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Abstract
Gastric cancer (GC) is one of the most common ma-
lignancies and remains the second leading cause of 

cancer-related death worldwide. There is an increasing 
understanding of the roles that genetic and epigen-
etic alterations play in GCs. Recent studies using next-
generation sequencing (NGS) have revealed a number 
of potential cancer-driving genes in GC. Whole-exome 
sequencing of GC has identified recurrent somatic mu-
tations in the chromatin remodeling gene ARID1A and 
alterations in the cell adhesion gene FAT4, a member 
of the cadherin gene family. Mutations in chromatin 
remodeling genes (ARID1A, MLL3  and MLL) have been 
found in 47% of GCs. Whole-genome sequencing and 
whole-transcriptome sequencing analyses have also 
discovered novel alterations in GC. Recent studies of 
cancer epigenetics have revealed widespread altera-
tions in genes involved in the epigenetic machinery, 
such as DNA methylation, histone modifications, nu-
cleosome positioning, noncoding RNAs and microRNAs. 
Recent advances in molecular research on GC have 
resulted in the introduction of new diagnostic and 
therapeutic strategies into clinical settings. The anti-
human epidermal growth receptor 2 (HER2) antibody 
trastuzumab has led to an era of personalized therapy 
in GC. In addition, ramucirumab, a monoclonal anti-
body targeting vascular endothelial growth factor re-
ceptor (VEGFR)-2, is the first biological treatment that 
showed survival benefits as a single-agent therapy in 
patients with advanced GC who progressed after first-
line chemotherapy. Using NGS to systematically identify 
gene alterations in GC is a promising approach with 
remarkable potential for investigating the pathogenesis 
of GC and identifying novel therapeutic targets, as well 
as useful biomarkers. In this review, we will summarize 
the recent advances in the understanding of the mo-
lecular pathogenesis of GC, focusing on the potential 
use of these genetic and epigenetic alterations as diag-
nostic biomarkers and novel therapeutic targets.
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wide alterations in GC, several NGS studies in GC have 
recently been published[18]. 

In this review, we summarize the key findings of  past 
reports pertaining to the genetics and epigenetics of  GC 
and their relationship to and future application in NGS. 
We also describe the recurrently mutated genes and alter-
ations in GC identified by NGS technology and discuss 
the basic framework for future investigations, including 
the challenges of  using NGS as a tool for biomarker and 
therapeutic target discovery. 

MICROSATELLITE INSTABILITY
A type of  genetic instability characterized by alterations 
in length within simple repeat microsatellite sequences, 
termed microsatellite instability (MSI), occurs in ap-
proximately 15% of  sporadic GCs, mainly as a result 
of  epigenetic changes[19-22]. Genetic and epigenetic inac-
tivation of  DNA mismatch repair (MMR) genes leads 
to the mutator phenotype, mutations in cancer-related 
genes and cancer development (Figure 2). MSI underlies 
a distinctive carcinogenic pathway because MSI-positive 
(MSI+) GCs exhibit many differences in clinical, patho-
logical and molecular characteristics compared with MSI-
negative (MSI-) GCs[19-22]. The differences in genotype 
occur because defective MMR results in a strong mutator 
phenotype with a very specific mutation spectrum. MSI 
mainly accumulates frameshift mutations in the repeated 
sequences located in the coding regions of  a target tumor 
suppressor or other tumor-related genes[23-26]. The atypi-
cal genotype of  MSI+ GCs also includes specific patterns 
of  gene dysregulation. MSI+ GCs often show epigenetic 
alterations, such as hypermethylation of  various genes, 
including the key MMR gene MLH1. The differences in 
genotype and phenotype between MSI+ and MSI- GCs 
are likely linked to their differences in biological and clini-
cal features. Recent findings from NGS analysis, such as 
the frequent mutation of  the AT-rich interactive domain 
1A (ARID1A) in MSI+ GCs, support this notion[27,28]. 

