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Abstract
While only limited data are available to characterize the potential toxicity of over 8 million
commercially available chemical substances, there is even less information available on the
exposure and use-scenarios that are required to link potential toxicity to human and ecological
health outcomes. Recent improvements and advances such as high throughput data gathering, high
performance computational capabilities, and predictive chemical inherency methodology make
this an opportune time to develop an exposure-based prioritization approach that can
systematically utilize and link the asymmetrical bodies of knowledge for hazard and exposure. In
response to the US EPA’s need to develop novel approaches and tools for rapidly prioritizing
chemicals, a “Challenge” was issued to several exposure model developers to aid the
understanding of current systems in a broader sense and to assist the US EPA’s effort to develop
an approach comparable to other international efforts. A common set of chemicals were prioritized
under each current approach. The results are presented herein along with a comparative analysis of
the rankings of the chemicals based on metrics of exposure potential or actual exposure estimates.
The analysis illustrates the similarities and differences across the domains of information
incorporated in each modeling approach. The overall findings indicate a need to reconcile
exposures from diffuse, indirect sources (far-field) with exposures from directly, applied
chemicals in consumer products or resulting from the presence of a chemical in a
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microenvironment like a home or vehicle. Additionally, the exposure scenario, including the mode
of entry into the environment (i.e. through air, water or sediment) appears to be an important
determinant of the level of agreement between modeling approaches.
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1. Introduction
The U.S. Environmental Protection Agency (EPA) regulates chemical substances based on
their potential to cause human health and ecological risk. EPA’s risk-assessment practices,
which provide the scientific foundation for regulatory decisions, continue to follow the
recommendations by the National Research Council (NRC, 1983), calling for scientific rigor
in characterizing an agent’s hazard, dose–response, exposure and effects. The paucity of
sufficient information to evaluate chemical exposure and effects led to the NRC’s evaluation
of this process and a call for a more integrated assessment of exposure and toxicity (NRC,
2009). The NRC’s recommendations directly relate to risks presented from chemical
substances found in products and materials used by society.

The primary purpose of the Toxic Substances Control Act (TSCA) is “to assure that
innovation and commerce in such chemical substances and mixtures do not present an
unreasonable risk of injury to health or the environment” (TSCA Section 2 (b)(3)). At
present, an unprecedented and increasing number of chemicals for which risks must be
assessed, at least at some screening level, continue to be added to the TSCA inventory (over
80,000). Of the approximately 8 million chemical substances currently in commerce
worldwide, nearly 100,000 have been inventoried and registered in the U.S. (Muir and
Howard, 2006). Hence, the urgent need for new, broadly applicable tools to facilitate rapid
risk characterization (Dix et al., 2007) is widely recognized and has been well established in
the literature. The U.S. is certainly not alone in this effort, as legislated mandates for
efficient risk based screening, categorization, classification and prioritization of chemicals
exist in the European Union and Canada as well (Egeghy et al., 2011).

High throughput screening models are needed for both hazard (toxicity) and exposure, since
risk is a function of both. Current advances in hazard utilize computational chemistry and in
silico methods for high-throughput screening (HTS) and various toxicogenomic
methodologies. These have accelerated the prediction of potential toxicity for prioritization
by providing a greater quantity and diversity of data. Notably, EPA’s ToxCast™ program
applies a battery of rapid in vitro assays to predict toxicity. To complete the high throughput
risk screening, however, exposure information must also be acquired in a similarly rapid
manner, and compared with results from ToxCast™. Thus, there is a need to rapidly assess
chemicals on the basis of biological-relevance human exposures to target research and
improve risk assessments (Cohen Hubal et al., 2010). In 2009, EPA launched its ExpoCast™

initiative to address this need for exposure data, novel modeling approaches and
discriminating metrics to screen and evaluate chemicals based on potential for human
exposures (Cohen Hubal et al., 2010).

The use and development of exposure models as well as expert judgment have aided in the
endeavor to screen and prioritize chemicals when exposure measurements are limited or
unavailable (Schinkel et al., in press, Jayjock et al., 2008). In its 1995 review of the state-of-
the-science, the Society of Environmental Toxicology and Chemistry found that the
chemical ranking and scoring systems developed over the previous 20 years were widely
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diverse in the factors used for screening potential exposure, including: (1) chemical
marketing data; (2) emission data; (3) physical–chemical properties; (3) persistence and
transformation processes; (4) monitoring data or other measured concentrations; (5)
modeled or estimated concentrations; (6) receptor characteristics and exposure setting —
including consumer, worker exposure related to frequency, duration, and intensity; and (7)
exposure expressed as intake (Swanson and Socha, 1997). More recently, Egeghy and
coauthors review modeling tools and approaches available for prioritizing manufactured
chemicals. These approaches tend to fall into two categories: the first focuses on
characterizing the fate and transport of a chemical following release into the environment,
while the second focuses on understanding exposures resulting from use and interaction with
consumer products (Egeghy et al., 2011). Egeghy and coauthors identified the need to better
evaluate both categories of models and approaches to assess strengths and limitations for
rapidly evaluating and ranking chemicals based on potential for exposure.

In the context of this manuscript, the term far-field refers to indirect chemical exposures
from environmental sources, as in water, air, soil, and food stuffs; and the term near-field
refers to exposures in microenvironments such as buildings and cars. The near-field includes
direct exposures, e.g., as application and use of consumer products and Personal Care
Products (PCPs) and indirect exposures to ambient sources e.g., off-gassing of building
materials, consumer products, dust ingestion (Jayjock et al., 2008).

An initial study to leverage existing tools is presented herein. We compare and evaluate the
capabilities of existing tools and identify the gaps which must be addressed to develop an
exposure-based prioritization approach that can be applied to rapidly and efficiently evaluate
broad classes of chemicals. The purpose of this paper is to present a comparative analysis of
exposure-based prioritization results for a common set of chemicals using several different
modeling approaches and exposure metrics. This analysis is designed to address how
consistent the models’ rankings are with each other and if the models consistently rank the
same chemicals higher or lower than others.

