cian-diagnosed recurrence as the outcome measure (risk
ratio = 0.68; 95% CI: 0.44, 1.07; SE, 0.23). Accounting for
outcome misclassification using direct maximum likelihood
produced an estimated risk ratio of 0.68 (95% CI: 0.34,
1.38; SE, 0.36) assuming nondifferential misclassification
and 0.65 (95% CI: 0.31, 1.40; SE, 0.39) assuming differen-
tial misclassification. The estimated risk ratios from the mul-
tiple imputation approach were 0.69 (95% CI: 0.35, 1.36;
SE, 0.35) and 0.69 (95% CI: 0.34, 1.41; SE, 0.36) assuming
nondifferential and differential misclassification, respec-
tively. Estimates of the risk ratio from both direct maximum
likelihood and multiple imputation were similar in magni-
tude to estimates from analysis limited to the validation sub-
group (risk ratio = 0.61; 95% CI: 0.27, 1.35, SE, 0.41) and
were slightly more precise.

Simulation results

Results from the simulations indicated that multiple impu-
tation removed bias due to outcome misclassification under
all combinations of sensitivity, specificity, and validation
subgroup sizes explored. Naive estimates were biased dra-
matically towards the null in scenarios with both nondiffer-
ential and differential misclassification, with bias increasing
as sensitivity decreased (Tables 4 and 5). In contrast, the
multiple-imputation approach yielded estimates of the odds
ratio with less bias than the naive analysis in all scenarios
examined. Bias in odds ratios estimated by multiple imputa-
tion was similar in magnitude to bias in estimates from anal-
yses limited to the validation subgroup and bias in estimates
obtained using direct maximum likelihood. Bias decreased
as the proportion of participants in the validation subgroup
increased, but all 3 correction methods succumbed to finite
sample bias when the total number of subjects in the valida-
tion subgroup was small.

Confidence intervals from the naive analysis showed poor
coverage that varied as a function of sensitivity and sample
size. Confidence intervals from multiple imputation main-
tained appropriate coverage, as did those from the validation
subgroup and direct maximum likelihood.

Multiple imputation and direct maximum likelihood gen-
erally had smaller mean squared errors than did analysis

Table 1. Characteristics of Full Cohort and Validation Subgroupa

(n = 308), Multicenter Herpetic Eye Disease Study, 1992–1998

Full Cohort
(n = 308)

Validation Subgroup
(n = 91)

No. on
Placebo

No. on
Acyclovir

No. on
Placebo

No. on
Acyclovir

No self-reported
recurrenceb

No diagnosed
recurrence

104 119 30 35

Diagnosed
recurrence

26 14 8 4

Self-reported
recurrenceb

No diagnosed
recurrence

11 10 3 3

Diagnosed
recurrence

12 12 4 4

Sensitivityc 0.32 0.46 0.33 0.50

Specificityd 0.90 0.92 0.91 0.92

a Self-reported outcomes and physician records were available for

all 308 participants. We sampled a synthetic validation subgroup of

91 participants for the purposes of illustration.
b Participants reported ocular HSV recurrences through a weekly

diary and were seen by an ophthalmologist every 3 months. Self-

reported recurrences were determined from data obtained from patient

diaries, and physician-diagnosed recurrences were determined via

examination by the study ophthalmologist.
c Sensitivity was the proportion of patients with a physician-

diagnosed recurrence who also self-reported a recurrence.
d Specificity was the proportion of participants without a physician-

diagnosed recurrence who did not self-report a recurrence.
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limited to the validation subgroup. However, all 3 methods
used to account for outcome misclassification typically
had larger mean squared errors than did the naive analysis
because the added imprecision of the correction methods
offset the corresponding reduction in bias.
Results from simulations indicated that both direct maxi-

mum likelihood and multiple imputation had higher statistical
power than did limiting the analysis to the validation sub-
group at levels of sensitivity commonly seen in the literature
(0.9 and 0.6), but that all 3 nonnaive methods had similar sta-
tistical power at low values of sensitivity (0.3), as seen in the
example (Figure 1). Analyses that accounted for misclassifica-
tion using multiple imputation were slightly less powerful
than those that used direct maximum likelihood. As expected,
statistical power for the methods to account for outcome mis-
classification increased as the sensitivity of the observed
outcome measure increased. Despite a pronounced null bias,
the naive analysis had high statistical power when sensitivity
was large due to its high precision. However, when sensitivity
decreased, bias in the naive analysis caused power to fall well
below that of the other methods.

