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SUMMARY

Modern case–control studies typically involve the collection of data on a large number of outcomes, often
at considerable logistical and monetary expense. These data are of potentially great value to subsequent
researchers, who, although not necessarily concerned with the disease that defined the case series in the
original study, may want to use the available information for a regression analysis involving a secondary
outcome. Because cases and controls are selected with unequal probability, regression analysis involving
a secondary outcome generally must acknowledge the sampling design. In this paper, the author presents a
new framework for the analysis of secondary outcomes in case–control studies. The approach is based on
a careful re-parameterization of the conditional model for the secondary outcome given the case–control
outcome and regression covariates, in terms of (a) the population regression of interest of the secondary
outcome given covariates and (b) the population regression of the case–control outcome on covariates. The
error distribution for the secondary outcome given covariates and case–control status is otherwise unre-
stricted. For a continuous outcome, the approach sometimes reduces to extending model (a) by including
a residual of (b) as a covariate. However, the framework is general in the sense that models (a) and (b)
can take any functional form, and the methodology allows for an identity, log or logit link function for
model (a).
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1. INTRODUCTION

Case–control studies typically collect information on a large number of outcomes, often at considerable
cost. These data are of potentially great value for studying associations, involving a secondary outcome
other than the disease outcome defining case–control status. For instance, secondary outcomes analy-
ses are now routine in genetic epidemiology, with several recent papers on genetic variants influenc-
ing human quantitative traits such as height, body mass index, and lipid levels, using data mostly from
case–control studies of complex diseases (diabetes, cancer, and hypertension) (Lettre and others, 2008;
Loos and others, 2008; Sanna and others, 2008; Weedon and others, 2007). Other examples have emerged
in environmental epidemiology, such as the recent study of Weuve and others (2009), which uses data
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taken, in part, from a case–control study nested within the Nurses’ Health Study (NHS). In the NHS
Lead Study, Boston-area NHS participants had extensive lead exposure assessment (bone and blood mea-
sures). Associations of lead measures with hypertension, bone mineral density/metabolism, and cogni-
tion were then assessed. However, the Lead Study selected women on the basis of their blood pressure
status. Therefore, analyses that aim to evaluate risk factors of osteoporosis (a binary outcome) and cog-
nitive function decline (a continuous outcome), may be affected by the case–control sampling design.
In fact, Monsees and others (2009) and Lin and Zeng (2009) established that the non-random ascertain-
ment from the study base, when ignored, can sometimes lead to inflated Type I error rate for tests of
associations of a secondary outcome in re-purposed case–control samples. They further showed that com-
monly used analytic techniques, such as least-squares regression for quantitative traits, can sometimes
give biased estimates, and that such bias can be present when covariates in the regression model in view,
are associated with the case–control outcome, which itself is independently associated with the secondary
outcome.

A number of analytic strategies have been proposed to eliminate selection bias associated with over-
sampling of cases in analyses of secondary outcomes; see, for instance, Nagelkerke and others (1995),
Lee and others (1997), Jiang and others (2006), Reilly and others (2005), Richardson and others (2007),
Lin and Zeng (2009), Monsees and others (2009), Li and others (2010), Wang and Shete (2011), and
Wei and others (2013). Suggested strategies include: (i) weighting the standard analysis by the inverse
of sampling probabilities (IPW); (ii) performing the analysis only in controls; (iii) analyzing cases and
controls separately, i.e. stratifying the analysis by case–control status; (iv) including case–control status as
a covariate in the regression model of the secondary outcome.

The first strategy (i) gives a viable simple solution as it recovers correct inferences about association
measures, without the burden of additional modeling that would be required had data been sampled inde-
pendently of case–control status. However, simply weighting by sampling rates will often be inefficient
(Robins and others, 1994; Tchetgen Tchetgen, 2012). The second method is appropriate only when the
disease status is rare in the population but does not use data on cases which might render it relatively
inefficient. Methods that adjust for the primary disease status by either (iii) or (iv) may yield flawed con-
clusions because the associations between a secondary outcome and an exposure of interest in the case
and control groups can be quite different from the association in the underlying target population. More
formal likelihood methods have also appeared in the literature. For instance, (v) Jiang and others (2006)
considered various likelihood methods for categorical secondary outcomes that can be more efficient than
(i). (vi) Recently, Lin and Zeng (2009) further generalized the likelihood framework for a continuous sec-
ondary outcome by assuming the latter follows a specific parametric distribution, with special emphasis
given to a normal model.