The clinicopathological, genetic, epigenetic, prog-
nostic and therapeutic characteristics of  MSI+ GCs are 
becoming clearer, but further research is still required. 
Because molecular targeting therapeutics are being used 
in clinical settings and trials, the differential regulation of  
molecular target genes in MSI+ and MSI- GCs[29,30] needs 
to be clarified. Diagnostic characterization of  the MSI 
status of  GCs thus has important implications for basic 
and clinical oncology.

Frequent inactivating mutations of ARID1A in molecular 
subtypes of GC identified by exome sequencing 
Holbrook et al[31] analyzed 50 GC samples with targeted 
deep sequencing of  the DNA of  384 genes. In addition 
to the previously reported mutations in genes belonging 
to various pathways, the authors found tractable target 
genes, such as the genes for the thyrotropin receptor and 
the Rho-associated coiled-coil containing protein kinases 
ROCK1 and ROCK2. Wang et al[27] performed exome 
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INTRODUCTION
Gastric cancer (GC) is the second highest cause of  global 
cancer mortality. GC is a heterogeneous disease with mul-
tiple environmental etiologies and alternative pathways of  
carcinogenesis[1,2]. One of  the major etiologic risk factors 
for GC is Helicobacter pylori (H. pylori) infection, but only a 
small proportion of  individuals infected with H. pylori de-
velop GC[3,4]. There is an increasing understanding of  the 
roles that genetic and epigenetic alterations play in GCs 
(Figure 1). Consequently, the development of  appropriate 
biomarkers that reflect an individual’s cancer risk is essen-
tial to reduce the mortality from GC[5,6]. Recent advances 
in molecular research of  GC have brought new diagnos-
tic and therapeutic strategies into clinical settings. 

Next-generation sequencing (NGS) is a technol-
ogy that involves the parallel sequencing of  enormous 
amounts of  short DNA strands from randomly frag-
mented copies of  a genome[7,8]. NGS methods used for 
genome[9], exome[10], epigenome[11] and transcriptome[12] 
sequencing have the potential to provide novel avenues 
towards achieving a comprehensive understanding of  
diseases, including cancer[13,14]. Such advances have also 
shown puzzling tumor heterogeneity with limited somatic 
alterations shared between tumors of  the same histo-
pathologic subtype[15-17]. Although NGS techniques are 
just beginning to expand our abilities to detect genome-



sequencing of  22 GC samples and found novel mutated 
genes and pathway alterations involved in chromatin 
modification. A validation study confirmed frequent 
inactivating mutations or protein loss of  the ARID1A 
gene, which encodes one of  the subunits in the Switch/
Sucrose Nonfermentable (SWI-SNF) chromatin remod-
eling complex. The mutation spectrum for ARID1A 
differed among molecular subtypes of  GC; mutations 
were detected in 83% of  GCs with MSI, 73% of  GCs 
with EBV infection and 11% of  GCs without EBV and 
MSI. Moreover, ARID1A mutations were negatively as-
sociated with TP53 mutations. ARID1A alterations were 
associated with better prognosis in a stage-independent 
manner. These results suggest the importance of  altered 
chromatin remodeling in the pathogenesis of  GC. 

Recurrent somatic mutations in cell adhesion and 
chromatin remodeling genes identified by exome 
sequencing
Zang et al[28] also analyzed a spectrum of  somatic altera-
tions in GC by sequencing the exomes of  15 GC speci-
mens, including 11 intestinal-type, 1-mixed-type, and 3 
diffuse-type adenocarcinomas and their matched normal 
DNAs. TP53 (11/15 tumors), PIK3CA (3/15) and ARI-
D1A (3/15) were frequently mutated. Among the fre-
quently mutated genes, cell adhesion was the most signifi-
cant biological pathway affected. A prevalence screening 
confirmed mutations in FAT4, a member of  the cadherin 
gene family, in 5% of  GCs (6/110) and FAT4 genomic 
deletions in 4% (3/83) of  GCs. Mutations in chromatin 
remodeling genes (ARID1A, MLL3 and MLL) were 