2. Methods
An exposure based prioritization model challenge was issued publicly in 2010 (http://
www.epa.gov/ncct/expocast/exposure_based_challenge.html) to elicit the experience of
developers of existing prioritization schemes or of models for rapid estimation of exposure
potential that can be used to inform exposure-based prioritization of chemicals. Challenge
participants were charged with using existing approaches to prioritize a sets of compounds
based on potential for exposure. The objective of the challenge was to gain a better
understanding of the process by which existing approaches evaluate potential exposures. As
such, the main interest was in an explicit and transparent documentation of each approach.
Employing existing tools further facilitates an analysis identifying the type, quantity and
quality of information needed for a more comprehensive approach toward exposure-based
prioritization.

2.1. Quantitative exposure metrics
Metrics for assessing chemical exposure and exposure potential referred to in the present
study are the intake rate (iR; e.g., μg/d or kg/h), the intake fraction (iF; e.g., kg-intake/kg-
emission), and the concentration in an organism such as a human (C; e.g., μg/kg). If desired,
the intake rate can also be calculated on a body weight basis (iRBW; e.g., μg kg-BW−1

day−1). These metrics can be calculated using a consistent, arbitrary “unit emission” rate
(EU; e.g., kg/h) for all chemicals to screen, compare and prioritize chemicals based on
relative exposure potential, i.e., using iF or CU. The steady state intake rate based on a unit
emission rate (iRU; kg/h) provides similar screening and ranking information as the steady
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state intake fraction iF since the intake fraction is the chemical intake rate normalized to the
emission rate, i.e., iF = iR / E. The iF can be calculated on an individual basis, an age-class
specific basis (iFAC, e.g. “toddlers” vs. “adults”), or for a human population in a defined
spatial region (iFPOP). The latter two iF endpoints are thus dependent on population and
demographic information. Intake rates and intake fractions can include the sum of all
exposure routes (i.e., aggregate exposures) or they can be calculated for specific sources
(i.e., for air, water, and food stuffs individually) to compare the relative importance of
different exposure routes and to identify those routes of exposure that are expected to be
highest for a particular chemical. Relative exposure potential metrics are thus independent of
an actual emission rate and are useful for chemical screening evaluations due to the
substantial uncertainty in actual emission rate estimates. Relative exposure potential
comparisons are a function of the chemical and environmental properties (persistence,
bioaccumulation) and the underlying assumptions and parameters used to characterize the
environmental and human conditions in the models.

Alternatively, exposure metrics can be calculated using estimates of “actual emission” rates
(EA; e.g., kg/h), thus providing indices for screening and priority setting based on actual
exposure estimates, i.e., CA or iRA. Estimates of actual chemical exposure using
concentrations or intake rates are directly applicable in risk based chemical assessments by
comparing body/tissue concentrations or intake rates of exposures with those concentrations
or rates of intake associated with effect or no effect levels. Unlike iRA and iF, C is an
internal dose metric and therefore it depends on absorption (i.e. including gastrointestinal
biomagnification from dietary exposures) into the body and elimination processes such as
fecal egestion, urinary excretion, respiratory exhalation, and importantly for most chemicals,
metabolic biotransformation.

2.2. Semi-quantitative metrics
A set of semi-quantitative measures of potential exposures to the chemical of concern are
also presented as a part of a tiered screening approach. These metrics are based on a
combination of available quantitative information on releases and concentrations, qualitative
information on types and degree of exposures reported in the literature, and expert judgment
on various facets of the exposures. The four population-based metrics considered for
exposure based ranking are: pervasiveness, persistence, severity, and efficacy. The semi-
quantitative metrics reflect: (i) how widespread the exposures could be within the general
US population (pervasiveness); (ii) the temporal frequency and/or duration of such
exposures (persistence); (iii) the potential for high levels of such exposures (severity); and
(iv) the potential of the contact with the chemical to result in intake/uptake (efficacy).

2.3. Chemicals
A set of 52 chemicals (or defined mixtures) was provided (Table 1). These chemicals are
representative of several broad categories in terms of physical–chemical properties and
typical intended use. Thus, exposure to these substances can be assessed across multiple
routes and pathways depending on the prioritization model or approach. The majority of the
set is comprised of chemicals known to have a relative abundance of publically available
exposure-related data accessible for modeling; conducting this pilot from a ‘data rich’
perspective was intended to limit the burden of data collection. Several chemicals with
meager available exposure data, however, were also included to test the capabilities of the
models for addressing the vast majority of chemicals in wide commercial use with little or
no existing exposure-related information (Egeghy et al., 2011).
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2.4. Models used
Four model developers responded to the exposure based prioritization challenge allowing for
the investigation of five models:

1. Far-field Human Exposure (FHX) (Arnot et al., 2010)

2. Risk Assessment IDentification And Ranking (RAIDAR) (Arnot et al., 2006)

3. UNEP-SETAC Toxicity Model (USEtox™) (Rosenbaum et al., 2008)

4. GExFRAME/Scibin (Kephalopoulos et al., 2008)

5. Prioritization/Ranking of Toxic Exposures with GIS Extension (PRoTEGE) —
derived from Modeling ENvironment for Total Risk studies (MENTOR)
(Georgopoulos and Lioy, 2006).

Additionally, EPA included two of its own currently used systems: (1) the Exposure and
Fate Assessment Screening Tool (EFASTv2) (http://www.epa.gov/opptintr/exposure/pubs/
efast.htm) and (2) the Stochastic Human Exposure and Dose Simulation (SHEDS) model
(http://www.epa.gov/heasd/products/sheds_multimedia/sheds_mm.html). Some
distinguishing features of the models were recently described by Egeghy et al. (2011).

2.5. Requested outputs
In addition to providing ranking results for the chemicals, the modelers were also asked to
transparently describe the following characteristics of the modeling approaches:

• Protocol for applying prioritization tool/approach

• Model structure, algorithms, and assumptions

• Target sources (near and far field as defined above)

• Target population of interest

• Emission characteristics

• Exposure pathways (media, routes)

• Use of professional/expert judgment

• Defaults (exposure factors, etc.)

• Consumer product use categories and selection of sentinel products

• Selection of exposure scenarios (inputs to scenarios)

• Basis for prioritization score

• Units of prioritization metric and other model outputs.

2.6. Comparison of prioritization results
For the models which produced quantitative metrics (RAIDAR, FHX, USEtox, PRoTEGE,
and EFAST), a quantitative comparison was conducted based on each chemical’s relative
ranking. This initial comparison also provides a basis for further investigation where
significant differences between modeling results would warrant focusing on the differences
in model algorithms, defaults, data input sources, etc.