They also establish that the likelihood approach is well approximated by strategy (iv) under the follow-
ing specific conditions: (LZ.1) a rare disease assumption about the disease outcome defining case–control
status, (LZ.2) no interaction between the secondary outcome and covariates in a regression model for the
case–control outcome, and (LZ.3) the secondary outcome is normally distributed.

Thus, Lin and Zeng (2009) justify formally via a maximum likelihood argument, the conditional
approach (iv) under conditions (LZ.1)–(LZ.3). More recently, (vii) Wei and others (2013) develop an esti-
mating equations approach for a continuous secondary outcome which relaxes the distributional assump-
tion made in (v) somewhat, and instead requires that the secondary outcome regression is “strongly
homoscedastic” in the following sense. They assume that residuals from the secondary outcome regression
are independent of covariates, but their density is otherwise unrestricted. In other words, they suppose that
any association between the vector of covariates and the secondary outcome is completely captured by a
location shift model. Their inferential framework relies crucially on this assumption, and may be biased if
the assumption does not hold exactly.
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An additional approach is proposed by Chen and others (2013) who uses a bias correction formula
for an odds ratio parameter, while Ghosh and others (2013) adopt a retrospective likelihood framework,
further extending the likelihood framework of Lin and Zeng (2009).

In this paper, the author generalizes the conditional approach (iv) to allow for possible violation of
any or all of assumptions (LZ.1)–(LZ.3), without assuming the location shift model of Wei and others
(2013). The new approach is based on a careful non-parametric re-parameterization of the conditional
model for the secondary outcome given the case–control outcome and regression covariates, in terms of:
(a) the population regression of interest for the secondary outcome given covariates and (b) the population
regression of the case–control outcome on covariates.

Because non-parametric inference may not be practical for regression analysis with numerous covari-
ates, parametric, and semiparametric models will invariably be used in practice for (a) for (b). Crucially,
the re-parameterization ensures models for (a) and (b) are variation independent, in the sense that, whether
parametric or semiparametric, a choice of model for (a) places no restriction on a corresponding choice
of model for (b) and vice-versa. An important feature of the proposed strategy is that the error distribu-
tion for the secondary outcome conditional on covariates and case–control status is unrestricted. For a
continuous outcome, the approach sometimes simplifies to extending model (a) by including the resid-
ual of (b) as an additional regression covariate producing a regression model for the secondary outcome
conditional on case–control status, that is directly parameterized in terms of model (a). We show such a
re-parameterization can appropriately account for selection bias without compromising inference about the
population regression parameter. The framework is general in the sense that models (a) and (b) can take
any functional form, and the methodology is developed to allow the use of the identity, log (described in
supplementary material available at Biostatistics online) or logit link function in model (a). For inference,
a simple estimating equation framework is first developed, and a strategy for obtaining a semiparametric
locally efficient estimator is subsequently described. Simulations and an empirical example are used to
illustrate the approach.

2. REGRESSION WITH AN IDENTITY LINK FUNCTION

2.1 Re-parameterization of conditional regression function

Consider an unmatched case–control sample of i.i.d data consisting of the case–control status D, a con-
tinuous secondary outcome Y , and covariates X. Unless otherwise stated, we will assume that the sam-
pling fraction is known for cases and controls, respectively. This is often a reasonable assumption, that is,
fairly standard in the literature on secondary outcomes (e.g. Jiang and others, 2006; Lin and Zeng, 2009;
Wei and others, 2013), and the assumption is usually satisfied by design in nested case–control studies.
An equivalent assumption is that the disease prevalence is known to be p̄ = Pr(D = 1) in the target pop-
ulation, and π̄ = Pr(D = 1|S = 1) in the case–control sample, where S indicates selection into the case–
control sample. Formally, π̄ may be taken as the limiting proportion of cases in the case–control study with
increasing sample size. As we will see below, the assumption that p̄ is known will usually not be needed
when the disease is rare for all levels of X in the population. The main target of inference is the population
mean model for Y given X which we denote for the identity link, μ(X)= E(Y |X). A familiar example of
such a model is

μ(X)= (1,XT)β0. (2.1)

We will also consider the conditional mean of Y given (X, D), which we denote μ̃(X, D)= E(Y |X, D)=
E(Y |X, D, S = 1), where the second equality holds by design, because selection into the unmatched case–
control sample is independent of (Y,X) given D. Then, the following relation between μ(X) and μ̃(X, D)
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also holds,

μ(X)= μ̃(X, 1)Pr(D = 1|X)+ μ̃(X, 0)Pr(D = 0|X)

⇔
{
μ̃(X, 1)=μ(X)+ (1 − Pr(D = 1|X)){μ̃(X, 1)− μ̃(X, 0)},
μ̃(X, 0)=μ(X)+ (0 − Pr(D = 1|X)){μ̃(X, 1)− μ̃(X, 0)},