also found in 47% of  GCs. ARID1A mutations were 
detected in 8% of  GCs (9/110) and were associated with 
concurrent PIK3CA mutations and MSI. Both FAT4 
and ARID1A showed tumor-suppressor activity in func-
tional assays. Somatic inactivation of  FAT4 and ARID1A 
may thus be key tumorigenic events in a subset of  GCs. 
Because PI3K inhibitors are currently in clinical testing 
as treatment for GC[32], it will be interesting to evaluate 
whether the tumor responses to these compounds are af-
fected by the genomic status of  ARID1A.

Frequent loss of ARID1A expression in GC with EBV 
infection or MSI
Mutations of  ARID1A lead to a loss of  protein expres-
sion in GC and are particularly associated with EBV 
infection or MSI. Abe et al[33] investigated the significance 
of  the loss of  ARID1A in 857 GC cases, including 67 
EBV+ and 136 MLH1-lost MSI+ GCs. Loss of  ARID1A 
expression was significantly more frequent in cases of  
EBV+ (23/67; 34%) and MSI+ (40/136; 29%) GCs than 
in cases of  EBV-/MSI- (32/657; 5%) GCs. Loss of  ARI-
D1A was correlated with larger tumor size, deeper depth 
of  invasion, lymph node metastasis and poorer prognosis 
in cases of  EBV-/MSI- GC. A correlation with tumor size 
and diffuse-type histology was found only in the MSI+ 
GC; no correlation was observed in EBV+ GC. Loss of  
ARID1A expression in EBV+ GC was frequent in the 
early stage of  GC, but EBV infection did not cause loss 
of  ARID1A in GC cell lines. Thus, loss of  ARID1A may 
be an early event in EBV+ GC and may precede EBV 
infection in gastric epithelial cells. On the other hand, 
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Figure 1  Genetic and epigenetic alterations in gastric carcinogenesis. The model for gastric carcinogenesis is presented based on genetic and epigenetic altera-
tions. Methylation of the genes in blue appears to be involved in an epigenetic field defect. H. pylori: Helicobacter pylori; MSI: Microsatellite instability; EBV: Epstein-
Barr virus; CIMP: CpG island methylator phenotype.
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pathways[36-40]. The causes of  aberrant miRNA expression 
patterns in cancer include DNA copy number amplifica-
tion or deletion, inappropriate transactivation, transcrip-
tional repression by oncogenic and other factors, failure 
of  miRNA post-transcriptional regulation and genetic 
mutation or transcriptional silencing associated with hy-
permethylation of  the CpG island promoters.

There is accumulating evidence to support the notion 
that miRNA alterations play a key role in the pathogen-
esis of  GC[41-44]. A large number of  miRNAs with differ-
ent biological functions have been found to be altered 
and correlated with clinicopathological characteristics 
and/or prognosis in GC. Moreover, the clinical potential 
of  miRNA alterations as minimally invasive diagnostic 
biomarkers and therapeutic targets has been extensively 
reported[37,40,42,44]. Recent studies have shown that tumor-
derived miRNAs are present and stable in circulation, 
and the levels of  circulating miRNAs are detectable and 
quantifiable. Both tissue and soluble miRNAs are candi-
dates for diagnostic biomarkers and therapeutic targets 
in GCs[44]. The basic strategy of  current miRNA-based 
treatment studies is to either antagonize the expression 
of  target oncogenic miRNAs with antisense therapy and 
other technology or to restore the function of  impaired 
tumor suppressor miRNAs[42]. 

The inclusion of  different isoforms of  miRNA 
(isomiRs) that are natural variants of  mature miRNAs 
will form a detailed miRnome. Because expression of  
isomiRs can be estimated by NGS, NGS platforms pro-
vide the most effective method of  miRNA profiling, 
leading to the identification of  the miRNA alterations 
with clinical applications. Li et al[45] sequenced small 
RNAs from one pair of  GC and noncancerous tissue and 
found that isomiR patterns are significantly different be-
tween these tissues. Moreover, these authors found that 
the 5p arm and 3p arm miRNAs derived from the same 
pre-miRNAs have different tissue preferences in GC and 
noncancerous tissue, suggesting a novel mechanism regu-
lating mature miRNA selection. 