Each model developer identified at least one exposure metric for use as the basis for
prioritization; however, the metrics from the different approaches were not always directly
comparable. Some of the endpoints used in the comparisons below are “exposure potential”
i.e., intake fractions and some are “exposure” endpoints, i.e., internal concentrations or body
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burdens. (For more information on exposure metric development the reader is directed to
Rosenbaum et al. (2008), Bennett et al. (2002), and Arnot et al. (2010).) It is emphasized
that the modeling approaches also used different model input parameters for chemical
properties, use and release rates. Based on the exposure metrics, the chemicals were ranked
according to magnitude thereby creating ordinal values from the measured or modeled
values with monotonic differences between chemical exposure ranks. While this is a
convenient way to view relative rankings between chemicals we note that with this approach
some information is lost because of the transformation. For example, multiple chemicals
may have fractional differences in the value of the exposure metric, but once transformed
these differences become exaggerated by the ordinal scale. For the purpose of prioritization,
the utility of the lost information may be considered negligible as it is not the intent of these
applications to produce precise measures of exposure. The actual values of the exposure
metrics were however used to assess the degree of differentiation between chemicals in
results from each approach. This is of interest especially when uncertainty around the
estimates is considered. For example, if many chemicals have the same exposure estimates,
which is a possible artifact of using default values for missing data, the ability of the
approach to separate high, low and moderate exposure potential will be impaired. This topic
is included in the qualitative discussion of the results. Table 2 summarizes the comparisons
conducted in this analysis based on the compatibility of the exposure metrics provided.

The quantitative analysis consisted of four methods:

i. Correlation between the ranks of each chemical produced by the models was
assessed using two non-parametric measures of rank correlation, Spearman rho and
Kendall tau. The Spearman rank correlation indicates the direction of association
between two variables that can be related by any monotonic function. The Kendall
tau correlation depends on the ratio of concordant pairs to discordant pairs or the
number of inversions needed to transform one rank order into the other. The
Kendall tau coefficient can be interpreted probabilistically as the difference
between the probability of the set of ranked objects being in the same order and the
probability of the ranked objects being in a different order (Abdi, 2007). While in
most cases, the Spearman rho produces a higher correlation coefficient than the
Kendall tau, the two measures can yield meaningfully different results. Spearman’s
rho is more sensitive to a few large deviations than Kendall’s tau. This information
can be useful if one wants to consider using several modeling approaches in
combination to form a consensus ranking for each chemical in the future; therefore
both correlation measures were evaluated. Chemicals not ranked by a particular
model were eliminated from the correlation analyses and the remaining chemicals
were re-ranked relatively.

ii. The chemicals were sorted into 5 equally distributed bins based on their ranks.
Correlation among the bin designations was assessed along with the expert
judgment driven semi-quantitative metrics of exposures from PRoTEGE.

iii. To evaluate consistency among the modeling approaches without considering the
source of variability contributed by the chemical being modeled, a randomized
block design was applied to the data blocking on the specific chemical. The
Friedman test, a non-parametric test similar to the parametric repeated measures
ANOVA, was then conducted to detect differences across each modeling approach.
The Friedman test is the measure of the aggregate degree to which each modeling
approach differs and is used to compare three or more paired groupings rather than
two pairwise groups described by the correlation coefficients. The hypotheses for
the comparison across the repeated measures are: The null hypothesis (H0) — the
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distributions are the same across repeated measures; and the alternative hypothesis
(H1) — the distributions across repeated measures are different.

The test statistic for the Friedman’s test is a Chi-square with [(number of repeated measures)
- 1] degrees of freedom.

Tables 3a and 3b describe the data selected for comparison.

3. Results
3.1. Comparison of evaluation schemes/models

We briefly summarize a qualitative comparison of the aforementioned model characteristics
to provide context for the prioritization results, though this study focuses on the metrics
utilized for prioritization (exposure estimates and rankings) from each approach without
regard to the underlying purpose, algorithm and assumptions involved in each. RAIDAR,
FHX and USEtox are far-field models representing exposure from diffuse sources to the
general human population of different regional spatial scales. These three models use
mechanistic mass balance approaches to simulate fate and transport in different
environmental compartments. Models for bioaccumulation into food sources destined for
human consumption are also included in the exposure pathways. The intake fraction or mass
of substance available for contact with an organism per mass emitted to the environment
was identified as the primary metric for exposure based prioritization from these models.
Additionally, intake rate from the RAIDAR and FHX models can be used. The FHX model
provides age class specific rankings for chemicals, but these were not significantly different
than the rankings for the adult age class so they were not included in our comparative
analysis. Additionally only the RAIDAR model includes absorption, distribution,
metabolism and excretion (ADME) processes and an internal concentration in humans as a
metric for prioritization. While this metric may be considered most ‘biologically relevant’
and compatible with toxicity data some technical issues have been noted elsewhere in regard
to corroborating this metric against measured biomarkers (Georgopoulos, et al., 2009). For
simplicity, each of the far field models can be run based on an equivalent unit emission and
equilibrium assumption for each environmental compartment to provide a relative estimate
for each chemical or with more advanced fate assumptions. This approach may be useful for
making comparisons among broad ranges of chemicals for which actual emission data is
unavailable though this contributes more uncertainty in the chemical screening. Under the
unit emission assumption, RAIDAR and FHX provided rankings for 45 chemicals and
USEtox provided rankings for 42 chemicals.

Intake is an intermediary variable in USEtox to be coupled with toxicity to form a combined
exposure/toxicity “damage” endpoint. The intake value from USEtox alone is not considered
a suitable metric for ranking but provides a means of comparison on the basis of exposure.
The three far-field models can be parameterized with chemical specific information from
measurement databases or estimated from readily available Quantitative Structure–Activity
Relationship (QSAR) models.

The EFAST model provides similar far-field modeling estimate, but also considered risk
management interventions to reduce exposure. It also includes a consumer product module.
EFAST2 is a screening-level computer tool that allows users to generate exposure estimates
for humans and the environment through various release and exposure scenarios. The
chemical-specific input parameters (mostly physicochemical properties) used in the
EFAST2 model include: 1) bioconcentration factor (BCF; L/kg), 2) concentration of concern
(CoC; ppb), 3) wastewater treatment removal rate (WWT; %), 4) incineration removal rate
(%), 5) fugitive removal rate (%), 6) ground water migration rate, 7) molecular weight (g/
mol), 8) vapor pressure (mm Hg), and 9) weight fraction (%). The modeling endpoints
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estimated with EFAST2’s General Population and Ecological Exposure from Industrial
Releases module include the human Acute Dose Rate (ADR in mg/kg-day) and LADD
(Lifetime Average Daily Dose (LADD in mg/kg-day)) for exposures from drinking water
(via surface water releases), groundwater ingestion (via landfill releases), fish ingestion (via
surface water releases and subsequent bioconcentration), and inhalation (from stack and
fugitive air releases).