⇔ μ̃(X, D)=μ(X)+ t{D − Pr(D = 1|X)}{μ̃(X, 1)− μ̃(X, 0)},
=μ(X)+ {D − p(X)}γ (X), (2.2)

where γ (X)≡ {μ̃(X, 1)− μ̃(X, 0)} describes the association between Y and D on the mean difference
scale, within levels of X, and p(X)≡ Pr(D = 1|X) is the population risk of D within levels of X. From the
alternative representation of μ̃(X, D) given in the display above, one learns that the conditional mean func-
tion μ̃(X, D) can be directly parameterized in terms of the population regression function of interestμ(X),
and the additional functions {p(X), γ (X)}. Note that the proposed re-parameterization is non-parametric,
in the sense that it is not restricted to a particular choice of models for {p(X), γ (X), μ(X)} and there-
fore in principle, parametric, semiparametric, and non-parametric models can be used for each of these
functions. Crucially, these functions are also variation independent, so that the choice of parameterization
does not a priori rule out any possible data-generating mechanism. The function γ (X) may be viewed
as a selection bias function induced by an association between D and Y within levels of X. Thus, the
re-parameterization confirms what we might naturally expect, that the marginal and conditional regres-
sions of Y on X coincide exactly when selection bias is absent on the additive scale, i.e. μ̃(X, D)=μ(X)
if γ (X)≡ 0. Furthermore, the re-parameterization ensures that even when γ (x) is not zero for at least one
level of x, as one would hope, upon averaging over D in the underlying population, μ̃(X, D) reduces to
μ(X) exactly. Additionally, one learns from the re-parameterization that when, (ETT.1)γ (X)= γ does
not vary with X, and, (ETT.2) the disease is rare in the population, so that μ̃(X, D = 0)≈μ(X) and
μ̃(X, D = 1)=μ(X)+ {1 − p(X)}γ0 ≈μ(X)+ γ0, then μ̃(X, D)≈μ(X)+ Dγ0, which in the special
case of model (2.1) takes the standard linear form μ̃(X, D)≈ (1,XT)β0 + Dγ0. This implies that, under
conditions (ETT.1) and (ETT.2), the simple strategy of extending the population model of interest μ(X) by
adding a main effect for D to the regression to adjust for case–control sampling, is approximately correct.
Although the ensuing approximation to the regression μ̃(X, D) is equal to that of Lin and Zeng (2009), we
note that their required assumptions (LZ.1)–(LZ.3) imply assumptions (ETT.1) and (ETT.2), while the con-
verse is not generally true. Specifically, it is straightforward to verify that assumptions (LZ.2) and (LZ.3)
imply the no-heterogeneity assumption (ETT.1). However, without the normality assumption, (LZ.2) and
(ETT.2) are not necessarily equivalent. The appeal of (ETT.2) is that it does not require distributional
assumptions for the secondary outcome. Finally, one should note that (LZ.2) and (ETT.1) are empirically
testable, and can be relaxed to account for possible effect heterogeneity. Specifically, as we will see in
the next section, (ETT.1) may be relaxed by modeling γ (X), which leads to the modified approximation
μ̃(X, D)≈μ(X)+ Dγ (X). For instance, taking γ (X)= (1,XT)γ 0 gives under model (2.1), the standard
linear form μ̃(X, D)≈ (1,XT)β0 + D(1,XT)γ 0. Crucially, one may note that while the modified approx-
imation now incorporates possible interactions between D and X, i.e. D(1,XT)γ 0, both the main effect of
D and its interactions with X are not interpretable as part of the marginal association between X and Y for
the population, only the first term of the approximate expression for μ̃(X, D), i.e. (1,XT)β0 encodes the
marginal association of interest.

We should also note that, while we have assumed, and we will continue to do so unless otherwise noted,
that the data arise from an unmatched case–control study, the above parameterization would continue to
hold in the presence of matching, provided that the factors defining the matched set were also included in
X. This is illustrated in the matched case–control ovarian cancer study reported in Section 6.
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2.2 Inference via simple estimating equations

Next, let π(X)≡ Pr(D = 1|X, S = 1) denote the risk function of D within levels of X in an unmatched
case–control sample. π(X) and p(X) are well known to satisfy the following relation:

logit p(X)= logitπ(X)+ log
p̄(1 − π̄)

