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Introduction

The modern health care systems in the Western world are 
currently faced with a dramatically increased prevalence 
of diseases related to the elderly, especially cardiovascular 
disease (CVD) [1]. In 2004, 13.7 % of the European popu-
lation was aged 65 years or older. The mortality by CVD in 
Europe and North America is higher than 35 % [1, 2], mak-
ing it the main cause of death in Europe and the USA [1, 
3, 4]. Moreover, the economic burden of increasing CVD 
morbidity is enormous. In 2003, CVD cost the European 
Union €169 billion, the US €310 billion, and Canada €16 
billion [4–6]. These calculations include direct costs, driven 
by patient-centered care, as well as indirect costs, driven by 
disability and increased mortality. A statement from the 
American Heart Association claims that more than 40 % of 
Americans are projected to have some form of CVD and 
direct medical costs are projected to triple, reaching over 
€870 billion in 2030 [7].

CVD represents a heterogeneous group of disorders 
and includes—as currently defined by the World Health 
Organization—arterial hypertension, coronary heart dis-
ease, cerebrovascular disease, peripheral arterial disease, 
heart failure, rheumatic heart disease, congenital heart 
disease, and cardiomyopathies [8]. The common serious 
consequence of CVD is a reduced systolic and/or diastolic 
cardiac function, which is driven by structural, cellular, and 
molecular changes. These changes initially counteract dif-
ferent cardiac stress situations but in the long run induce 
adverse cardiac remodeling, leading to cardiac dysfunc-
tion and ultimately to heart failure. Many preclinical thera-
peutic strategies are aimed at inhibiting these changes but 
until now none of these strategies have entered the clinical 
arena. Likewise, the development of such drugs seems to 
have become less attractive for pharmaceutical companies 
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in recent years [9, 10]. Thus, it seems that novel therapeutic 
approaches are needed to prevent adverse cardiac remod-
eling. Adverse cardiac remodeling is driven not only by 
over-activation of detrimental signaling pathways but also 
by a loss of cardioprotective mechanisms. The stimulation 
of the latter would also be an attractive therapeutic strategy. 
However, much attention has been paid to the inhibition of 
adverse signaling cascades and not to stimulation of exist-
ing endogenous adaptive pathways.

In this review, we will highlight the role of certain car-
dioprotective mechanisms that are driven by a subset of 
chromatin-modifying enzymes, the so-called histone dea-
cetylases (HDACs). In the past, a number of elegant mech-
anistic and mouse genetic studies have highlighted HDACs 
as key molecules for “adverse” signal transduction but 
recently we have begun to understand their role in molec-
ular mechanisms that counteract adverse stress situations. 
The understanding of these “protective” mechanisms may 
help to develop novel therapeutic strategies.

Histone deacetylases (HDACs)

Histone deacetylases were initially described as repres-
sors of transcription [11]. They catalyze the removal of the 
acetyl groups from the amino side chains of lysine residues 
on histones, thereby restoring the positive charge, which 
results in stabilization of histone–histone and histone–DNA 
interactions. As a consequence, chromatin condensation 
occurs and access by transcription factors to their specific 

binding sites in the DNA is restricted. However, post-
translational modification by acetylation and deacetylation 
does not occur solely to histones, but seems to be a fun-
damental mechanism by which other biological processes 
are regulated. In this regard, HDACs have also occasion-
ally been referred to as ‘K’-DACs, pointing out a global 
role for lysine deacetylation not only in histones but also in 
non-histone proteins [12–14]. Accordingly, one should also 
take into account that HDACs/K-DACs may exert cardio-
protective effects via indirect actions on transcription. For 
instance, an elegant study showed recently that HDAC4 can 
activate transcription by deacetylation of mitogen-activated 
kinase kinase kinase 2 (MEKK2) and consequent activa-
tion of the mitogen-activated kinase (MAP kinase) cascade 
[15]. The identification of additional non-histone target 
proteins will be a fascinating challenge for the future. How-
ever, relatively little work has been done in this arena and, 
therefore, these questions are not the focus of this review.

Based on differences in their protein structure, the 18 
mammalian HDACs are usually divided into four different 
classes. Whereas class I, II, and IV HDACs act in a Zn2+-
dependent manner, class III HDACs act in a NAD-depend-
ent manner. Class III HDACs are also called sirtuins and, 
as “K-DACs”, also regulate many non-histone proteins. 
This review focuses on the two classes of HDACs that have 
been most extensively studied with regard to their role in 
cardiac function: Class I (HDAC1, 2, 3 and 8) and class IIa 
(HDAC4, 5, 7 and 9). In contrast to class I HDACs, class 
IIa HDACs are exposed to multiple interactions and mod-
ifications, summarized in Fig.  1. We will also discuss the 
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Fig. 1   Basic structural difference of class I and class II HDACs. In 
contrast to class I HDACs, class II HDACs have a large N-terminal 
region. This allows an exposure to multiple cellular processes, such 
as modification by proteolysis, phosphorylation or recruitment of 
interacting proteins. Moreover class II HDACs function as scaffold 

proteins. In this context, they are able to bind to other proteins and 
chromatin modifiers (e.g., methyl transferases and class I HDACs). 
Moreover, via the N-terminus they are recruited to distinct tran-
scription factors. The deacetylase activity is low compared to class I 
HDACs. HDAC histone deacetylase
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impact of available classical HDAC inhibitors (HDACi) as 
cardioprotective therapeutics and propose potential novel 
approaches to affecting HDAC function.

Class I HDACs

Class I HDACs are ubiquitously expressed, localize prefer-
entially to the nucleus, and possess high enzymatic activity 
toward histone substrates [16, 17]. They consist of HDAC1, 
2, 3, and 8 and share significant homology to yeast retino-
blastoma protein (Rpd3) [16, 18]. It was initially thought 
that these HDACs play a more general role in the regula-
tion of gene transcription but mouse genetic studies con-
ducted over the last 6  years have revealed distinct func-
tions of class I HDACs with regard to cardiac function and 
pathology.