The far-field modeling approaches produced the most rapid results of those evaluated in this
study, primarily because of the ease of parameterization using available chemical specific
properties.

3.1.1. RAIDAR—RAIDAR was used to estimate exposure for 45 number of challenge
chemicals. Fig. 1 shows the unit emission based chemical results produced by the RAIDAR
model on the basis of individual intake fraction (iF) and internal concentration (Cu) using
Level II fate model calculations (steady-state and equilibrium). These assumptions do not
require mode of entry into the environment information as they assume instantaneous
equilibrium in all physical compartments (air, water, soil and sediment). The results in Fig. 1
highlight the increase in differentiation among chemicals when ADME processes are
included (~12 orders of magnitude when included vs. ~6 orders when not included). ADME
processes made a significant difference in relative rankings for those chemicals predicted to
have moderate exposure levels. For those predicted to have either very low or very high
exposure levels, results from both internal and external exposure metrics were highly
correlated [data not shown]. In RAIDAR the difference in rankings between internal and
external exposure metrics was a more significant factor in differentiating potential exposures
than the assumed emission release compartment (i.e. air, water or soil) which is unknown for
many chemicals.

3.1.2. USEtox—USEtox was used to provide exposure predictions for 45 number of
challenge chemicals. An example of the results of predicted population intake fraction from
the USEtox model is provided in Fig. 2. This approach produced differentiation among
chemicals in the same order of magnitude as RAIDAR (i.e. the range covered over seven
orders of magnitude.) The USEtox model exposure framework was recently expanded to
include indoor air as an additional emission compartment (Hellweg et al., 2009) and further
developed to account for sorption to indoor walls as a removal pathway (Wenger et al.,
2012; Meijer et al., in preparation). Because human exposure to manufactured chemicals in
consumer products is of concern, an indoor compartment will improve relevance of
screening-level model predictions.

3.1.3. EFAST—The EFAST2 model produced results for 48 chemicals for water releases
only. Each exposure scenario (drinking water, fish ingestion, and groundwater/landfill
routes) was ranked separately and the chemicals were assigned a relative score (1–4) based
on the distribution of their dose estimates. For comparison with USEtox and RAIDAR the
dose estimates for emission to water were combined and each chemical was ordinally
ranked. Since the model was developed for screening level estimates, the results are highly
conservative and rely on many default values. In comparison with USEtox and RAIDAR the
temporal scale of the release conditions also differs in EFAST2. Where USEtox and
RAIDAR assume steady state releases, the EFAST2 model can evaluate exposures from
several different temporal release patterns. For this evaluation a unit emission was
considered for a twenty day period to produce exposures measured in ADR and LADD as
described above. Because of the assumptions used in this relative analysis of chemicals, both
the ADR and LADD estimates were perfectly correlated, so only the LADD values are used
in the following comparative analysis. An example of the EFAST2 results for the total
exposure from water releases is illustrated in Fig. 3. Differentiation of estimates spanned 4
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orders of magnitude. Additional results from EFAST included 9 chemicals ranked using the
consumer module. These estimates are calculated solely from inhalation (no other route)
using given chemical-specific inputs of molecular weight and vapor pressure. Only 11
chemicals were identified to have potential household consumer applications (that fit within
the EFAST model), two chemicals were excluded because they did not include an inhalation
assessment (this is the case when only the bar soap scenario applied). The consumer use
scenarios applied to the chemicals assessed include: (1) general purpose cleaner; (2) bar
soap; (3) laundry detergent; and (4) latex paint.

3.1.4. GExFRAME—GExFRAME and PRoTEGE provided rankings for
microenvironmental exposures, though both used different approaches. PRoTEGE is based
on a more sophisticated predecessor, MENTOR (Modeling ENvironment for TOtal Risk)
and estimates both near-field and far-field exposures. MENTOR supports detailed person-
oriented source-to-dose exposure modeling for mixtures of multimedia contaminants,
allowing a focus on specific locations and subpopulations. Neither MENTOR nor
GExFRAME are considered single models. Both are modeling systems or modeling
environments capable of accommodating various algorithms to integrate scientific data and
models for estimating exposures. For this analysis, the CARES (Cumulative and Aggregate
Risk Evaluation System) program was integrated with GExFRAME to assess dietary and
non-dietary residential exposures. The results from the use of GExFRAME in this exercise
were purely qualitative and could not be included in the quantitative analysis. Chemicals
used in consumer products were grouped into scenarios that defined similar source
characteristics, media dispersion characteristics and exposure pathways. Based on these
categories a scenario specific set of exposure algorithms were assigned. A default set of
inputs are available for conducting exposure assessments within each set of algorithms. The
52 challenge chemicals were classified as described in Table 4.

The GExFRAME analysis produced only categorical values because GExFRAME requires
measured or monitored data in near field exposure media, e.g. breathable air, contact
surfaces, ingestible soil, dust in air and surfaces, food and drinking water and other near
field information. That is, GExFRAME is designed to provide a high tier, low throughput
chemical characterization. Chemicals are characterized, but not specifically prioritized.
Chemicals that fall within Categories 1 and 2, however, are likely to exhibit relatively low
exposure potential. By extension, chemicals in Categories 3, 4, and 5 may well exhibit
increased exposure potential and, consequently, such chemicals pose important risk. Finally,
chemicals in Category 6 are regulated under the Federal Insecticide, Fungicide, and
Rodenticide Act and have undergone higher tier exposure assessment. Exposure potential
characterization is also use for prioritizing chemicals in terms of need for further testing.
Thus, chemicals in Category 6, notwithstanding their high exposure, may be considered
lower priority because much is known about the chemical class in general and higher tiered
models that are available to produce more accurate results.