π̄(1 − p̄)
,

so that population and the case–control risks of D agree on the logit scale, up to a constant shift in the
intercept. Suppose that π(X) follows a logistic model

logitπ(X;ψ0, η0)= η0 + m(X;ψ0), (2.3)

where m(·;ψ) is a known function indexed by a parameter ψ satisfying m(0;ψ)= 0, with unknown inter-
cept η0 and slopeψ0. In the following, we will assume for simplicity that m(X;ψ0)= XTψ0, although more
elaborate models can also be used. Thus, logit p(X; η0, ψ0)= XTψ0 + η0 + log( p̄(1 − π̄)/π̄(1 − p̄)).
For simplicity, we will also assume without loss of generality that γ (X)= γ (X;α0), where γ (X;α)=
(1,XT)α. Together, these various parametric assumptions produce a corresponding model for μ̃(X, D):

μ̃(X, D; θ0)= (1,XT)β0 + {D − p(X;ψ0, η0)}(1,XT)α0,

where θ0 = (βT
0 , η0, ψ

T
0 , α

T
0 )

T. (2.4)

We propose to estimate (η0, ψ
′
0) by standard logistic maximum likelihood of (2.3) using data

on (X, D), i.e. by maximizing the partial log-likelihood
∑

i Li (ψ0, η0) w.r.t. (η0, ψ
T
0 ) where

Li (ψ0, η0)= Di logitπ(Xi ;ψ0, η0)+ log(1 − π(Xi ;ψ0, η0)). For any θ = (βT, η, ψT, αT)T, let ε(θ)=
Y − μ̃(X, D; θ) and define the estimating function

U(θ)= ∂μ̃(X, D; θ)
∂(βT, αT)T

ε(θ). (2.5)

This corresponds for the simple parametric models considered above to, U(θ)= (1,XT, (1,XT){D −
p(X;ψ, η)})Tε(θ), where ε(θ)= Y − (1,XT)β − {D − p(X;ψ, η)}(1,X′)α. We propose to estimate
(βT

0 , α
T
0 ), with (β̂T, α̂T) which solves W(θ̂)= ∑

i Ui (θ̂)= 0. In principle, one may specify any vector
h(X, D, θ) of dimension dim((βT

0 , α
T
0 )

T) in place of ∂μ̃(X, D; θ0)/∂(β
T, αT)T in (2.5), to obtain U(θ,h)=

h(X, D, θ)ε(θ) provided the derivative of the resulting estimating equation, more precisely its expecta-
tion, is not singular, and the variance–covariance matrix of U(θ,h) is finite. Interestingly, IPW estimation
is recovered upon setting h(X, D, θ)= h′(X, θ)/Pr(S = 1|D) and α= 0, so that D only appears in the
inverse-probability weight for selection into the sample, and no longer in the outcome regression. From
this observation, we also have that one can expect IPW to be suboptimal compared with the proposed
approach, in the absence of model mis-specification, since by the proposition given in Section 4, set-
ting α= 0 and h(X, D, θ)= h′(X, θ)/Pr(S = 1|D) is inefficient. One may also verify using the propo-
sition given in Section 4, that assuming p(X) is known, the optimal choice of h is hopt(X, D, θ0)=
{∂μ̃(X, D; θ0)/∂(β

T
0 , α

T
0 )

T}var(ε(θ0)|X, D)−1, and therefore U(θ,hopt) is optimal, in the sense of pro-
ducing an estimator with minimal asymptotic variance among regular and asymptotically linear estimators
(RAL), when ε(θ) is homoscedastic and p(X) is known. A standard argument shows that under standard
regularity conditions, the resulting estimator θ̂ is in large sample approximately:

θ̂
·∼ N (θ0, n−1�(θ0)), (2.6)
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where �(θ) is the variance–covariance matrix of E[∂(U′(θ),S′(ψ, η))/∂θ ]−1 × (U′(θ),S′(ψ, η))′ with
S(ψ, η)= ∂L(, η)/∂((ψ ′, η′)′).

3. REGRESSION WITH A LOGIT LINK FUNCTION

Next, suppose that Y is binary. We introduce a similar re-parameterization of E(Y |X, D)= Pr(Y =
1|X, D) on the logit scale, in terms of E(Y |X)= Pr(Y = 1|X). To proceed, let ODDS(X, D)=
Pr(Y = 1|X, D)/Pr(Y = 0|X, D) denote the odds of {Y = 1} within levels of (X, D). Likewise, let
ODDS(X)= Pr(Y = 1|X)/Pr(Y = 0|X) denote the odds of {Y = 1} within levels of X. Then, note that

μ̃(X, D)

1 − μ̃(X, D)
≡ ODDS(X, D)= ODDS(X, D)