WHOLE-TRANSCRIPTOME SEQUENCING 
OF GC
The first comprehensive RNA-seq study in GC has been 
recently published. Kim et al[46] applied a whole-tran-
scriptome sequencing approach to 24 GC samples and 
six noncancerous tissue specimens. Importantly, these 
authors developed a multilayered integrative analysis to 
identify various types of  transcriptional aberrations, such 
as differentially expressed mRNAs and miRNAs, as well 
as recurrently mutated genes. A central metabolic regula-
tor gene, AMPKa2 (PRKAA2), was identified as a poten-
tial functional target in GC. Six key miRNAs (miR-548d-
3p, miR-20b, miR-135b, miR-140-3p, miR-93 and miR-
19a) in GC were also identified. 

Epigenetic alterations
Epigenetic regulation is essential for the normal develop-

loss of  ARID1A may be involved in the progression of  
EBV-/MSI- GCs. Thus, loss of  ARID1A appears to have 
different, pathway-dependent roles in GC.

WHOLE-GENOME SEQUENCING 
ANALYSIS OF GC
To explore the complete list of  somatic alterations in 
GC, Nagarajan et al[34] combined massively parallel short 
read and DNA paired-end tag sequencing for the first 
whole-genome analysis of  two GCs, one with CIN and 
the other with MSI. Integrative analysis and de novo as-
semblies revealed the architecture of  a wild-type KRAS 
amplification, a common driver event in GC[35]. Three 
distinct mutational signatures were discovered against a 
genome-wide backdrop of  oxidative and MSI-associated 
mutational signatures. Combining sequencing data from 
40 complete GC exomes and targeted screening of  an 
additional 94 independent GCs led to the discovery of  
ACVR2A, RPL22 and LMAN1 as recurrently mutated 
genes in MSI+ GC and the identification of  PAPPA as a 
recurrently mutated gene in TP53 wild-type GC. These 
results highlight how whole-genome sequencing analysis 
can provide relevant information about tissue-specific 
carcinogenesis that would otherwise be missed in exome-
sequencing data. WGS of  more GCs will uncover more 
recurrently altered genes.

miRNA alterations
A microRNA (miRNA) is a small noncoding RNA that 
regulates gene expression at the posttranscriptional level 
and is critical in many biological processes and cellular 
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Figure 2  Molecular pathway for microsatellite instability+ gastric cancer. 
The model for the carcinogenesis of microsatellite instability (MSI)+ gastric can-
cer is presented. CIMP: CpG island methylator phenotype.
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ment and maintenance of  tissue-specific gene expression 
patterns in mammals. Disruption of  epigenetic regulation 
can lead to altered gene function and malignant cellular 
transformation[47]. Recent cancer epigenetic studies have 
revealed various alterations in the epigenetic machinery in 
GC, including DNA methylation, histone modifications, 
nucleosome positioning, noncoding RNAs and miR-
NAs[48-52]. Aberrant DNA methylation in the promoter 
CpG islands of  genes results in inactivation of  tumor 
suppressor and other tumor-related genes in cancer cells 
and is the most well-defined epigenetic hallmark in GC. 
Methylation of  a large number of  genes with different 
biological functions has been found to be correlated with 
the clinicopathological characteristics and prognosis in 
GC[48-52]. DNA methylation with its advantages as a bio-
marker for the detection of  cancer in biopsy specimens 
and body fluids that can be obtained non-invasively, such 
as serum and gastric washes, may have a clinical applica-
tion in GC. Detection of  aberrant DNA methylation of  
genes, such as CDH1, DAPK, GSTP1, p15, p16, RARβ , 
RASSF1A, RUNX3 and TFPI2, in the serum may be a 
useful biomarker for the detection of  GC[50]. Studies of  
DNA methylation and histone modification using NGS 
technologies, such as whole-genome bisulfite sequencing 
and targeted bisulfite sequencing, will lead to new discov-
eries and improve our knowledge of  the epigenomics of  
GC[11].