HDAC1 and HDAC2

The first cardiac phenotype for mice lacking a class I 
HDAC was described by the Epstein lab [19]. HDAC2-defi-
cient mice were created from a gene-trap embryonic stem 
cell line. These mice showed a partial lethality due to early 
myocardial defects. However, approximately 30  % of the 
mice survived and appeared to have a normal cardiac func-
tion in adulthood. When these HDAC2-deficient survivors 
were exposed to hypertrophic stimuli, cardiac hypertro-
phy and fibrosis were attenuated, indicating a detrimental 
role of HDAC2 upon pathophysiological conditions. Vice 
versa, cardiac-specific overexpression of HDAC2 resulted 
in cardiac hypertrophy, indicating that HDAC2 is not only 
required but also sufficient to drive maladaptive cardiac 
remodeling. Mechanistically, the authors could identify the 
inositol polyphosphate 5-phosphatase (Inpp5f) as a tran-
scriptional target of HDAC2. Inpp5f seemed to inactivate 
rac protein kinase alpha (AKT), which in turn resulted in 
dephosphorylation and activation of the protein kinase gly-
cogen synthase kinase 3β (GSK3β). GSK3β was confirmed 
as the critical downstream target because chemical inhibi-
tion of activated GSK3β allowed HDAC2-deficient adults 
to become sensitive to hypertrophic stimulation. Although 
the adaptive/maladaptive roles of GSK3β are not entirely 
understood and may depend on the type of cardiac dam-
age, a large body of evidence suggests that GSK3β acts as 
a negative regulator of cardiac hypertrophy [20–23]. Thus, 
the authors suggested that inhibition of HDAC2 stimulates 
the anti-hypertrophic effects of GSK3β. This is of interest 
because it is more challenging to develop specific small 
compound activators of enzymes such as GSK3β than to 
develop specific inhibitors of the upstream HDACs. Con-
flicting results were reported by the Olson lab [24]. Mont-
gomery and colleagues showed that mice in which HDAC2 

had been globally deleted by homologous recombination, 
did not survive after birth and therefore could not be used 
to study its function for the adult heart under disease con-
ditions. Instead, they generated conditional knockout mice, 
lacking HDAC2 only in cardiac myocytes. In contrast to 
Trivedi et al., these mice were not protected against cardiac 
hypertrophy induced by chronic β-adrenergic stimulation 
or pressure overload. Similarly, deletion of HDAC1 in car-
diac myocytes failed to produce a protective effect against 
chronic β-adrenergic stimulation in mice, as did dele-
tion of HDAC2 combined with a heterozygous deletion of 
HDAC1. Homozygous cardiac-specific deletion of HDAC1 
and HDAC2 resulted in neonatal lethality, accompanied by 
cardiac arrhythmias and a phenotype resembling dilated 
cardiomyopathy. How might this apparent inconsistency be 
explained? Gene deletion by the gene-trap method, as used 
by Trivedi et al., often results only in a partial deletion of 
the gene, explaining why 30 % of the animals survived in 
this study [25]. Moreover, HDAC2 was deleted globally in 
the Trivedi study. Thus, it is possible that partial deletion 
of HDAC2 in non-cardiac myocytes such as cardiac fibro-
blasts might account for the protective effect. However, this 
interpretation is challenged by the observation that overex-
pression of HDAC2 in cardiac myocytes leads to the oppo-
site phenotype. The recent finding that HDAC2 plays a 
major role in autophagy driven by α-adrenergic stimulation 
in cultured cardiac myocytes [26] provides another indi-
cation that HDAC2 may act as a driver of adverse cardiac 
remodeling. The true role of HDAC2 in the progression of 
CVD is therefore still unclear and future studies are war-
ranted to answer this question.

HDAC3

Whereas HDAC1 and 2 seem to play similar roles, the 
role of HDAC3 is different. Transgenic overexpression of 
HDAC3 in the heart leads to a hyperplasia phenotype [27]. 
Conditional knockout of HDAC3 in cardiomyocytes leads 
to cardiac hypertrophy and severe metabolic changes in 
the heart [28]. This was surprising because of the effects 
of other class I HDACs. HDAC3 is located in a complex 
called N-CoR (nuclear Co-Repressor) and SMRT (silenc-
ing mediator for retinoid and thyroid hormone recep-
tors) that mediates transcriptional repression, which could 
explain in part the results of the cardiac-specific deletion 
[17]. By contrast, a later genetic deletion using a muscle 
creatine kinase (MCK)-dependent Cre lacked a cardiac 
phenotype under basal conditions but, when combined with 
a high-fat diet, led to a severe cardiac phenotype with lipid 
overload, heart failure, and highly increased mortality [29]. 
This was accompanied by downregulation of metabolic 
genes, although the specific mechanism by which HDAC3 
deletion dysregulates metabolic and cardiac genes under 
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these circumstances is not fully understood. Likewise, there 
is no evidence so far that a gain of HDAC3 function may 
exert beneficial effects on, for example, metabolic changes 
that are associated with heart failure. On the other hand, 
HDACi may have potentially harmful effects, as the inhibi-
tors in use are mostly pan-specific and could therefore 
inhibit potentially beneficial effects of HDAC3.

Open questions and conclusions

HDAC8-deficient mice show abnormalities in skull mor-
phogenesis and die a few hours after birth [30]. A condi-
tional cardiac deletion of HDAC8 and its consequence for 
the adult heart has not been investigated so far. The cardiac 
role of HDAC11 is presently unclear. Taken together, car-
dioprotective roles of class I HDACs have not been clearly 
demonstrated and harmful effects of their upregulation have 
been described. Thus, a gain of function approach with cer-
tain class I HDACs does not seem to be a good approach. 
The potential use of HDACi as cardioprotective approach is 
discussed in the next paragraph.

HDAC inhibitors (HDACi)

HDAC inhibitors consist of hydroxamic acids, benzamides, 
short-chain fatty acids and cyclic peptides, targeting the 
deacetylase domain of HDACs (Fig. 2). The specificity of 
inhibition depends on the assay and substrate used and is 
often debated. Because the class II HDACs have a rela-
tively low intrinsic deacetylase activity [31, 32], it seems 
that the major targets of HDACi are class I HDACs. The 

hydroxamic acids SAHA and Trichostatin A (TSA) serve 
as pan-HDACi and are most commonly used for preclinical 
studies [31, 33–37]. Their effects are not solely observed 
on histone acetylation, but also on non-histone targets that 
are hyperacetylated after treatment [12, 13]. Furthermore, 
the short-chain fatty acid valproate is used in preclinical 
studies and has been in clinical use for the treatment of epi-
lepsy since 1962 [34, 38]. HDACi were initially described 
as anti-proliferative drugs. Initial efforts to bring HDACi to 
the clinic originated from the cancer field and aimed to tar-
get highly proliferating cells to slow down tumor growth. 
SAHA (suberoylanilide hydroxamic acid, vorinostat), the 
first FDA approved drug to be specifically referred to as 
an ‘HDACi’ was provided for cutaneous T cell lymphoma 
(CTCL), a disease with high mortality and, thus far, unsat-
isfactory therapeutic options [39, 40]. There are currently 
more than 80 studies registered at clinicalTrials.gov that are 
recruiting patients treated with SAHA in different cancer 
diseases [41]. Romidepsine (FK-228) is only the second 
of the newer HDACi to be approved for use in humans, 
although there are currently more than ten additional com-
pounds in advanced clinical testing [31]. HDACi exerts not 
only anti-proliferative but also anti-inflammatory effects 
[42, 43]. HDACi therapy has also been introduced in the 
treatment of HIV and was suggested as a strategy to tar-
get latently infected cells, which could serve as a potential 
approach for curative strategies [44].