ODDS(X)
× ODDS(X)

= ODDS(X, D)

ODDS(X, D = 0)
×

{
1∑

d∗=0

ODDS(X, d∗)
ODDS(X, D = 0)

Pr(D = d∗|X,Y = 0)

}−1

× ODDS(X)

= exp

{
log

μ(X)

1 − μ(X)
+ ν(X, D)− ν̄(X)

}
, (3.1)

where μ(X)= Pr(Y = 1|X) is the outcome risk function in the population, the function ν(X, D)=
log ODDS(X, D)/ODDS(X, D = 0) measures the log-odds ratio association between D and Y within
levels of X, and accounts for selection bias due to the sampling design. As shown in supplementary
material available at Biostatistics online, the parameter ν̄(X)= log{exp{ν(X, D = 1)} Pr(D = 1|X,Y =
0)+ Pr(D = 0|X,Y = 0)} is not a free parameter, and is introduced to ensure that upon marginaliza-
tion over D in the target population, as one would hope to be the case, the conditional risk func-
tion μ̃(X, D)= Pr(Y = 1|X, D) marginalizes to μ(X)= Pr(Y = 1|X) exactly. Interestingly, note that the
population density of D used in the above re-parameterization conditions on {Y = 0} and hence dif-
fers from the density function of D involved in previous re-parameterizations for the identity or log-
link functions. This choice of parameterization is tied to a property of probability odds functions which
is key to our developments. We have that, while E{ODDS(X, D)|X} 	= ODDS(X), it is, however, the
case that E{ODDS(X, D)|X,Y = 0} = ODDS(X), in other words, marginalization of the conditional
odds with respect to disease status in the underlying population free of the secondary outcome recov-
ers the marginal odds function of primary interest. Equation (3.1) is equivalently written as a con-
ditional logistic regression, μ̃(X, D)= Pr(Y = 1|D,X)= [1 + exp{−μ†(X;β0)− ν(X, D)+ ν̄(X)}]−1,
where μ†(X;β0)= logμ(X)/{1 − μ(X)}. Suppose that the log-odds function μ†(X;β0)= (1,X)Tβ0, and
the log-odds ratio function ν(X, D)= ν(X, D;α0)= D(1,XT)α0. We redefine

logitπ(X;ψ0, η0)= logit Pr(D = d∗|X,Y = 0, S = 1;ψ0, η0)= η0 + m(X;ψ0), (3.2)

using as before the convenient choice m(X;ψ0)= XTψ0. Again, more elaborate models could be used to
incorporate interactions and non-linearities. Let logit Pr(D = d∗|X,Y = 0;ψ0, η0)= logitπ(X;ψ0, η0)+
log( p̄(1 − π̄)/π̄(1 − p̄)) denote the corresponding model in the population, accounting for retrospective
ascertainment. The resulting parametric model for Pr(Y = 1|D,X) is given by

logit Pr(Y = 1|D,X; θ0)= (1,X)Tβ0 + D(1,XT)α0 − ν̄(X;ψ0, η0, α0), (3.3)

where θ0 = (βT
0 , η0, ψ

T
0 , α

T
0 )

T. Estimation and inference about θ0 can then proceed as in the identity or
log link settings, by solving the estimating equation W(θ̂)= PnU(θ̂)= 0 given by (2.5), upon substituting
in (3.3) for the conditional mean model μ̃(X, D; θ), but with (ψ̂, η̂) the maximum likelihood estimator
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obtained using the log-likelihood function
∑

i Li (ψ, η) where L(ψ, η)= (1 − Y ){Di logitπ(X;ψ, η)+
log(1 − π(X;ψ, η))}. The asymptotic distribution of θ̂ is then given by (2.6) once the above substitution
is made. Finally, we briefly note that when D is rare, the logit link is well approximated by the log link and
Pr(D = 1|X,Y = 0)≈ Pr(D = 1|X) and therefore the approximate approach developed for the log link
also applies here, see supplementary material available at Biostatistics online.