3.1.5. SHEDS—The US EPA SHEDS model was determined to be useful for screening
chemicals when specific use categories and scenarios could be established. Parameterization
of the model could be conducted using default values, but this was not the intended purpose
of such high tier models so it presented some challenges. Future work to modify the SHEDS
model for lower tiered assessments is required. Five different use categories were gleaned
from the list of chemicals in this analysis: industrial/occupational additives & by-products,
plastics, commercial additives, pesticides/herbicides and natural risks (i.e. arsenic, lead,
manganese, cadmium). Various combinations of SHEDS—dietary, SHEDS—soil/dust,
SHEDS—residential, SHEDS—CCA (chromate copper arsenate, formerly SHEDS Wood),
APEX (Air Pollutants Exposure Model) and SHEDS—air toxics were determined to be
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useful for all of these categories except for the plastics if appropriately modified with default
scenarios.

3.1.6. PRoTEGE—The PRoTEGE system facilitates screening level exposure calculations
at multiple tiers, utilizing available data on

• Chemical production and usage,

• Environmental releases,

• Environmental concentrations in multiple media and microenvironments, and

• Age- and gender-specific population distributions of major physiological and
behavioral attributes.

PRoTEGE can estimate exposures during chemical manufacturing, chemical transportation,
product manufacturing, product use, and product disposal or as a result of intentional or
unintentional release of the chemical in the environment and its subsequent contact with the
individual through one or more exposure routes (inhalation, ingestion, dermal contact). A
summary of these results is illustrated in Fig. 4.

“Tier 2” exposure metrics of PRoTEGE provide quantitative measures of potential
exposures to the chemicals of concern using probability distributions of multimedia
contaminant concentrations, combined with distributions of physiological and behavioral
factors. These metrics are primarily based on available nationwide data and are summarized
in Fig. 5. The exposure estimates spanned 6 to 10 orders of magnitude differentiating among
the chemicals evaluated before they were transformed into categories. Time to obtain these
chemical specific data points may be excessive when applied to larger sets of chemicals for
screening and prioritization purposes.

Results from PRoTEGE were provided for 55 chemicals in Tier 1 –those listed in Table 1
and additional perchlorate salts – Sodium Perchlorate, Potassium Perchlorate, and
Magnesium Perchlorate. In Tier 2, estimates were obtained for 47 chemicals — both median
values and 95th percentile estimates were provided.

3.2. Comparison of prioritization results
3.2.1. Actual emissions—Comparison between the prioritization results was only made
where they were deemed appropriate as described in Tables 2, 3a and 3b — with similar
emission assumptions, modes of entry, etc. While RAIDAR and USEtox mainly provide
estimates of exposures due to environmental releases versus exposure due to indoor sources
or consumer product use exposure estimates, PRoTEGE estimates are equivalent to intakes
for the general population and therefore provide a means of comparison with RAIDAR and
USEtox. In other words, although the model structures are different, the exposure metric is
similar and therefore these three models can be compared. In Fig. 6, the exposure metrics
across all pathways based on actual emission estimates were used to rank each chemical for
each modeling approach. This figure shows a side by side comparison of the magnitude of
the ranking results based on color. Red denotes the highest potential exposure and green
denotes the lowest potential exposure. Numerically, a value of 1 corresponds to the highest
exposure and 55 corresponds to the lowest exposure. White spaces indicate no value as there
were chemicals for which an approach failed to produce an estimate. As a result, a side by
side comparison of the chemical ranks produced by each model is inappropriate. Similarities
between the median and 95th percentile estimates from RAIDAR were observed for the
majority of chemicals as expected. PRoTEGE showed more deviations between median
estimates and upper bound estimates than RAIDAR. The PRoTEGE distributions include
both variability and uncertainty in concentrations as well as demographic variability among
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physiological and behavioral factors. There are several cases where USEtox generated
comparable rankings with PRoTEGE (e.g. 2,4-D; gamma-Hexachlorocyclohexane;
Methoxychlor; Pentachlorophenol; Cadmium; Hexachlorobenzene) and several cases where
RAIDAR and USEtox generated comparable results (e.g. Permethrin; Di-n-butylphthalate;
Ethylene thiourea). The models generated ranking results within the same range for
Parathion, DEHP, Di(2-ethylhexyl)phthalate, Ethane, 1,1,2,2-tetrachloro- and Malathion.
Major differences between RAIDAR and both USEtox and PRoTEGE exists for DDT,
gamma-Hexachlorocyclohexane, Hexabromocyclododecane, Hexachlorobenzene, octaBDE,
Pentachlorophenol, pentaBDE, Tetrabromobisphenol A, Benzene, 1-methoxy-4-(2-
propen-1-yl) and formaldehyde. To clarify, for most chemicals (31 of 41), the RAIDAR
results are calculated using EU Technical Guidance Document emission factor estimates and
global production volume estimates as outlined in Arnot et al. (2012); hence, model
comparisons of the relative rankings are not directly comparable. There were only four
chemicals across these 3 models where RAIDAR was parameterized with US emission data.
These comparisons are shown in Table 5. When ranked relatively, USEtox and PRoTEGE
produce the same results for median estimates. Two of the four chemicals are ranked the
same using RAIDAR and PRoTEGE when the 95th percentile values are compared.

A total of 18 chemicals could be compared across USEtox and PRoTEGE with actual
emission estimates. The Spearman rho correlation coefficient is 0.81 and the Kendall tau is
0.63. When USEtox is compared with the 95th percentile estimates from PRoTEGE similar
results were obtained (0.82 and 0.65, respectively). These values represent very high
agreement between the two approaches.

A second analysis to evaluate the modeling approaches using actual emission rates was
conducted by comparing the ability of each approach to bin chemicals. There were 16
chemicals included in this analysis. Fig. 7 summarizes the Spearman rho correlation
coefficients obtained when the chemicals were sorted into 5 bins. The Kendall tau values
were consistently lower for all values reported so they are not included. Qualitative metrics
from the PRoTEGE model were included in this analysis. As seen by the darker green
shading, the RAIDAR median metrics of exposure show no positive association with the
quantitative exposure estimates from PRoTEGE or USEtox. Interestingly, the RAIDAR
results are positively correlated with the inhalation, dermal and aggregate qualitative metrics
from PRoTEGE. This association is even greater for the upper bound 95th percentile
estimates from RAIDAR. The binned quantitative metrics from PRoTEGE and USEtox are
inversely proportional with the PRoTEGE qualitative metrics except for ingestion. Within
the Tier I qualitative metrics, the ingestion pathway is inversely related to the dermal and
inhalation pathways along with the aggregate or dominant pathways which are influenced by
these measures.