HDACi counteract cardiac hypertrophy

Here we will focus on HDACi as a potential therapeutic strat-
egy for CVDs. This concept was introduced in 2003 when 
Antos and colleagues reported antihypertrophic effects of 
TSA in cultured neonatal rat cardiomyocytes [45]. This was 
an unexpected result at the time because data from the first 
HDAC knockout mice (see below) suggested the opposite. 
Nevertheless, these antihypertrophic effects were confirmed 
by others in vitro and in vivo [26, 34, 36, 45–47]. For exam-
ple, in the same year, Kook et  al. [36] found that cardiac 
hypertrophy of mice overexpressing the homeodomain-only 
protein (HOP) could be rescued by treatment with trichos-
tatin A and valproic acid. Further in vivo evidence in mice 
indicated that HDACi treatment successfully blunted car-
diac hypertrophy induced by isoproterenol (Iso), angiotensin 
(AngII) and pressure overload induced by arterial hyperten-
sion and transthoracic aortic banding [26, 34, 35, 48–50]. 
After myocardial infarction, HDACi led to an improved 
myocardial performance and reduced myocardial damage 
[33, 51–53]. In HOP transgenic mice, Kook et al. [36] pro-
vided evidence that the association of HDAC2 with the serum 
response factor (SRF) led to cardiac hypertrophy and fibro-
sis. Thus, HDAC2 was initially suggested as the critical tar-
get of HDACi with regard to cardioprotection, a hypothesis 

Class I HDACs

Cardioprotective genes

HDACi

Inhibition of Deacetylation

Fig. 2   HDAC inhibitors (HDACi) target the deacetylation domain. 
HDACi are drugs with different specificities on HDACs. Because the 
deacetylase activity of class II HDACs is low, they primarily inhibit 
class I HDACs. Many of their functions are related to unspecific 
increase in acetylation activity within the nucleus and the cytoplasm. 
HDAC histone deacetylase, HDACi HDAC inhibitor
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that was supported by the attenuated hypertrophic response in 
HDAC2-deficient mice as described above [19]. Initially, the 
cardioprotective effect was associated with increased expres-
sion of the phosphatase Inpp5f and its downstream activation 
of GSK3β. Later, other mechanisms by which HDACi might 
contribute to the antihypertrophic effects were also suggested. 
HDACi was shown to increase expression of the Krüppel-
like-factor 4 (KLF4) [47, 54, 55] and KLF4-knockout ani-
mals developed exaggerated hypertrophy, whereas overex-
pression blunted cardiomyocyte hypertrophy in vitro.

HDACi counteract cardiac fibrosis

In addition to antihypertrophic effects, HDACi were shown 
recently to have beneficial effects on fibrosis. Antifibrotic 
effects are present in in vivo models of hypertrophy. These 
effects are discussed in the context of reduced infarct size 
when animals are treated with HDACi [33, 35, 38, 51–53]. 
So far it is not entirely clear whether fibrosis is an active 
mechanism or just a replacement reaction, driven by a 
loss of cells resulting either from distinct non-necrotic cell 
death or from necrosis. The potential antifibrotic effects of 
HDACi in non-cardiac diseases are reviewed in detail else-
where [56]. Briefly, antifibrotic effects are shown for renal 
fibrosis, diabetic nephropathy, idiopathic pulmonary fibro-
sis, cystic fibrosis and systemic sclerosis. Taken together, 
there is growing evidence that HDACi can directly tar-
get profibrotic pathways. Fibrosis is driven by fibroblasts, 
which, after stimulation by specific growth factors, differen-
tiate to myofibroblasts and expresses alpha smooth muscle 
actin (αSMA). In human lung fibroblasts, the differentia-
tion of fibroblasts to myofibroblasts was abolished by treat-
ment with TSA [57]. In cardiac fibroblasts, TSA was able 
to inhibit collagen type I protein levels in a concentration-
dependent manner [35]. Treatment with HDACi was also 
shown to have beneficial effects on other cellular processes 
that accompany pathological cardiac remodeling, namely 
the expression of tumor necrosis factor α, Interleukin-1β, 
nuclear factor-κB (NF-κB), reactive oxygen species (ROS) 
production and autophagy [26, 50]. HDACs are expressed 
not only in cardiomyocytes, but also in cardiac fibroblasts 
and endothelial cells [16, 58]. Therefore, it is not only a 
question of which HDAC, but also which cell type contrib-
utes to beneficial effects. However, well-defined genetic 
models have helped us to understand some basic mecha-
nisms and they will also be of considerable use in the future.

HDACi reduce ischemic injury

In the context of ischemia, TSA led to an increased resist-
ance to ischemic injury, potentially via increased p38 acti-
vation [51]. Accordingly, p38 had previously been shown 
to translate the protective effects of late preconditioning 

in the heart [59]. In a follow-up paper, the group showed 
the involvement of the NF-κB pathway in this protective 
mechanism since NF-κB-knockout mice did not show a 
better outcome after TSA pretreatment. The induction of 
active caspase 3 was decreased and AKT phosphorylation 
was increased by TSA, accompanied by an increased angi-
ogenic response within the same model [52]. Granger et al. 
[33] have shown the same effects in an I/R-model with 
prior intraperitoneal administration of TSA. By using RNAi 
to knockdown HDAC1–9 in neonatal rat cardiomyocytes 
(NRVMs), they show an induction of vascular endothelial 
growth factor (VEGF) that seems to be HDAC4-dependent. 
Furthermore VEGF was not induced in vivo after pretreat-
ment with TSA. The authors conclude from these two find-
ings, that HDAC4 may be the downstream target of HDACi 
pretreatment in I/R and that HDAC4 inhibits hypoxia 
inducible factor 1a (HIF1a) expression [33]. However, the 
in vivo role of this mechanism needs to be elucidated by 
further investigations. Taken together, HDACi treatment 
seems also to be beneficial in preclinical models for I/R 
and chronic ligation.