4. SEMIPARAMETRIC LOCALLY EFFICIENT ESTIMATION

In this section, we present an alternative, potentially more efficient strategy for estimating θ0, based on
semiparametric efficiency theory. To proceed, first note that as argued by Breslow and others (2000), the
law of the observed data is formally given by the conditional density f (Y,X|D)= f (Y |X, D) f (X|D)
which is up to a proportionality constant equivalent to the density of an experiment in which D is itself
randomly sampled from a Bernoulli density with known event probability equal to π̄ . Thus, we derive the
efficient score for i.i.d data (Y,X, D) sampled from the joint density

f (Y |X, D) f (X|D)π̄ D(1 − π̄)1−D = f (Y |X, D)
f (D|X) f (X)

f (D)
π̄ D(1 − π̄)1−D

∝ f (Y |X, D) f ∗(D|X) f ∗(X), (4.1)

where f (Y |X, D) is the population density of Y given (X, D), f (D) is the known marginal density of D in
the target population; f (D = 1|X)= p(X) is the population probability that D = 1 given X; logit f ∗(D =
1|X)= logitπ(X)= logit p(X)− log( p̄(1 − π̄)/π̄(1 − p̄)) is the probability that D = 1 given X in the
case–control sample; f ∗(X)∝ f (X)( f (D = 0|X)/ f ∗(D = 0|X)) is the case–control density of X. Define
the semiparametric model M1, with sole restrictions given by the restricted mean model μ̃(X, D; θ) for
Y given (X, D), with identity link (2.4) or log link (see supplementary material available at Biostatistics
online); and the parametric model (2.3) for D given X. The model is otherwise non-parametric in the
density of ε(θ)= Y − μ̃(X, D; θ) given (X, D), as well as in the population density f (X) and thus in
f ∗(X).

The following theorem gives the efficient score for θ0 in model M1, a similar result for the logit link
is relegated to supplementary material available at Biostatistics online.

PROPOSITION 1 The efficient score of θ0 in model M1 is given by

R(θ0)=
(

R(β,α)(θ0)

R(η,ψ)(θ0)

)
,

with R(β,α) = {∂μ̃(X, D; θ)/∂(β ′, α′)′}Z(θ) and R(η,ψ)(θ)= S(ψ, η)+ [∂μ̃(X, D; θ)/∂(ψ ′, η)′]Z(θ),
where Z(θ)= var(ε(θ)|X, D)−1ε(θ).

Next, suppose that σ̂ 2(X, D, θ̂ )= v̂ar(ε(θ̂)|X, D) is a consistent estimate of the conditional vari-
ance σ 2(X, D, θ0)= var(ε(θ0)|X, D), then, upon defining R̂(θ) as R(θ) by replacing σ 2(X, D) with
σ̂ 2(X, D, θ̂ ), the estimator θ̂eff that solves

∑
i R̂i (θ̂eff )= 0 is regular and asymptotically linear, with large

sample variance the semiparametric efficiency bound in M1 which is given by E{R(θ0)RT(θ0)}−1. In
practice, σ̂ 2(X, D, θ̂ ) may be based on a parametric/semiparametric model, and therefore, may be incon-
sistent if mis-specified. Then, θ̂eff would still be RAL, although not necessarily asymptotically efficient.
For this reason, θ̂eff is known as a semiparametric locally efficient estimator that is consistent and asymp-
totically normal regardless of whether σ̂ 2(X, D, θ̂ ) is consistent or not, and that is asymptotically effi-
cient at the submodel where σ̂ 2(X, D, θ̂ ) is consistent. Interestingly, upon close inspection of the efficient
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Table 1. Simulation results

Absolute bias Variance Coverage

β1 = 0
Standard OLS 0.734 2.2 × 10−3 0.000
Conditional OLS 0.227 2.8 × 10−3 4 × 10−3

IPW 1.95 × 10−4 3.3 × 10−3 0.970
Locally efficient 1.11 × 10−3 1.8 × 10−3 0.960
Simple estimating equation 8.05 × 10−5 3.5 × 10−3 0.978

β1 = 4
Standard OLS 0.730 2.3 × 10−3 0.000
Conditional OLS 0.231 2.7 × 10−3 2 × 10−3

IPW 4.0 × 10−3 3.4 × 10−3 0.957
Locally efficient 4.2 × 10−4 2.0 × 10−3 0.956
Simple estimating equation 3.51 × 10−3 3.6 × 10−3 0.985

score R(η,ψ)(θ) one notes that information about (ψ, η) the parameter indexing the density of D given
X, naturally comes from the score of the corresponding factor of the likelihood function, i.e. S(ψ, η);
however, additional information is obtained from the factor corresponding to the conditional density of
Y given (D,X). Although unusual, this is not entirely surprising given that this density was carefully
re-parameterized to depend on (ψ, η). This further reveals that the simple estimating equations approach
that gave θ̂ in previous sections, do not generally exploit this additional information since (ψ̂, η̂) solve the
score equation Pn{S(ψ, η)} = 0 instead of the efficient score equation Pn{R(η,ψ)(θ)} = 0, and is therefore
generally inefficient, except perhaps when the disease is rare.