Association of the aberrant methylation of RASGRF1 
with an epigenetic field defect and an increased risk of 
GC
Aberrant DNA methylation is implicated in the epi-
genetic field defect seen in GC. Thus, it is important to 
identify predictive biomarkers by screening for DNA 
methylation in the noncancerous background gastric 
mucosa of  patients with GC. Using methylated-CpG 
island amplification coupled with CpG island microar-
ray (MCAM) analysis, Takamaru et al[53] found 224 genes 
that were methylated in the noncancerous gastric mucosa 
of  patients with GC. Among them, RASGRF1 methyla-
tion was significantly elevated in the gastric mucosa from 
patients with either intestinal- or diffuse-type GC, com-
pared with the mucosa from healthy individuals. RAS-
GRF1 methylation was independent of  mucosal atrophy 
and could be used to distinguish both serum pepsinogen 
test-positive and -negative patients with GC from healthy 
individuals. Ectopic expression of  RASGRF1 suppressed 
colony formation and Matrigel invasion by GC cells. 
RASGRF1 methylation appears to be significantly in-
volved in the epigenetic field defect of  the stomach and 
to be a useful biomarker to identify individuals at high 
risk for GC.

Association of aberrant methylation of miR-34b/c with 
an epigenetic field defect and an increased risk of GC
The silencing of  miRNAs is often associated with CpG 
island hypermethylation. Thus, to identify epigeneti-
cally silenced miRNAs in GC, Suzuki et al[54] screened 

for miRNAs that were induced by treatment of  GC cells 
with 5-aza-2’-deoxycytidine and 4-phenylbutyrate. Hyper-
methylation of  the neighboring CpG island epigenetically 
silenced miR-34b and miR-34c. Methylation of  the miR-
34b/c CpG island was frequently observed in GC cell 
lines (13/13, 100%) but not in normal gastric mucosa 
from healthy H. pylori-negative individuals. Transfection 
of  the precursors of  miR-34b and miR-34c into GC cells 
suppressed growth and changed the gene expression 
profile. Methylation of  miR-34b/c was found in a major-
ity of  primary GCs (83/118, 70%). Notably, analysis of  
the non-cancerous gastric mucosae from GC patients 
(n = 109) and healthy individuals (n = 85) revealed that 
methylation levels were higher in the gastric mucosae of  
patients with multiple GC lesions than in the mucosae 
from those patients with single GC and the mucosae 
from healthy H. pylori-positive individuals. These results 
suggest that miR-34b and miR-34c are novel tumor sup-
pressors frequently silenced by DNA methylation in GC. 
Methylation of  miR-34b/c appears to be significantly in-
volved in an epigenetic field defect in the stomach and to 
be a useful biomarker to identify individuals at high risk 
for multiple GC. 