3.2.2. Unit emissions—Due to lack of actual emission data for a large number of
chemicals, more compounds could be evaluated using a unit emission rate. RAIDAR,
USEtox and EFAST produced rankings based on unit emissions to water for 38 chemicals.
The Spearman rho correlation is reported in Fig. 8. Positive correlation was observed
between all measures. RAIDAR and USEtox intake fractions were highly associated with a
Spearman rho of 0.7. EFAST2 produced results that were associated with both USEtox and
RAIDAR to a lesser extent (Spearman rho = 0.3). The major difference between the latter
approach and the former approaches is the inclusion of chemical specific removal rates from
environmental media. The Kendall tau values were also consistently lower so they are not
reported.
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When rankings based on air emissions were compared (Fig. 9), very high association was
observed between RAIDAR and USEtox. Comparison of the intake fractions for 38
chemicals resulted in a Spearman rho of 0.9.

To avoid bias from the gross aggregation of source compartments that may affect the
rankings, intake fractions for ingestion and inhalation of air and water were disaggregated
for comparison. Areas of departure between far-field models (USEtox in contrast with
RAIDAR and FHX) are the result of differences in (i) model input parameters (model users
did not use consistent input parameters), (ii) treatment of release (emission) rates to
population densities, and model structure (e.g., differences in fate and food web calculations
as well as human contact rates (i.e. diets)). Only a comparison between models with
consistent model input parameters established for each can shed light to the cause of the
observations here, but it is useful to see which domains of information and metrics yield
similar results.

The Friedman test compares three or more paired groups. The test allowed for comparison
between model outputs while separating sources of variability. The two major sources of
variability are the individual chemical being modeled and the model used for prioritization
(e.g. RAIDAR, USEtox, PRoTEGE, and EFAST). Based on the total of 38 chemicals
evaluated by each model using the unit emission rate, this Friedman test can identify
consistency among approaches aggregately rather than pairwise. This analysis answers the
question “Are the models’ rankings consistent with each other?” or “Are some model
ranking chemicals consistently higher or lower than others?”. In every case the null
hypothesis, equal treatment by each model, could not be rejected meaning that there is some
consistency between modeling results. The results are summarized in Table 6. While the
actual ranking scores of each chemical are dissimilar (as indicated through correlation tests),
consistency exists between approaches in a broader sense based in the Friedman test which
may indicate that it is appropriate to combine approaches to form a consensus ranking.

4. Discussion
Overall the statistical comparisons reveal that between the far-field models viewed here,
RAIDAR, FHX and USEtox, there is close agreement between chemical rankings when the
emission compartments are consistent (i.e. water and air). The case study results from these
models are dependent on the emission rates as drivers of the modeling results so expected
differences were observed when these inputs were varied from the unit emission assumption.
When compared to near field models (PRoTEGE) a significant indication of agreement
between rankings exists when the emission estimates are regionally compatible (i.e. the U.S.
release inventories). Unfortunately, these actual release quantities are unavailable for a large
number of chemicals produced at lower production volumes. Inverse relationships between
the qualitative estimates informed in part by expert judgment and the quantitative modeling
results were observed to be sensitive to exposure pathway. This is an indication that scenario
specific chemical rankings may be important to consider going forward. Another finding to
support the need to resolve scenario specific exposure prioritization issues is that within the
USEtox modeling results, the rankings of chemicals from the indoor air pathway and
outdoor air pathway had a very low inverse Spearman correlation co-efficient of −0.18 as
well. Time activity data has shown that the population spends most of their time indoors
including residential and occupational settings. Therefore the need to include exposure
predictions for near-field exposure is significant. Models like GExFRAME and SHEDS are
designed to make these scenario dependent predictions, however they are incapable of
producing results for a large number of chemicals lacking the sufficient input data for higher
tiered assessments. It is clear that characterizing important factors like habits and practices
of consumers which drive exposure potential is a critical need. The PRoTEGE model allows
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for lower tier predictions to capture these factors in a “data poor” environment with semi-
qualitative metrics. Where more data are available, median higher tier predictions of
exposure potential based on quantitative assessments showed moderate agreement with the
RAIDAR model but inverse association with USEtox and PRoTEGE. While these types of
metrics offer a promising alternative in the absence of data, it will be important to reconcile
the differences between the semi-quantitative and modeled results in terms of specific
exposure pathways which appear to be the most significant contributor to the observed
differences.

Ultimately the reliability and utility of these approaches is dependent on their ability to
rapidly assess thousands of chemicals for which little exposure information is anticipated.
Developing a set of criteria or specific needs from a high throughput exposure based
prioritization approach is a necessary precursor. The objectives of such an approach are
needed to more clearly define how to balance the tradeoffs between producing rapid results
with available information and meeting an acceptable level of confidence in screening. For
example, the categorization of chemicals seen here for GExFRAME and SHEDS could be
useful in eliminating chemicals from an inventory because of little concern over potential
exposure though they do not produce individual exposure estimates. Additionally, these
approaches may be parameterized with defaults to shed light on the relevance or potential
exposure associated with particular scenarios. The developers of EFAST2 and PRoTEGE,
approaches which did produce exposure estimates recommended binning the results into 4
or 5 risk categories based on associated confidence. The term prioritization infers the need to
have chemical specific ordinal results but the ability to ‘screen for prioritization’ should not
be necessarily discounted. How comprehensively exposure across the source to receptor
continuum is characterized is another issue that needs to be resolved. The far-field models
were more inclusive of processes relevant to the entire continuum (though they were more
rigorous in processes from source to concentration). The near field models rely on
environmental concentrations from scenario specific use of chemicals and focus more on the
successive processes from concentration to receptor. Because the entire source to dose
continuum is deemed relevant in producing compatible results with high throughput toxicity
testing how the results from far-field and near field source models can be combined warrants
further exploration, especially because inverse associations were observed in some cases. A
further consideration is whether a consensus approach should be developed or an approach
that synthesizes the results from models across the source to dose continuum. Equal
treatment of chemicals by each model demonstrated by the Friedman test may inform the
appropriateness of consensus building when exposure source and pathway considerations
are reconciled.