HDACi and the heart in the clinical arena

Although the protective roles for HDACi in cardiac func-
tion, fibrosis and hypertrophy were extensively investigated 
in preclinical models, only one publication is currently 
known that addresses the question of whether HDACi 
have antihypertrophic effects in a clinical setting [60]. The 
authors did not find any effect of depsipeptide on cardiac 
mass in 12  months of treatment (echocardiography per-
formed after 3, 6, and 12 months). The significance of the 
study is limited, since only ten individuals were included 
and echocardiography may not be sensitive enough to 
detect small changes in cardiac mass. Analysis of patients 
on HDACi therapy via cardiac MRI could be a promising 
approach to get reliable data on cardiac mass and function 
under HDACi therapy. Other clinical data from HDACi 
studies are focused on drug safety issues. Early on in the 
introduction of HDACi in the clinic for cancer treatment, 
there were reports of sudden cardiac death and cardiac 
arrhythmias [61]. ECG changes, such as T-wave flatten-
ing or inversion were observed in multiple trials [62]. In 
the drug safety study with romidepsin (LAQ824) on 32 
patients, two patients showed QTc prolongation >500  ms 
accompanied by non-symptomatic ST-T-wave changes 
and one patient developed atrial fibrillation which led to 
a stop of therapy [63]. The patients received a relatively 
high dosage of HDACi (up to 100 mg/m2). Ejection frac-
tion was assessed by multigated acquisition scan during 
the period of treatment for 3 weeks and showed no change 
in cardiac performance. Changes in cardiac troponin were 
not seen. Arrhythmias were only detected in patients with 
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72 and 100 mg/m2 [63]. LAQ824 was suggested to inhibit 
human Ether-à-go-go-Related Gene (hERG), a potas-
sium ion channel that could explain the QTc prolonga-
tion after HDACi therapy. The proarrhythmic effect of 
HDACi therapy is questionable. Patients who participate 
in HDACi studies often have a high risk for arrhythmias 
driven by electrolyte disturbances. The study cohorts were 
often submitted to extensive and multiple therapies before 
HDACi, including stem cell transplantation and treatment 
with anthracyclines, which are known to cause cardiac 
damage. Furthermore, co-treatment with other drugs, such 
as antiemetics can cause arrhythmia [62]. Taken together, 
there is a need for substantial clinical data that belong to 
HDACi treatment and cardiovascular follow-up.

Class II HDACs

Class II HDACs consists of HDAC4, 5, 6, 7, 9, and 10. 
Since there is a lack of substantial data for HDAC6 and 
HDAC10 for the cardiovascular field, we are focused in the 
following part on HDAC4, 5, 7, and 9. These HDACs are 
summarized as class IIa. In contrast to class I HDACs, class 
IIa HDACs consist of an N-terminal extension in addition 
to the deacetylase domain that is located at the C-terminus. 
The deacetylase activity of class IIa HDACs is much lower 
than the deacetylase activity of class I HDACs. A structural 
analysis of the deacetylase domain revealed a single amino 
acid exchange (tyrosine in class I HDACs versus a histi-
dine in class IIa HDACs) to be responsible for this reduced 
enzymatic activity. A His-to-Tyr mutation (HDAC4 His-
976-Tyr) led to a remarkable 1,000-fold increase in the 
histone deacetylase activity [32]. Moreover, knockout 
mice lacking only the deacetylase domain of HDAC4 but 
still expressing the N-terminal half (1–747) did not show 
the same developmental phenotype as mice lacking most 
of the N-terminal part [64, 65], indicating that the dea-
cetylase domain of HDAC4 is dispensable for its biologi-
cal function. Thus, the N-terminal half of class IIa HDACs 
is of great interest in regulating their function (Fig. 1). In 
this context, it should be pointed out that class II HDACs 
are able to crosstalk to class I HDACs and other potent 
chromatin-modifying genes, such as methyl transferases. 
Recently, it was shown that HDAC4 is able to silence the 
nppb promotor via such a crosstalk [66]. These changes 
in HDAC-dependent promoter methylation are relevant in 
patients with heart failure and suggest a novel diagnostic 
and perhaps therapeutic approach in the future.

Class II HDACs in mouse models

Class IIa HDACs have been shown to regulate cardiac 
growth. Both HDAC5- and HDAC9-deficient mice showed 

no abnormal cardiac phenotype under unstressed condi-
tions but developed excessive pathological cardiac growth 
in response to pressure overload evoked by transthoracic 
aortic banding [20, 67]. Conversely, overexpression of 
HDAC9 counteracted cardiomyocyte hypertrophy [20], but 
this has not yet been confirmed to occur in vivo. Mice lack-
ing HDAC4 or HDAC7 are not viable and were therefore 
not investigated with regard to their function in the adult 
heart [65, 68]. HDAC4 null mice die soon after birth as a 
consequence of premature ossification and HDAC7 null 
mice die in utero due to reduced vascular integrity. Because 
of the potential cardioprotective functions of class IIa 
HDACs, many mechanistic studies were conducted over 
the last decade but there is an essential lack of in vivo data. 
It seems that a tight balance of class IIa HDACs seems to 
be essential for the cardioprotective function since overex-
pression of a signal-resistant HDAC5 mutant leads to early 
death due to severe heart failure [69].

HDACs as repressors of transcription factors

Importantly, it has been shown that the N-terminal half 
of class IIa HDACs interacts and represses the activity of 
different transcription factors (TFs) including myocyte 
enhancer factor 2 (MEF2) [70–72], serum response fac-
tor (SRF) [73], nuclear factor of activated T-cells (NFAT) 
[74], calmodulin binding transcription activators (CAM-
TAs) [75] and GATA transcription factors [76]. These 
TFs are summarized in Table 1. Most of them are known 
to be important for myocyte differentiation during embry-
onic development [77–80] but have also been found to be 
upregulated in the adult heart during the development of 
heart failure (reviewed in [81–83]). The gene programs 
driven by these TFs can be regarded as an initial attempt 
by the heart to decrease wall stress and sustain appropri-
ate circulation in response to cardiac stress but ultimately 
lead to adverse pathological remodeling [80, 84, 85]. With 
regards to the potential therapeutic use of class II HDACs 
or their manipulation for therapeutic approaches, it will be 
necessary in the future to identify the specific targets of dis-
tinct N-terminal regions. Our recently published data sug-
gest that different N-terminal regions lead to differences in 
TF-binding and therefore to an inhibition of specific gene 
programs [86].