Methylation of miR-34b/c in the mucosa of the 
noncancerous gastric body may be a useful biomarker 
for predicting the risk of metachronous GC
Metachronous GC can develop after endoscopic resec-
tion of  GC and is not predictable based on the clinical 
characteristics alone. Aberrant DNA methylation in 
noncancerous gastric mucosa has been implicated in 
gastric carcinogenesis and may be a useful biomarker of  
GC risk. Suzuki et al[55] evaluated the clinical utility of  
DNA methylation as a biomarker of  metachronous GC 
risk. Scheduled follow-up endoscopy was performed in 
129 patients after curative endoscopic resection of  early 
GC. Biopsy specimens were collected from noncancer-
ous mucosa in the gastric antrum and body. A quantita-
tive methylation analysis of  miR-34b/c, SFRP1, SFRP2, 
SFRP5, DKK2 and DKK3 using bisulfite pyrosequenc-
ing was performed on the collected biopsy specimens. 
The utility of  the methylation status for predicting the 
risk of  developing metachronous GC was analyzed us-
ing Kaplan-Meier and Cox proportional hazards models. 
During the follow-up period, 17 patients (13%) devel-
oped metachronous GCs. The cumulative incidence 
of  metachronous GC was significantly higher among 
patients with elevated miR-34b/c, SFRP2 and DKK2 
methylation in the gastric body. Elevated methylation of  
miR-34b/c showed the most significant association with 
the risk of  metachronous GC; the cumulative incidence 
of  metachronous GC was much higher in the high miR-
34b/c-methylation group than in the low methylation 
group. Multivariate analysis adjusted for age, sex, H. 
pylori status and pathological findings showed that miR-
34b/c methylation in the gastric body was an indepen-
dent predictor of  metachronous GC risk. Methylation of  
miR-34b/c in the mucosa of  the noncancerous gastric 
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body may be a useful biomarker for predicting the risk 
of  metachronous GC. Finally, NGS technologies may 
characterize an epigenetic field defect more clearly and 
highlight more useful biomarkers.

Sensitive and specific detection of early GC by DNA 
methylation analysis of gastric washes
Because many mucosal cells can be found in the gastric 
juice, the detection of  molecular markers in the gastric 
juice was a possible noninvasive approach to detect GC. 
However, the use of  gastric juice as a molecular diag-
nostic or predictive tool has been previously reported to 
be impractical because the DNA is easily degraded by 
gastric acidity. In this regard, Watanabe et al[56] have de-
veloped a new method for GC detection by DNA meth-
ylation in gastric washes but not in gastric juice. These 
authors analyzed 51 candidate genes in 7 GC cell lines 
and 24 GC samples (training set). They then selected 6 
genes (MINT25, RORA, GDNF, ADAM23, PRDM5 
and MLF1) for further analyses. The methylation status 
of  these genes was analyzed in a test set consisting of  
131 GCs at various stages. The 6 candidate genes were 
validated in a different population of  40 primary GC 
samples and 113 noncancerous gastric mucosa samples. 
The 6 genes showed differential methylation in GC and 
normal mucosa in the training, test and validation sets. 
GDNF and MINT25 were the most sensitive molecular 
markers of  early-stage GC, whereas PRDM5 and MLF1 
were markers of  a field defect. A close correlation be-

tween methylation levels in tumor biopsy samples and 
gastric washes was noted. MINT25 methylation showed 
the best sensitivity (90%) and specificity (96%), and it had 
the greatest area under the receiver operating character-
istic curve (0.961) in terms of  tumor detection in gastric 
washes. MINT25 methylation in gastric washes may be a 
sensitive and specific marker for the screening of  GC. 

Detection of early GC by DNA methylation analysis of 
Sox17 in gastric washes
Although minimally invasive treatment is widely ac-
cepted for early-stage GC, appropriate risk markers to 
detect residual cancer after endoscopic resection and the 
potential for recurrence are not available. To find can-
didate genes that might be markers for the detection of  
early GC, Oishi et al[57] performed methylated CpG island 
amplification microarray analysis on 12 gastric washes 
(from the pre- and post-endoscopic treatment of  six 
patients). Among the candidate genes, the Sox17 gene 
was selected for further analysis. The DNA methylation 
status of  Sox17 was examined in a validation set consist-
ing of  128 gastric wash samples (64 pre-treatment and 64 
post-treatment) from cases of  early GC. Sox17 showed 
significant differential methylation in the pre- and post-
treatment gastric washes of  early GC patients (Figure 3). 
Moreover, the treatment of  GC cells that lacked Sox17 
expression with the methyltransferase inhibitor 5-aza-2′-
deoxycytidine restored the gene’s expression. Addition-
ally, the introduction of  exogenous Sox17 into silenced 
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Figure 3  Methylation levels of Sox17 before and after endoscopic submucosal dissection. Methylation levels of Sox17 were analyzed by pyrosequencing using 
the DNA recovered from gastric washes before and after endoscopic submucosal dissection[57].
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GC cells suppressed colony formation. The data suggest 
that the silencing of  Sox17 occurs frequently in early GC 
and plays a key role in the disease. Gastric wash-based 
DNA methylation analysis could be useful for the early 
detection of  recurrence following endoscopic resection 
in early GC patients. Interestingly, the usefulness of  gas-
tric wash-based molecular testing for antibiotic resistance 
in H. pylori has also been reported[58]. It will be interesting 
to analyze gastric washes using NGS.