DISCUSSION

Multiple imputation performed well to account for bias due
to outcome misclassification in the Herpetic Eye Disease

Study example and the scenarios explored through simulation.
Estimates from multiple imputation were similar in magnitude
to estimates from the complete data using the gold-standard
outcome and were marginally more precise than estimates
from the analysis limited to the validation subgroup. Multiple
imputation produced estimates that were similar in magnitude
and precision to estimates obtained using direct maximum
likelihood to account for outcome misclassification. These
results were supported in Monte Carlo simulations, in which
multiple imputation yielded estimates with little bias in all
scenarios and was sometimes more statistically powerful than
analyses limited to the validation subgroup.
Both multiple imputation and direct maximum likelihood

have been used to handle traditional missing data situations
(7, 19, 20) and exposure measurement error (4, 21). Both
approaches have been shown to provide consistent and
asymptotically normal estimates. The direct maximum like-
lihood approach produces estimates that are asymptotically
efficient, whereas multiple imputation produces estimates
that approach asymptotic efficiency as the number of impu-
tations increases (22). Although multiple imputation uses a
2-stage estimation procedure, it can be implemented with
standard missing data methods. In contrast, though direct
maximum likelihood methods perform estimation in a single
step, these methods must be programmed explicitly using
a procedure that is able to obtain maximum likelihood

Table 2. Estimates of the Odds Ratio Comparing Recurrence of Ocular Herpes Simplex Virus Between

Participants Randomized to Acyclovir or Placebo From Various Models (n = 308), Multicenter Herpetic Eye Disease

Study, 1992–1998

Model
No. of

Outcomes
No. at
Risk

Adjusted
ORa 95% CI

SE for
ln(OR)

Complete data, physician-
diagnosed recurrence

Acyclovir group 26 155 0.62 0.35, 1.09 0.29

Placebo group 38 153 1

Total 64 308

Naive analysis

Acyclovir group 22 155 0.90 0.47, 1.73 0.33

Placebo group 23 153 1

Total 45 308

Validation subgroupb

Acyclovir group 8 46 0.57 0.20, 1.59 0.52

Placebo group 12 45 1

Total 20 91

Direct maximum likelihood
(nondifferential)

0.62 0.26, 1.53 0.46

Direct maximum likelihood
(differential)

0.59 0.22, 1.55 0.49

Multiple imputation
(nondifferential)

0.60 0.24, 1.51 0.47

Multiple imputation
(differential)

0.62 0.24, 1.61 0.49

Abbreviations: CI, confidence interval; ln(OR), natural log of the odds ratio; OR, odds ratio; SE, standard error.
a All models were adjusted for race, sex, age, and number of previous recurrences.
b Validation subgroup included 91 participants.
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Table 3. Estimates of the Risk Ratio Comparing Recurrence of Ocular Herpes Simplex Virus Between Participants

Randomized to Acyclovir or Placebo From Various Models (n = 308), Multicenter Herpetic Eye Disease Study,

1992–1998

Model
No. of

Outcomes
No. at
Risk

Adjusted
RRa 95% CI

SE for
ln(RR)

Complete data, physician-
diagnosed recurrence

Acyclovir group 26 155 0.68 0.44, 1.07 0.23

Placebo group 38 153 1

Total 64 308

Naive analysis

Acyclovir group 22 155 0.93 0.55, 1.59 0.27

Placebo group 23 153 1

Total 45 308

Validation subgroupb

Acyclovir group 8 46 0.61 0.27, 1.35 0.41

Placebo group 12 45 1

Total 20 91

Direct maximum likelihood
(nondifferential)

0.68 0.34, 1.38 0.36

Direct maximum likelihood
(differential)

0.65 0.31, 1.40 0.39

Multiple imputation
(nondifferential)

0.69 0.35, 1.36 0.35

Multiple imputation
(differential)

0.69 0.34, 1.41 0.36

Abbreviations: CI, confidence interval; ln(RR), natural log of the risk ratio; RR, risk ratio; SE, standard error.
a All models were adjusted for race, sex, age, and number of previous recurrences.
b Validation subgroup included 91 participants.