Signal‑responsive nucleo‑cytoplasmic shuttling of class II 
HDACs

Transcriptional repression by class II HDACs is strongly 
associated with their subcellular localization. HDAC4, 
HDAC5, HDAC7 and HDAC9 were found to have three 
conserved serine sites at the N-terminal domain (S246, 
467 and 632 for HDAC4) [87]. Phosphorylation of at 
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Table 1   Transcription factors that bind to class II HDACs

Class IIa HDACs shown to 
influence TF-activity

Interaction partner
binding sites

Mouse model Phenotype Reference

TFs with increased activity in response to cardiac stress signaling—negatively regulated via class IIa HDACs

 MEF2

  HDAC4, HDAC5, 
HDAC7, MITR

HDAC4 163–180
HDAC5 175–192

MEF2A-/- Not viable
Lethal arrhythmias

[72, 77, 85, 146–148]

MEF2C-/- Not viable
Impaired cardiac  

myogenesis

MEF2D-/- Viable
Resistant to remodeling 

after TAC, ISO

αMHC-MEF2A-Tg
αMHC-MEF2C-Tg

Reduced cardiac function, 
enhanced by TAC

But not by calcineurin 
overexpression

 NFAT

  HDAC4, HDAC5, 
HDAC7, HDAC9

Indirect via Mrj
HDAC4 761–881

NFATc3-/-NFATc4-/- Not viable
Mitochondrial dysfunction
Impaired cardiac  

development

[74, 80, 149, 150]

NFATc3-/- Viable
Less hypertrophy after 

calcineurin, TAC, AngII

αMHC-NFAT3Δ317-Tg Spontaneous hypertrophy, 
sudden death

 SRF

  HDAC4 HDAC4 201–289 SRF-/- Not viable
Defect in mesoderm  

formation

[73, 79, 84, 86, 151–154]

  (HDAC5) Indirect via myocardin? βMHC-Cre:Sf/Sf Not viable
Impaired cardiac  

differentiation

αMHC-dmSRF Early postnatal death
Dilated cardiomyopathy

αMHC-MerCreMer:Sf/Sf Die from heart failure

αMHC-SRF-Tg Cardiomyopathy

 GATA

  HDAC4, HDAC5 Interact with and repress 
GATA1 in MEL cells

GATA4-/- Not viable
Severe cardiac defects

[76, 155–159]

αMHC-
Cre:GATA4f/GATA4f

βMHC-
Cre:GATA4f/GATA4f

βMHC-
Cre:GATA6f/GATA6f

Viable
No hypertrophy,  

but apoptosis and
Decompensation after TAC, 

AngII, PE

αMHC-GATA4-Tg Cardiomyopathy

 CAMTA

  HDAC5, (HDAC4) Link to Nkx2.5
HDAC5 153–360

CAMTA2-/- Viable
Less hypertrophic response 

to TAC, ISO, AngII

[75]

TFs with repressive activity on the fetal gene program—positively regulated via class IIa HDACs

 NRSF

  HDAC4, HDAC5 ? NRSF-/- Not viable [160–162]

αMHC-dn-NRSF-TG Dilated cardiomyopathy
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least one of them allows the association with the chaper-
one 14-3-3, exposing the C-terminal nuclear export signal 
[70] and inducing CRM-1-mediated (chromosome region 
maintenance 1) [88, 89] shuttling from the nucleus to the 
cytoplasm. Whereas exported HDACs lose their ability to 
repress MEF2 and other associated TFs, the triple mutant 
lacking the described phospho-sites is no longer signal-
responsive and stays in the nucleus [87]. 14-3-3 binding 
is responsible for both nuclear export and inhibition of 
nuclear import [90]. Phosphorylation is a basic mechanism 
that leads to an export of class II HDACs to the cytosol but 
recently it has been shown that phosphorylation-independ-
ent mechanisms influence the cellular distribution of class 
IIa HDACs as well (see below). A simplified model of the 
regulation of class IIa HDACs in their role as transcrip-
tional repressors would be as follows: Nuclear localization 
is associated with gene repression and export to the cytosol 
leads to gene activation. More provocatively, it might be 
said that export mechanisms promote heart failure whereas 
nuclear retention is cardioprotective. A variety of pro-
tein kinases have been reported to phosphorylate class IIa 
HDACs in order to induce translocation from the nucleus 
to the cytosol (reviewed in [83]), among them the Ca2+/
calmodulin-dependent kinase II (CaMKII) and the protein 
kinase D (PKD). Both kinases are upregulated in the myo-
cardium of mice as well as in humans during heart failure 
[91].

Protein kinase D‑dependent regulation of class II HDACs

PKD belongs to the CaMK superfamily with three differ-
ent isoforms having more or less redundant effects on class 
IIa HDACs [92]. HDAC5 was identified early as a phos-
phorylation target of PKD [93], but HDAC4, 7 and 9 are 
also known to be targeted by PKD [94–96]. In vitro, PKD 
is activated after treatment with α-adrenergic receptor ago-
nists and ET-1. Cardiac-specific deletion of PKD in turn 
leads to a protection from pro-hypertrophic stimuli (pres-
sure overload via TAC, chronic β adrenergic stimulation 
with ISO, chronic AngII stimulation) [97]. The animals in 

this study showed lower heart weight/tibia length (HW/TL) 
ratios, less enhanced transcription of fetal genes and less 
fibrosis than WT mice. Cardiac-specific overexpression of 
PKD results in a dilated cardiomyopathy with elevated fetal 
genes that are normally controlled by MEF2, supporting 
the pathological role of PKD [98].