5. A SIMULATION STUDY

We performed a simulation study to compare in the context of simple linear regression, the performance
of the locally efficient estimator to that of two common strategies used in practice. The first approach
involves inverse-probability weighting by the selection probability given case–control status, while the
second approach involves including case–control status as a covariate in the regression for the secondary
outcome. We also compared these methods to ordinary linear regression based on the entire data set, which
one expects to be significantly biased. We generated X from a mixture of normals with density N (0, 4)
with probability 0.88 and density N (2, 4) otherwise. The logistic model is logit Pr(D = 1|X)= −2.5 +
ψ0 X , where ψ0 = 0.5. The model for Y given X is the linear regression model, Y = 50 + β1 X + ε, where
ε|X is a mean zero residual error, that is, generated such that model (2.4) holds with γ (X;α0)= 3 +
2X, and ε(θ0)|D, X ∼ N (0, 4). The simulation study explores both null (β1 = 0) and non-null (β1 = 4)
conditions. The rate of disease is approximately 0.12 in the target population and therefore, the rare disease
approximation does not hold. The case–control study has 500 cases and 500 controls, we generated 1000
simulated data sets.

For the simulation study, the locally efficient approach is implemented by maximizing the log-likelihood
log{ f (ε(θ)|X, D) f ∗(D|X; η,ψ)} which corresponds exactly to solving the efficient score of Proposi-
tion 1, under homoscedastic normal error, i.e. assuming ε(θ)|X, D ∼ N (0, σ 2). This specific choice of
likelihood model facilitates the implementation of the locally efficient approach using standard off-the
shelf software, we used Proc NLMIXED in SAS to implement the approach.

The simulation results given in Table 1 confirm that IPW and the locally efficient approach both have
small bias and produce 95% confidence intervals with appropriate coverage under either the null or the
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alternative hypothesis. In contrast, as expected, ordinary linear regression using the entire sample and
ignoring the sampling design is noticeably biased with disastrous coverage (=0%) in all scenarios. Simply
adding a main effect for disease status corrects some of the bias but still produces 95% confidence intervals
with poor coverage. In terms of efficiency, as expected, locally efficient estimation clearly outperforms
IPW in both scenarios with relative efficiency sometimes >200%. Although remarkable, this efficiency
gain is not entirely surprising from a semiparametric perspective, since by altogether avoiding to model
γ (X) and p(X), IPW essentially allows these two models to remain unrestricted in estimating β1, i.e. non-
parametric, whereas the proposed approach relies crucially on parametric models for these functions to
estimate β1. These additional restrictions for the most part explain the efficiency gain.

We also implemented the inefficient estimating equations of Section 2.2, together with standard logis-
tic maximum likelihood estimation of ψ0. Although both approaches show little bias (Table 1), as pro-
jected by Proposition 1, the locally efficient estimator outperforms this alternative strategy in terms of
efficiency and demonstrates remarkable efficiency gain not only for the parameter of primary interest β0

(ARE(β0)= 115%, ARE(β1)= 180%), where ARE(β)= var(β̂)/var(β̂eff ) but also for the logistic regres-
sion parameter ψ0 (ARE(ψ0)= 300%). This result confirms that as projected by Proposition 1, the locally
efficient approach can, when the disease is not rare, recover information about ψ0 that standard logistic
regression cannot exploit.

6. AN EMPIRICAL APPLICATION

This section illustrates the locally efficient approach in an analysis of data from a population-based case–
control study of ovarian cancer (Modan and others, 2001). Two controls per case were selected from a
central population registry in Israel, matching on age within 2 years, area of birth and place, and length
of residence. Blood samples were collected on both cases and controls and were tested for the presence
of mutation in two major breast and ovarian cancer susceptibility genes BRCA1 and BRCA2. Additional
data were collected on reproductive and gynecologic history, such as parity, number of years of oral contra-
ceptive use, and gynecologic surgery. The main objective of the study was to examine the interplay of the
BRCA1/2 genes and known reproductive/gynecologic risk factors for ovarian cancer. In reanalyses of these
data, a number of authors have exploited a gene-environment independence assumption to obtain more
efficient estimates of interactions between BRCA1/2, and parity and oral contraceptive use, respectively
(Chatterjee and Carroll, 2005; Tchetgen Tchetgen and Robins, 2010; Tchetgen Tchetgen, 2011). Specifi-
cally, they assumed that in the target population BRCA1/2 is jointly independent of parity and oral con-
traceptive within levels of covariates. As a secondary analysis, we evaluate this hypothesis empirically
and estimate the mean association in the target population, between BRCA1/2 status and years of oral
contraceptive use (Y1) and parity (Y2), respectively, adjusting for covariates. Thus, let X = (BRCA1/2,
age (categorical defined by decades), ethnic background (Ashkenazi or non-Ashkenazi), the presence of
personal history of breast cancer, a history of gynecologic surgery, and family history of breast or ovarian
cancer (no cancer vs. one breast cancer in the family vs. one ovarian cancer or two or more breast cancer
cases in the family)). The analysis uses data on 832 cases and 747 controls who did not have bilateral
oophorectomy and who were interviewed for risk factor information and successfully tested for BRCA1/2
mutations. To illustrate the method with both identity and log link functions, Y1 is coded as number of years
of oral contraceptive use and a linear regression of Y1 on X is evaluated, while Y2 is a count of live births,
and a log-linear model is assumed for the regression of Y2 on X. As suggested by Chatterjee and Carroll
(2005), we set the population rate of ovarian cancer to p̄ = 8.7 × 10−4 which implies the rare disease
approximation is appropriate, and thus an estimate of the risk of ovarian cancer as a function of X is not
strictly needed. Nonetheless, we performed both analyses, with and without the rare disease approximation,
and obtained identical results.
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Table 2. Parameter estimates (standard errors) of mean effect of BRCA1/2 on oral
contraceptive use and Parity