Anti-HER2 antibody trastuzumab has led to an era of 
personalized therapy in GC
Trastuzumab is an antibody that targets the HER2 extra-
cellular domain and induces antibody-dependent cellular 
cytotoxicity and inhibition of  the HER2 downstream 
signals (Figure 4). In the ToGA study, standard chemo-
therapy regimens (capecitabine plus cisplatin or fluoro-
uracil plus cisplatin) combined with trastuzumab resulted 
in a longer survival time than standard regimens without 
trastuzumab in patients with HER2-positive GC[59]. 
Thus, HER2 expression has become a major concern 
in GC[60]. HER2 overexpression is observed in 7%-34% 
of  GC cases. Mechanisms of  resistance to trastuzumab 
have been reported in breast cancer. There are various 
mechanisms underlying trastuzumab resistance, such 
as alterations of  the HER2 structure or surroundings, 

dysregulation of  HER2 downstream signal effectors 
and interaction of  HER2 with other membrane recep-
tors (Figure 4). The PI3K-Akt pathway is one of  the 
main downstream signaling pathways of  HER2. It is well 
known that PIK3CA mutations and PTEN inactivation 
cause over-activation of  a downstream signal without 
activation of  an upstream signal. The frequencies of  
PIK3CA mutations and PTEN inactivation in GC have 
been reported to be 4%-25% and 16%-77%, respectively. 
However, little is known about the association between 
HER2 expression and PI3K-Akt pathway alterations in 
GC. Sukawa et al[29] have found that HER2 overexpres-
sion was significantly correlated with pAkt expression 
in GC tissues. Furthermore, pAkt expression was cor-
related with poor prognosis. These results suggest that 
the PI3K-Akt pathway plays an important role in HER2-
positive GC. Moreover, PIK3CA mutations and PTEN 
inactivation could affect the effectiveness of  HER2-
targeting therapy. Thus, it is necessary to clarify not only 
HER2 alterations but also PI3K-Akt pathway alterations 
to optimize HER2-targeting therapy in patients with GC. 
In this regard, NGS will be useful for the identification 
of  complicated mechanisms of  trastuzumab resistance in 
GC. The only approved targeted therapy for patients with 
advanced GC is trastuzumab. It is hoped that NGS will re-
veal a driver gene alteration that will make other targeted 
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therapies possible[13,61]. 

Monoclonal antibodies targeting VEGF (AVAGAST trial) 
and VEGFR-2 (REGARD trial) in advanced GC
Several vascular endothelial growth factor (VEGF)-tar-
geted agents have been developed, including neutralizing 
monoclonal antibodies (MoAbs) to VEGF/VEGFRs, 
soluble VEGF receptors and tyrosine kinase inhibitors 
(TKIs). The anti-VEGF MoAb bevacizumab has been 
approved for colorectal cancers. VEGF and VEGF 
receptor-2 (VEGFR-2)-mediated signaling and angio-
genesis contribute to the pathogenesis and progression 
of  GC. The Avastin in Gastric Cancer (AVAGAST) trial 
was a multinational, randomized, placebo-controlled trial 
designed to evaluate the efficacy of  adding bevacizumab 
to capecitabine-cisplatin in the first-line treatment of  
advanced GC[62]. The study showed that adding beva-
cizumab to the chemotherapy regimen in patients with 
advanced GC improved the progression-free survival and 
tumor response rate but not the overall survival. A fol-
lowing biomarker evaluation analysis revealed that plasma 
VEGF-A and tumor neuropilin-1 are strong biomarker 
candidates for predicting the clinical outcome in patients 
with advanced GC treated with bevacizumab[63]. In this 
regard, NGS will be a powerful method for the identifica-
tion of  predictive biomarkers.