CaMKII‑dependent regulation of class II HDACs

In contrast to PKD, CaMKII selectively phosphorylates 
HDAC4 [99, 100], suggesting a central role for HDAC4 
in the regulation of CaMKII-dependent gene expression. 
This effect can be attributed to a specific CaMKII docking 
site (HDAC4 585–608) that is missing in HDAC5, 7 and 
9. Despite this, it should be noted that the formation of a 
complex between HDAC4 and HDAC5 allows CaMKII to 
phosphorylate HDAC5 and thereby facilitate its nuclear 
export [101]. Various hypertrophic agents such as adren-
ergic receptor (AR) agonists, AngII and endothelin (ET) 
enhance CaMKII activity by G-protein coupled receptor 
(GPCR) signaling and the increase of local intracellular 
Ca2+ levels [102, 103]. The consequences range from ion 
channel modification and alterations in Ca2+-handling to 
the stimulation of hypertrophic gene programs (reviewed in 
[103]). Transgenic mice with cardiac-specific overexpres-
sion of CaMKIIδ, the predominant isoform in the heart, 
show spontaneous hypertrophy, elevated MEF2 activity and 
the expression of embryonic genes, potentially explained 
by HDAC4 inactivation [104, 105]. Accordingly, global KO 
of CaMKIIδ is accompanied by normal development but a 
decreased hypertrophic response to pressure overload and 
lower levels of phosphorylated HDAC4 [106, 107]. The 
effect of CaMKIIδ deletion, however, is not as striking as 
expected, probably because of the overlapping functional-
ity of CaMKIIγ, which can also be found in myocardial tis-
sue. The creation of a CaMKIIγ/δ double-knockout could 
help to resolve this observation. However, taking into 
account that CaMKII specifically phosphorylates HDAC4, 
it could also an effect of partially redundant roles of class 
IIa HDACs within the heart.

Class II HDACs are repressors of different transcription factors. In case in vivo data were available that belong to cardiovascular phenotypes, we 
included the finding into the table

HDAC histone deacetylase, TF transcription factor, MEF myocyte enhancer factor, NFAT nuclear factor of activated T-cells, SRF serum response 
factor, Sf SRFf, f floxed locus, dmSRF double mutant SRF (resulting in reduced binding to serum response elements), GATA GATA interacting 
TF, CAMTA calmodulin binding TF, NRSF neuron restrictive silencing factor, dnNRSF dominant negative mutant of NRSF, YY1 yin-yang 1, 
α/βMHC α/β-myosin heavy chain, ISO isoproterenol, TAC transaortic constriction, TG transgene

Table 1   continued

Class IIa HDACs shown to 
influence TF-activity

Interaction partner
binding sites

Mouse model Phenotype Reference

 YY1

  HDAC5 ? [163]
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ROS‑dependent regulation of class II HDACs

Abnormally high rates of ROS can be observed in cardio-
myocytes in response to AngII or catecholamine signal-
ing. ROS production contributes to cardiac hypertrophy 
(reviewed in [108, 109]). A lot of speculation has been 
made concerning possible downstream targets of ROS 
such as CaMKII, which has been observed to be activated 
via oxidation [110]. In an elegant study, Ago et  al. [111] 
found a direct connection between redox state and HDAC4 
localization. HDAC4 possesses two cysteines (C667,669), 
non-conserved among class IIa HDACs, that are oxidated 
upon phenylephrine (PE) treatment, a synthetic α-AR ago-
nist. The oxidation leads to nucleocytoplasmatic shuttling 
of HDAC4 that can be prevented by either CRM-1 inhibi-
tion or treatment with the antioxidant thioredoxin 1 (Trx1). 
This phosphorylation-independent export of HDAC4 was 
shown to have the same pro-hypertrophic effects as the 
kinase-mediated ones [111, 112]. In accordance with ROS-
dependent export of HDAC4, HDAC5 is also sensitive to 
ROS. Although PKD is recognized as the major modula-
tor of HDAC5 activity, Haworth et  al. [96] have shown 
that this pathway is less relevant in the presence of β-AR 
stimulation. They identified a new phosphorylation-inde-
pendent, ROS-mediated mechanism to export HDAC5 after 
ISO treatment resulting in higher MEF2 activation levels. 
It would be worthwhile to also test the redox state of other 
class IIa HDACs, particularly HDAC4, in the scenario of 
enhanced β-AR signaling.

PKA‑dependent regulation of class II HDACs

Protein kinase A (PKA) is a major downstream kinase of 
β-adrenergic receptors. Stimulation of this GPCR acti-
vates the adenylate cyclase (AC), which in turn leads to 
an increase in cyclic adenosine monophosphate (cAMP). 
cAMP is a second messenger with diverse cellular functions, 
including PKA activation. The duration of PKA activation is 
regulated by the phosphodiesterase (PDE)-dependent degra-
dation of cAMP. The precise role of PKA in class IIa HDAC 
localization has started to be recognized very recently. Based 
on the existing data, it was difficult to judge whether PKA 
has beneficial or deleterious effects on the progression of 
heart failure. Recently, there has been growing evidence that 
PKA has a cardioprotective function, at least in the regula-
tion of the induction of the fetal gene program. Moreover, 
recent data support the new idea that PKA activation plays 
an inferior role in heart failure [113]. In vitro, Haworth et al. 
showed that PKA activation via forskolin (a cAMP activator) 
or ISO treatment, or PDE inhibition is sufficient to prevent 
ET-1-induced PKD activation in adult rat ventricular myo-
cytes (ARVM) [95, 114]. This mechanism is very likely able 
to reduce the PKD-dependent HDAC5 phosphorylation and 

thereby may inhibit derepression of MEF2. Under similar 
experimental conditions, enhanced PKA activity in response 
to cAMP, forskolin or ISO decreases the nuclear export of 
HDAC5 after treatment with ET-1 in NRVMs and ARVMs 
[115]. In contrast to other kinases, PKA-dependent phospho-
rylation of HDAC5 at serine 280 seems to result in decreased 
association with 14-3-3 and consequently decreased nuclear 
export. To summarize here, PKA works in two different 
ways on HDAC5: inhibition of PKD activity and phospho-
rylation at S280, both of which prevent derepression of 
MEF2 and other TFs. These data are still under discussion 
since the PKA-dependent phosphorylation of HDAC5 has 
not yet been reproduced in the work of other groups [96]. 
However, PKA itself was also demonstrated to directly phos-
phorylate MEF2D at serine 121 and 190 in skeletal myo-
cytes in order to reduce transcription [116]. PKA signaling 
is not limited to HDAC5. Enhanced nuclear accumulation of 
HDAC4 can also be detected after PKA activation [116]. In 