Table 4. Bias, 95% Confidence Interval Coverage, and Mean Squared Error for Simulation Studiesa Under 9 Scenarios for Nondifferential

Misclassification

Sensitivity Specificity
Sample
Size

Validation
Percentb

Naive Validation
Direct Maximum

Likelihood
Multiple Imputation

Biasc Coverd MSEe Bias Cover MSE Bias Cover MSE Bias Cover MSE

0.9 0.9 1,000 10 24 62 8 −5 96 47 −4 96 33 2 97 27

1,000 30 24 62 8 −1 95 10 −1 95 6 −1 95 6

300 30 24 85 13 −5 96 47 −4 96 42 2 97 27

0.6 0.9 1,000 10 35 40 15 −5 96 47 −5 96 48 −3 96 29

1,000 30 35 40 15 −1 95 10 −1 95 8 −1 95 8

300 30 35 76 21 −5 96 47 −4 96 48 −3 96 33

0.3 0.9 1,000 10 51 20 30 −5 96 47 −5 96 54 −4 95 35

1,000 30 51 20 30 −1 95 10 −1 95 9 −1 95 9

300 30 51 66 38 −5 96 47 −5 96 58 −3 96 37

Abbreviation: MSE, mean squared error.
a Results are summarized over 10,000 simulations.
b Percent of all participants included in the validation subgroup.
c Bias was defined as 100 times the difference between the average estimated log odds ratio and the true log odds ratio.
d Confidence interval coverage was calculated as the percentage of simulations in which the estimated 95% Wald-type confidence limits

included the true value.
e MSE was calculated as the sum of the bias squared and the variance.
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estimates given a general likelihood expression, such as the
SAS procedure NLMIXED. We could have addressed out-
come misclassification with other techniques to handle
missing data, such as inverse probability weights or the

expectation maximization algorithm.We chose to use multiple
imputation because the standard inverse probability–weighted
estimator is inefficient (23) and the expectation maximiza-
tion algorithm is more difficult to implement in standard
software.
In the example, we demonstrated that the multiple imputa-

tion approach can be easily adapted to estimate risk ratios using
log-binomial regression. Had the binomial model not con-
verged, we could have applied the multiple-imputation ap-
proach with any standard method to estimate the risk ratio,
including the “copy method” applied in the binomial model
(24, 25), modified Poisson regression (26), or Bayesian tech-
niques (27). More importantly, flexibility in the choice of
analysis models enables the multiple-imputation techniques
illustrated here to be further extended to account for misclassi-
fication of nonbinary outcomes by altering the imputation and
analysis models. For continuous outcomes measured with
error, the observed outcome measure and covariates could be
regressed on the gold-standard outcome measure in the valida-
tion subgroup using linear regression. Coefficients from this
model could be used to impute outcomes for study partici-
pants not in the validation subgroup, and the complete data set
could then be analyzed using the appropriate analysis model.
Another advantage of the multiple-imputation approach is

that it easily allows researchers to include different sets of
variables in the imputation model and the analysis model.
Performing the imputation and analysis using different
models avoids the problem of conditioning on variables
influencing only the relationship between the observed and
gold-standard outcome in the final analysis model. Likewise,
the imputation model could be altered to use more flexible
prediction functions in place of the linear-logistic model
used to impute outcomes in this example (28).
Although the present work focuses on estimation of effect

measures in a closed cohort, flexibility in the choice of

Table 5. Bias, 95% Confidence Interval Coverage, and Mean Squared Error for Simulation Studiesa Under 6 Scenarios for Differential

Misclassification

Sensitivityb
Specificity

Sample
Size

Validation
Percentc

Naive Validation
Direct Maximum

Likelihood
Multiple

Imputation

Biasd Covere MSEf Bias Cover MSE Bias Cover MSE Bias Cover MSE

(0.95,
0.85)

0.9 1,000 10 34 36 14 −5 96 47 −5 96 41 4 100 12

1,000 30 34 36 14 −1 95 10 −1 95 6 1 97 6

300 30 34 75 19 −5 96 47 −4 96 42 3 99 17

(0.70,
0.50)

0.9 1,000 10 60 4 39 −5 96 47 −5 96 46 3 98 17

1,000 30 60 4 39 −1 95 10 −1 95 8 0 96 7

300 30 60 47 45 −5 96 47 −5 96 49 2 98 23

Abbreviation: MSE, mean squared error.
a Results are summarized over 10,000 simulations.
b Sensitivity differs by exposure group; presented as (sensitivity for X = 1, sensitivity for X = 0).
c Percent of all participants included in the validation subgroup.
d Bias was defined as 100 times the difference between the average estimated log odds ratio and the true log odds ratio.
e Confidence interval coverage was calculated as the percentage of simulations in which the estimated 95% Wald-type confidence limits

included the true value.
f MSE was calculated as the sum of the bias squared and the variance.