To analyze whether ramucirumab, a monoclonal an-
tibody targeting VEGFR-2, prolongs survival in patients 
with advanced GC, an international, randomized, double-
blind, placebo-controlled, phase 3 trial was conducted in 
29 countries[64]. In total, 355 patients with advanced gas-
tric or gastro-esophageal junction adenocarcinoma and 
disease progression after first-line chemotherapy were 
randomly assigned (2:1) to receive best supportive care 
plus either ramucirumab 8 mg/kg (n = 238) or placebo 
(n = 117), intravenously once every 2 wk. The primary 
endpoint was overall survival. The median overall sur-
vival was 5.2 mo in the ramucirumab group and 3.8 mo 
in the placebo group (HR = 0.776, 95%CI: 0.603-0.998, 
P = 0.047). The survival benefit with ramucirumab re-
mained unchanged after multivariate adjustment for other 
prognostic factors (multivariate HR = 0.774, 95%CI: 
0.605-0.991, P = 0.042). Thus, ramucirumab is the first 
biological treatment given as a single drug that showed 
survival benefits in patients with advanced gastric or gas-
tro-esophageal junction adenocarcinoma who progressed 
after first-line chemotherapy. The findings also validate 
VEGFR-2 signaling as an important therapeutic target in 
advanced GC.

Potential targeted drugs for GC
Using NGS to target a subset of  druggable genes be-
comes a more effective way to discover therapeutic 
targets[13,14,61]. There are several potential targeted drugs, 
either MoAb or small-molecule TKIs, that are being 
investigated either in synergy with, or in place of, es-
tablished treatments. These drugs include inhibitors of  
growth factors and their receptors [i.e., VEGF, epidermal 
growth factor receptor, HER2, insulin-like growth factor 

1 (IGF1) receptor, c-MET], MEK inhibitors and drugs 
targeting the Hedgehog pathway[65]. 

Dysregulation of  the IGF1 and IGF2/IGF1R system 
has been implicated in the pathogenesis of  GC[66-69]. The 
expression levels of  both IGFs and IGF1R are increased 
in GC. IGF1R is also involved in angiogenesis and lym-
phangiogenesis through the modulation of  VEGF expres-
sion in a GC cell line[70]. IGF1R blockade reduced tumor 
angiogenesis and enhanced the effects of  bevacizumab 
in a GC cell line. Thus, targeting IGF1R in combina-
tion with agents that block the VEGF pathway may have 
therapeutic utility in GC. Moreover, targeting the novel 
miR-7/IGF1R/Snail axis has been reported to be useful 
as a therapeutic approach to block GC metastasis[71].

CONCLUSION
The genetic and epigenetic alterations in GCs continue 
to inspire biological and clinical implications. Recent ad-
vances in the molecular study of  GC have brought new 
diagnostic and therapeutic strategies into clinical settings. 
The advantages of  using DNA methylation as a biomark-
er for the detection of  GC in biopsy specimens and non-
invasive body fluids such as serum and gastric washes 
may have a possible clinical application in GC. Further 
analysis is required to gain a deeper insight into GC carci-
nogenesis, a better understanding of  disease pathogenesis 
and the development of  new diagnostic and therapeutic 
approaches targeting essential pathogenic alterations. In 
this regard, the rapid advances in NGS technologies will 
hopefully continue to reveal driver alterations of  GC, 
further our understanding of  gastric carcinogenesis and 
improve the therapy for each individual tumor. The char-
acterization of  genes that were discovered by NGS rather 
than by laboratory and clinical research is also necessary.
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