Pathological gene program

14-3-3

HDAC4
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PKD

14-3-3

HDAC5
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HDAC4 
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P
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S
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4
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Fig. 3   How protein kinase A (PKA) acts on class II HDACs. 1 
PKA phosphorylates HDAC5 at S280 and inhibits 14-3-3 binding. 
2 PKA inhibits protein kinase D (PKD) activation. 1+2 This results 
in nuclear accumulation of HDAC5 and consequent repression of 
transcriptional activity, thereby counteracting the phosphorylation of 
HDAC5 by PKD at S259 and S489, subsequent binding to the chap-
eron 14-3-3 and nuclear export (black arrow on HDAC5). 3 HDAC4 
is cleaved by a PKA-dependent mechanism. The N-terminal cleavage 
product accumulates in the nucleus and inhibits myocyte enhancer 
factor 2 (MEF2). The cleavage takes place between binding sites for 
MEF2 and serum response factor (SRF), indicating that PKA leads 
to a shift in the affinity of HDAC4 towards MEF2 inhibition. 4 PKA 
is also able to directly inhibit MEF2 by phosphorylation at T20. All 
mechanisms lead to a reduced activation of hypertrophic transcrip-
tion factors such as MEF2 and the related pathological gene program. 
PKA protein kinase A, PKD protein kinase D, HDAC histone deacety-
lase, SRF serum response factor



1682 L. H. Lehmann et al.

1 3

accordance with these observations, our group has recently 
characterized a novel interaction between PKA and HDAC4. 
In response to stress signaling, an N-terminal cleavage prod-
uct of HDAC4 (HDAC4-NT) is generated by a PKA-depend-
ent proteolytic event in vitro and in vivo [86]. The cleavage 
site is located between amino acids 201 and 202, and is not 
present in other class IIa HDACs. This again highlights a 
central role for HDAC4 in β-adrenergic signal transduction. 
HDAC4-NT is sufficient to repress MEF2 to the same extent 
as HDAC4 full-length (HDAC4-FL), but has less impact on 
other TFs, especially on SRF, a critical TF for cell survival. 
By lacking the usual phosphosites, HDAC4-NT is no longer 
signal-responsive and stays in the nucleus. HDAC4-FL and 
another recently published caspase 3-induced HDAC4 cleav-
age product (HDAC4 2–289) seem to have pro-apoptotic 
effects when overexpressed in NRVM [117, 118]. Similar 
consequences were not detected for HDAC4-NT, possibly 
because of its reduced repression of SRF. This more or less 
specific repression of MEF2 by HDAC4-NT leads to an inhi-
bition of the hypertrophic response to endothelin in vitro. 
We have highlighted the different PKA-dependent signaling 
pathways in Fig. 3. However, the question remains: how can 
these results be brought together with all of the other data 
denouncing PKA as a promoter of heart failure?

Balance of kinases: “clock timer” for pathological 
remodeling

Based on the activation of β-AR, catecholamines, such as 
epinephrine and norepinephrine have positive effects on 
contractility and heart rate. This results in enhanced blood 
circulation to adequate levels during stress situations. It is 
therefore somewhat counterintuitive that, although initially 
contraindicated, β-AR antagonists or “β-blockers” are well-
established drugs for the current “state of the art” therapy 
of patients with heart failure. This contradiction might be 
explained by the difference between chronic and acute adr-
energic activation. Prolonged elevation of neurohormones 
during pathological stress situations turned out to have more 
negative than positive effects. Transgenic mice with car-
diac-specific overexpression of β1ARs show increased con-
tractility at an early age, but very soon their hearts become 
hypertrophic and insufficient [119, 120]. In the progres-
sion from a hypertrophic to a failing heart, the number of 
β-AR on the surface of myocytes decreases dramatically, 
which can be regarded as a self-protection mechanism [121, 
122]. As mentioned above, the AC-cAMP-PKA pathway 
is also typically activated downstream of β-ARs. However, 
several studies have demonstrated that prolonged stimula-
tion leads to a receptor desensitization with reduced PKA 
activity and enhanced CaMKII activation taking its place 
[113, 123, 124]. The analysis of the kinase activity in hearts 
from patients with idiopathic dilated cardiomyopathy (IDC) 

revealed an approximate three-fold increase in CaMKII 
but unchanged levels of PKA when compared to healthy 
patients [125]. Notably, cAMP levels are also decreased 
during heart failure [126]. This was recently supported by 
human data from patients with heart failure and hypertro-
phy, where CaMKII was activated in heart failure, but not 
PKA [113]. However, transgenic mice expressing the cata-
lytic subunit of PKA at artificially high levels develop a 
severe dilated cardiomyopathy with hyperphosphorylation 
of PKA targets [127]. One of these targets is the ryano-
dine receptor (RyR), a Ca2+ channel in the membrane of 
the sarcoplasmic reticulum (SR) responsible for the Ca2+-
triggered Ca2+ release during contraction. Phosphorylation 
in response to β-AR signaling enhances its Ca2+ sensitivity 
and therefore the contractility of the myocardium. However, 
prolonged stimulation is accompanied by hyperphosphoryl-
ation, which causes a Ca2+ leak, impaired excitation con-
traction (EC) coupling and thus reduced contractility as well 
as a disposition towards arrhythmias (reviewed in [128]). In 
fact, hyperphosphorylation of RyR at PKA sites is detect-
able in failing human hearts [129] and can be sufficiently 
inhibited by β-AR blockade [130, 131]. One possible expla-
nation for this obviously increased PKA-mediated phospho-
rylation [although the catalytic PKA level is normal in the 
failing myocard (see above)], is a spatiotemporal difference 
in PKA activity at the cellular level. Special scaffolds called 
A-kinase anchoring proteins (AKAPs) form multiprotein 
complexes, which are comprised of PKA, other kinases, 
phosphatases, PDEs and further mediators to precisely 
couple receptor stimulation to intracellular processes [132, 
133]. As a result of their activity, some pathways are up- 
and others downregulated, depending on the modalities of 
extra-cellular signals. It would be very interesting to inves-
tigate other PKA-mediated effects, especially the aforemen-
tioned repression of fetal gene expression under sustained 
β-AR stimulation with regard to the regulation via AKAPs.