Y1 Y2

BRCA1/2 (se) BRCA1/2 (se)
Standard OLS 0.212 (0.144) −0.053 (0.047)
IPW 0.327 (0.570) −5 × 10−4 (0.142)
Locally efficient without interaction 0.332 (0.152) −0.020 (0.033)
Locally efficient with interaction 0.287 (0.109) 0.094 (0.175)

Analyses further adjust for age, ethnic background, personal history of breast cancer, history of gynecologic
surgery, and family history of breast or ovarian cancer.

For each outcome, we compare inferences based on standard OLS ignoring case–control status, IPW
and the locally efficient approach with and without possible effect heterogeneity by BRCA1/2 in the case–
control adjustment, i.e. γ (X;α0)= α0 vs. γ (X;α0)= α0 + α1 × BRCA1/2.

Table 2 summarizes the results for BRCA1/2 associations with Y1 and Y2. In both sets of analyses,
standard OLS gives the largest point estimates for the effect of BRCA1/2 on the average years of oral con-
traceptive use and parity, respectively. For both outcomes, IPW and the locally efficient approach incorpo-
rating a D × BRCA1/2 interaction correct the OLS estimate, nonetheless the three methods agree in their
conclusion and none rejects the null hypothesis of no gene-environment association at the α = 0.05 level.
Interestingly, not including the interaction in the locally efficient approach has different effects in the two
analyses. For Y1, not including the interaction leads to a wider Wald 95% confidence interval that rejects
the null hypothesis of no BRCA1/2 association, which suggests the need to account for the interaction.
In contrast, removing the interaction in the Y2 regression leads to a shorter confidence interval without
altering the overall conclusion, suggesting that perhaps the interaction is not necessary.

7. CONCLUSION

In this paper, we have described a general, yet simple framework for performing regression analysis for
a secondary outcome in the context of case–control sampling. The current results focused on the three
most common link functions used in practice, the identity link typically used for a continuous outcome,
the log link typically used with counts, and the logit link typically used for binary data. A simple set of
estimating equations is described for inference, and a potentially more efficient approach is also given. A
particular appeal of the approach is that it is readily implemented with off-the-shelf statistical software.
The framework also gives a formal justification for including the case–control status as a covariate in
the regression model in view to account for study design when the case–control disease is rare, without
requiring the distributional assumptions that have previously appeared in the literature. It is also straight-
forward to extend our basic argument to justify this type of conditional approach for other link functions,
such as the complementary log-log link, or the probit link, under rare disease. When the disease is not
rare, the approach requires that sampling fractions are known for cases and non-case–controls, which may
be a challenge in certain settings, but is usually feasible when the case–control sample is nested within
a well-defined cohort study. As we also describe, it is straightforward to use the proposed methods for
matched case–control studies, simply by including matching factors in X. Also note that as was done in
the simulation study, the locally efficient estimator can sometimes be implemented using simple maxi-
mum likelihood, in which case, standard likelihood-based methods, such as Akaike’s information criterion
or the Bayesian information criterion can also be used to assess goodness-of-fit. Due to space restrictions,
specific methods for goodness-of-fit methods will be explored in detail elsewhere.
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Finally, an interesting and important direction for future work is to further develop the framework to
handle settings where the secondary outcome is a vector of correlated variables, arising either from a
longitudinal process, or due to spatial or other potential sources of clustering.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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