The authors recognize some additional factors for consideration in developing exposure
based prioritization approaches that fell outside of the scope of modeling results herein.
These issues are bulleted below:

• Consideration of chemicals as single substances rather than embedded in products

a. The issue of confidentiality of individual product usage data is a problem.

b. There is a separation in the product chain between the companies that
make the chemical and the companies making the final products.

c. Those reporting production volume for a chemical are often unaware of
how it may be used downstream.

d. Decisions on how chemicals may be used are sometimes made by many
different smaller companies (formulators) rather than by large
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manufacturers who are used to working with regulators to provide
information for exposure assessment.

• The amount of the chemical released vs. the amount used vs. the amount produced
may lead to different prioritization results.

• In terms of modeling, an extension of exposure characterization beyond
occurrence, persistence and bioaccumulation is necessary for prioritization of large
numbers of chemicals.

• Consideration of the potential lifetime of the person and the products

• Should the function of the chemical or types of products it is used in (toys, paints,
etc.) be the basis for exploring exposure scenarios?

5. Conclusions
Currently available approaches show promise for prioritizing chemical ingredients in
products according to their potential for exposure, but several gaps in knowledge exist.
Chief among these gaps is the paucity of information needed for reliable estimates of
exposures for direct and micro-environmental scenarios and the need for improved
understanding of product use and resulting release rates. A next step will be for EPA to
simultaneously, evaluate exposure-based prioritization linkages to hazard based chemical
prioritization approaches. Since risk is a function of exposure and hazard, such integration is
needed for risk-based chemical prioritization. This is consistent with current risk assessment
recommendations (notably, by the NRC (2009)).

Another need is the ability to extrapolate exposure characterization and ranking from the
small subset of data-rich chemicals. This will rely on QSAR and other methods to
extrapolate from known chemicals with estimated properties to other chemicals. Some older
techniques can be found in EPI Suite, ChemSTEER and similar chemical databases and
systems, but updated fate simulation capabilities would have a positive impact on the
outcome of future analyses. Uncertainty in using estimated properties for exposure and risk
assessment model inputs is expected to be substantial; thus methods to address this
uncertainty need to be considered.

Formal techniques in decision making under high uncertainty have greatly improved over
the past decade. Although their usefulness was recognized as early as in 1995 in SETAC’s
state of the science publication (Swanson and Socha, 1997), decision analysis techniques
had rarely been used in chemical ranking and scoring systems. Utilizing outranking
approach in multi-criteria decision analysis has several advantages to exposure based
prioritization which is being explored. The model structure allows for formal value of
information analysis which addresses the question of what data are most needed to make a
prioritization decision allowing EPA to prioritize research needs and request the right
information from industry during the pre-manufacture process. Other decision science
techniques allow for the modeling of expert judgment when measured or monitored data are
absent. Bayesian networks can be part-mechanistic and part-statistical frameworks for
incorporating and combining information from data and other sources (i.e. expert judgment).
These approaches are promising for synthesizing important and disparate exposure related
criteria. Additionally, selection of these criteria may form the basis for merging indirect
exposure scenario data with direct exposure data.

Subsequent exercises have been designed to apply current approaches to larger sets of
chemicals lacking sufficient data to further facilitate the evaluation of the utility and
reliability of these approaches in a heuristic method. Specifically, assessing the uncertainty
associated with using a scenario specific model (i.e. a far-field, indirect source) for
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prioritization of a set of chemicals that may result in near-field, intentional exposures is
being addressed. These efforts are necessary to extrapolate from chemicals for which a large
amount of data exists to chemicals for which very little exposure data exists.
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HIGHLIGHTS

• Exposure models are compared to prioritize chemicals on the basis of exposure.

• Ranking results are most sensitive to the initial emission rate assumptions.

• Key knowledge gaps are identified for high throughput exposure based
prioritization.
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Fig. 1.
Comparison between estimates produced by RAIDAR exposure metrics. Population intake
fraction (kg intake/kg emitted) and concentration in humans (μg/kg body weight) based on
an assumed consistent unit emission rate for all chemicals.
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Fig. 2.
Summary of rankings produced by USEtox.
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Fig. 3.
Summary of rankings produced by EFAST2.
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Fig. 4.
Summary of “Tier 1” estimates of semi-quantitative metrics of exposure (pervasiveness,
persistence, severity, and efficacy) for the 55 chemicals.
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Fig. 5.
Summary of “Tier 2” estimates of quantitative metrics of exposure of the general population
of the US for the 55 chemicals. Rankings are color coded based on values from 1 to 5 as
shown in the legend and white (empty) cells indicate no data (ND) were available.
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Fig. 6.
Summary comparison of rankings for each chemical based on an “actual” emission rate.
Number in each column represents the rank of the chemical among the set of chemicals
ranked by each model and/or metric. Shading varies from high (red) to low (green) exposure
based on the estimates provided.
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Fig. 7.
Correlation of binned “actual” emission rate chemical rankings and qualitative metric–
Spearman coefficient between each model and metric used to estimate exposure for the same
set of chemicals. Shading indicates degree of correlation from high (yellow) to low or
negative (green). Abbreviations: Inhalation (Inh), ingestion (Ing), dermal absorption (Der),
aggregate pathways (Agg), and dominant pathway (Dom).
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Fig. 8.
Correlation of unit emission to water rankings–Spearman coefficient between each model
and metric used to estimate exposure for the same set of chemicals. Shading indicates degree
of correlation from high (yellow) to low (green).
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Fig. 9.
Correlation of unit emission to air rankings–Spearman coefficient between each model and
metric used to estimate exposure for the same set of chemicals. Shading indicates degree of
correlation from high (yellow) to low (green).
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Table 1

Model challenge chemicals.