In summary, under physiological conditions, β-AR 
stimulation is mainly coupled to the cAMP-PKA pathway, 
with the effect of enhanced contractility and the repression 
of fetal genes via HDAC4 cleavage and HDAC5 phospho-
rylation protecting the heart from pathological remodeling. 
Sustained elevation of catecholamines lead to a stimulation 
of the CaMKII pathway, leading to hypertrophy, remod-
eling and alterations in EC-coupling. In addition, a shift 
from “good” PKA effects to “bad” PKA effects may also 
contribute.

Potential therapeutic strategies based on the regulation 
of class II HDACs

Which of the described pathways are crucial in the patho-
physiology of human heart failure has to be further 
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investigated. As there are still controversial data, it is hard 
to say what would be the perfect therapeutic approach. 
Simplified, one can say that class IIa HDACs act in a car-
dioprotective manner by preventing remodeling during 
normal stress situations with elevated catecholamines. Fig-
ure 4 suggests three possibilities: (1) prevention of nuclear 
export, (2) enhanced nuclear import or, according to the 
newly described PKA pathway, (C) induction of HDAC4 
cleavage at Y201.

Preventing nuclear export (Fig. 4‑1)

Preventing the nuclear export of class IIa HDACs could, 
for example, be facilitated by inhibition of the CRM-1 
export receptor, which was demonstrated to be anti-hyper-
trophic in cell culture. However, this approach seems inap-
propriate due to non-specific effects in vivo, as there are 
many other proteins shuttled by this receptor [134]. Kinase 
inhibition on the other hand is more specific. There are 
already data available about this mechanism. PKD inhibi-
tor application in cell culture showed promising results 
[135]. However, the effects of orally administered inhibi-
tors in animal models of HF were less impressive [136, 

137]. Further drugs with different spectrum efficacies, 
e.g., those that also inhibit non-catalytic PKD effects, 
still need to be tested. Transgenic CaMKII inhibition was 
also shown to be cardioprotective during pathological  
β-AR stimulation and after MI [138, 139]. Application of 
the calmodulin antagonist W-7 reduces events of arrhyth-
mias and improves left ventricular function in mice with 
atrioventricular block [140]. As CaMKII upregulation has 
multiple consequences, e.g., on both Ca2+ handling and 
transcriptional activation, it would be interesting to inves-
tigate the inhibition of the different pathways separately. 
One idea to selectively prevent the HDAC4 phosphoryla-
tion without influencing other CaMKII effects would be a 
small molecule that competes with HDAC4 for the binding 
at the CaMKII binding site. Over the past few years, there 
has been growing evidence for the pathophysiological role 
of ROS in the development of HF. Encouraging results 
have already been presented for the use of the antioxidant 
Trx1 in an ischemia–reperfusion mouse model, and there 
is growing evidence for the hypothesis that treatment with 
similar antioxidants may have beneficial effects on the 
progression of hypertrophy and remodeling (reviewed in 
[141, 142]).

Class II HDACs

Pathological gene program

Class II HDACs

P

Phosphatase

P

Dephosphorylation2

Class II HDACs

Pathological gene program

Kinase

Inhibition of Phosphorylation

14-3-3

Class II HDACs

P P
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Pathological gene program

Class II HDACs

Proteolysis

14-3-3Protease

Class II HDACs
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transcription factor binding sites

Fig. 4   Therapeutic potential of class II HDACs: 1 Preventing nuclear 
export. Inhibition of phosphorylation could be achieved by small 
molecules that inhibit kinase activity or interrupt kinase-HDAC bind-
ing. Reduced phosphorylation would lead to reduced 14-3-3 binding 
with the consequence of nuclear accumulation of class II HDACs. 
This would result in inhibition of transcription, depending on the tar-
geted kinase and targeted class II HDAC. 2 Enhancing nuclear import. 
Dephosphorylation of class II HDACs by activation of specific phos-
phatases leads to reduced 14-3-3 binding, to nuclear import and to 

nuclear accumulation of class II HDACs with the consequence of 
transcriptional repression. Phosphatases could be further investigated 
as potential drug target. 3 Induction of HDAC4 cleavage. Proteolysis 
of HDAC4, resulting in nuclear accumulation of the N-terminus leads 
to inhibition of MEF2. The advantage of this approach would be a 
more specific targeting of gene programs that are driven by MEF2, 
known to be active in pathological cardiac remodeling. So far, pro-
teases in this pathway that could serve as potential drug targets are 
unknown. HDAC histone deacetylase
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Enhancing nuclear import (Fig. 4‑2)

Up to now, the export mechanisms of class IIa HDACs have 
been much better understood than the import mechanisms, 
so we can only speculate about therapeutic approaches. 
14-3-3 is known not only to facilitate the export but also to 
prevent the import by binding to phosphorylated serine res-
idues. 14-3-3 inhibitors, which are already being discussed 
as potential drugs for neurodegenerative diseases and can-
cer, may also have positive effects on heart diseases. Nev-
ertheless, this would also be a fairly unspecific approach 
with unpredictable side effects that would require careful 
investigation. Upregulation or stimulation of HDAC phos-
phatases might be a promising approach, but they would 
first have to be identified and characterized. PP2A is one 
candidate, but the HDAC-specific regulatory subunits are 
not identified and other phosphatases may play additional 
roles [143, 144].

Induction of HDAC4 cleavage (Fig. 4‑3)

This pathway can be regarded as a physiological method of 
HDAC4 activation and gene repression in response to β-AR 
and PKA stress signaling. The short half-life time, the inde-
pendence from kinase regulation and the absence of pro-
apoptotic effects make us believe that this is perhaps a very 
promising pathway for therapeutic intervention. Several 
strategies are conceivable. PKA stimulation would prob-
ably be approached with high skepticism, due to the pre-
viously described adverse consequences of sustained PKA 
activation. From therapies with PDE-inhibitors we already 
know about the fatal side effects, such as arrhythmias and 
sudden death [145]. We therefore suggest pharmacological 
intervention further downstream in this pathway. Unfor-
tunately, the serine protease cutting HDAC4 has not been 
identified yet, but it will certainly be an interesting drug 
target to investigate. Another idea is the overexpression of 
HDAC4-NT via gene therapy. This would be an elegant 
approach to selectively stimulate MEF2 repression without 
induction of apoptosis. Animal models will help to investi-
gate whether the effects seen in cell culture are of clinical 
relevance. If so, HDAC4-NT overexpression in combina-
tion with, for example, β-AR blockade to improve EC cou-
pling on the one hand and prevent remodeling on the other, 
would be interesting to test as a new strategy in HF therapy.
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