Figure 1. Relationship between statistical power and sensitivity of
the observed outcome measure in simulations with a 30% validation
subgroup and a total sample size of 1,000 for the naive analysis,
analysis limited to the validation subgroup, analysis using the direct
maximum likelihood method, and analysis using the multiple-
imputation method to account for outcome misclassification.
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analysis model allows the multiple-imputation approach to
be extended to account for outcome misclassification in
analysis of time-to-event outcomes in situations in which the
event type is subject to error but the event date is assumed to
be known. In this scenario, the event indicator could be
imputed using the monotone logistic method, and the hazard
ratio or rate ratio would be estimated in each imputation and
summarized using equation 4.

Measurement error methods typically assume that the rela-
tionship between the true outcome and the observed outcome
variable is monotonic, which implies that the observed out-
come measure increases, plateaus, or decreases with increas-
ing levels of the gold-standard measure but does not
decrease after an increase or vice versa (29). Monotonicity is
ensured for binary outcome variables (as in the example) but
must be considered for nonbinary outcomes.

In the example, accounting for misclassification with mul-
tiple imputation and direct maximum likelihood offered
only slight gains in precision over analysis limited to the val-
idation subgroup. We expect estimates from multiple impu-
tation and direct maximum likelihood to be more precise
than estimates from the validation subgroup because these
methods use information from all participants in the study to
estimate the effect size, whereas analysis limited to the vali-
dation subgroup discards all information on participants
missing the gold-standard outcome measure. Because in our
example the observed outcome was a poor proxy for the
gold-standard outcome, the imputation model contained a
high degree of uncertainty that propagated through to the
variance of the final effect estimate. Larger gains in preci-
sion would be expected if sensitivity in the example datawere
higher or the proportion of participants in the validation
substudy were smaller. However, in the example, when the
proportion of participants in the validation substudy was
further reduced, the absolute numbers in the validation
substudy became so small that results became unstable.

In simulations, we used mean squared error to assess the
tradeoff between bias and precision. Despite its large bias,
the naive analysis had a smaller mean squared error than did
methods to account for outcome misclassification in most of
the scenarios explored through simulation. Because mean
squared error places equal weight on bias and variance, the
precision of the naive analysis offset its bias. In large sample
sizes, where mean squared error is dominated by bias
instead of random error, the nonnaive methods will be
superior to the naive analysis. The simulation results can be
interpreted only under the assumption that the underlying
data-generating mechanism matches the parametric models
used to simulate the data. It is unclear how multiple imputa-
tion and direct maximum likelihood would have performed
under a misspecified analysis model.

We have shown that multiple imputation works well to
account for both nondifferential and differential outcome
misclassification.When the degree ofmisclassification varied
across levels of exposure, we often saw separation of data
points in the imputation model. Separation is likely to occur
when the positive predictive value of the observed outcome
is high. In this analysis, we applied Firth’s correction to obtain
point estimates in these models. Alternatively, Bayesian
methods could be used to address the problem of separation

by incorporating prior information to stabilize regression
coefficients.

A limitation of the both multiple-imputation and direct
maximum likelihood approaches is that they depend on
correct specification of the model relating the observed out-
come to the gold-standard outcome measure. Estimates of the
association between exposure and outcome could be biased if
the relationship between the observed and gold-standard mea-
surements is not transportable, implying that it is not consis-
tent between the validation subgroup and the complete data.
Obtaining a representative validation subgroup is vital to any
method using a validation study to account for misclassi-
fication, as these methods typically assume that information
on the gold-standard outcome measure is missing at random.
Because inclusion in the validation subgroup determines if
the gold-standard outcome is missing for a participant, the
probability of being included in the validation study must be
independent of that participant’s gold-standard outcome
given the observed outcome and the covariates. When infor-
mation on the gold-standard outcome measure is not missing
at random, the transportability assumption may not be met.

We must also consider the possibility that the gold-
standard measurement is itself misclassified. A fundamental
limitation of all validation studies is that they assume that
the gold-standard outcome measure represents the true out-
come. In the example, physician diagnosis may have been
misclassified if a participant experienced a recurrence of
HSV that resolved before the opportunity for physician diag-
nosis or if errors occurred during chart abstraction. In situa-
tions in which the gold-standard measurement is itself subject
to nonnegligible error, using methods that rely on validation
data to account for outcome misclassification may yield
biased and falsely precise estimates (30).

Under the assumptions mentioned above, applying multi-
ple imputation to account for outcome misclassification
removes bias in effect estimates from logistic and log-
binomial regression. This technique uses well-established
missing data methods that can be implemented using stan-
dard statistical software and provides an opportunity for data
analysts to account for outcome misclassification in wide
range of statistical models.
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