Chemical name CASRN

1,2,3-Trichlorobenzene 87-61-6

2,4,5-Trichlorophenoxyacetic acid 93-76-5

2,4-D 94-75-7

8-2 fluorotelomer acid 27854-31-5

Aldicarb 116-06-3

Aroclor_1254 11097-69-1

Aroclor_1260 11096-82-5

Arsenic 7440-38-2

Atrazine 1912-24-9

Benzene, 1-methoxy-4-(2-propen-1-yl)- 140-67-0

Bisphenol-A 80-05-7

Butylhydroxyanisole 8003-24-5

C10-13 Chloroalkanes 85535-84-8

Cadmium 7440-43-9

Carbaryl 63-25-2

DDT 50-29-3

decaBDE 1163-19-5

DEHP, Di(2-ethylhexyl)phthalate 117-81-7

Diethyl phthalate 84-66-2

Di-n-butylphthalate 84-74-2

Ethane, 1,1,2,2-tetrachloro- 79-34-5

Ethene, 1,1,2,2-tetrachloro-(perc) 127-18-4

Ethylene thiourea 96-45-7

Ethylparaben 120-47-8

Formaldehyde 50-00-0

Gamma-hexachlorocyclohexane 58-89-9

Hexabromocyclododecane 25637-99-4

Hexachlorobenzene 118-74-1

Lead 7439-92-1

Malathion 121-75-5

Manganese 7439-96-5

Methoxychlor 72-43-5

Methyl mercury 22967-92-6

Methylparaben 99-76-3

n-Hexane 110-54-3

Nonylphenol 25154-52-3

octaBDE 32536-52-0

Parathion 56-38-2

Pentachlorophenol 87-86-5
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Chemical name CASRN

pentaDBE 32534-81-9

Perchlorate 10034-81-8a

Permethrin 52645-53-1

PFOS 1763-23-1

Phenol, (1,1-dimethylethyl)-4-methoxy- 25013-16-5

p-Tert-pentylphenol 80-46-6

Styrene 100-42-5

Tetrabromobisphenol A 79-94-7

Trifluralin 1582-09-8

Tris (1,3-dichloro-2-propyl) phosphate 13674-87-8

Tris (2-chloroethyl) phosphate 115-96-8

Vinclozolin 50471-44-8

Vinyl chloride 75-01-4

a
The CASRN was incorrectly provided to the challenge participants as 10034-81-8. The correct number is 14797-73-0.
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Table 2

Summary of comparative analysis.

Type of emission
assumption

Models Metrics Method Number of
chemicals
evaluated

Actual emissions RAIDAR, USEtox and PRoTEGE —
median estimates and 95th percentile for
RAIDAR and PRoTEGE

iRA, CA, exposure dose Comparison table 4

Actual emissions USEtox and PRoTEGE — median
estimates

iRA, exposure dose Correlation 18

Actual emissions Binned data — RAIDAR, USEtox and
PRoTEGE (median estimates and 95th
percentile for RAIDAR and PRoTEGE)
with PRoTEGE semi-quantitative

iRA, CA, exposure dose Correlation 16

Unit emissions to water RAIDAR, USEtox and EFAST iF, CU, LADD Correlation/Friedman test 38

Unit emissions to air RAIDAR and USEtox iF, CU Correlation/Friedman test 38

Unit emissions for the
sum of air and water

RAIDAR and USEtox iF, CU Correlation/Friedman test 38
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Table 3a

Comparison of exposure metrics based on “actual” emission data analysis plan.

Actual emission comparisons

RAIDAR USEtox PRoTEGE

Amount of emission European Union (EU) — Technical
Guidance Document (TGD) Emissionsa

or US EPA pesticide emission data for 10
chemicals

US EPA pesticide emissions data,
National Emissions Inventory (NEI)
for air, Toxic Release Inventory (TRI)
for air, and TRI for water

Multimedia contaminant
concentrations from national
databases like TRI and NEI

Mode of entry EU-TGD mode of entry (MOE) estimates US EPA pesticide to crop application
rate, NEI air, TRI air, TRI water

Scenario specific

Aggregate sources All sources (foliage, root, fish, poultry,
pork, cow, dairy, milk, egg, inhalation,
water, total foods, dust)

Sum of water and air – all sources
(urban air, rural air, continental
freshwater) – crops, root crops, meat
milk and fish from freshwater and
marine compartments.

Ambient air, concentrations in
food, environmental field
studies, drinking water, and
indoor air

Exposure pathway Inhalation and ingestion Inhalation and ingestion of (urban air,
rural air, continental freshwater)

Inhalation & ingestion

Metric Individual intake rate (iR) (mg/day) and
95th percentile based on confidence score

Population intake rate, iR (kg/year) g/day for the population

a
EU TGD methods for estimating chemical mode-of-entry and % release from production volume estimates are used for 31 chemicals, except for

10 pesticides that were based on emission estimates provided by EPA.

Sci Total Environ. Author manuscript; available in PMC 2014 August 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mitchell et al. Page 31

Table 3b

Comparison of exposure metrics based on unit emission data.

Unit emission comparisons

RAIDAR

Amount of emission Unit Unit

Mode of entry Water Air

Source Foliage, root, fish, TerrHerb, TerrCarn, poultry, pork, cow, dairy,
milk, egg, inhalation, water, total foods

Foliage, root, fish, TerrHerb, TerrCarn, poultry,
pork, cow, dairy, milk, egg, inhalation, water,
total foods

Pathway Inhalation and ingestion Inhalation and ingestion

Metric Individual, iF (kg/kg), iRU (mg/day), CU (mg/kg) Individual, iF (kg/kg), iRU (mg/day), CU (mg/kg)

USEtox

Amount of emission Unit Unit

Mode of entry Freshwater Continental rural air

Source Freshwater — crops, root crops, meat milk and fish from freshwater
and marine compartments, etc.

Rural air — crops, root crops, meat milk and fish
from freshwater and marine compartments, etc.

Pathway Inhalation and ingestion Inhalation and ingestion

Metric iFPOP (kg/kg) iFPOP (kg/kg)

EFAST

Overall human exposure estimates

Amount of emission Unit (1 kg over 20 days) for all chemicals

Mode of entry Landfill infiltration to groundwater, industrial fugitive gas and
stack releases to air, surface water releases

Source Drinking water, fish ingestion, inhalation and groundwater
ingestion

Pathway Inhalation and ingestion

Metric mg/kg/day
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Table 4

Categorical results from GExFRAME.

Category Chemical description Human exposure assessment process

1 Previously used and currently not found in human
exposure media

No human exposure possible

2 Previously used and currently found in human exposure
media

Exposure assessment for chemicals found in near field exposure
media

3 Present in human exposure media during industrial use Worker exposure only during the manufacturing process for both raw
material and products

4 Found in food and/or drinking water Exposure assessment for chemicals present in food and/or drinking
water

5 Found in consumer use products Exposure assessment for chemicals present in consumer products
resulting in their presence in near field exposure media

6 A pesticide currently in use Exposure assessment for pesticides as done by OPP (Office of
Pesticide Programs)
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