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Abstract
The interactions of protein kinases and phosphatases with their regulatory subunits and substrates
underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of
1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI
network contained many dense local regions of interactions that suggested new functions.
Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for
Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism,
whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector
kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions
cross-connects the proteome and may serve to coordinate diverse cellular responses.

Protein phosphorylation mediates cellular responses to growth factors, environmental
signals, and internal processes by the regulation of protein interactions, enzyme activity, or
protein localization (1). However, the protein interactions of kinases, phosphatases, and their
regulatory subunits and substrates remain sparsely mapped, particularly in high-throughput
(HTP) datasets [fig. S1 (2)]. To chart the budding yeast kinase and phosphatase interaction
(KPI) network, we systematically characterized protein kinase and phosphatase complexes
by rapid magnetic bead capture, on-bead protein digestion, and mass spectrometric
identification of associated proteins, using different epitope tags and expression systems
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[fig. S2; (2)]. One hundred thirty protein kinases, 24 lipid and metabolic kinases, 47 kinase
regulatory subunits, 38 protein phosphatases, 32 phosphatase regulatory subunits, and 5
metabolic phosphatases were analyzed (tables S1 and S2).

We eliminated nonspecific interactions using a statistical model called Significance Analysis
of Interactome (SAINT). In contrast to simple threshold models, SAINT assigns the number
of peptide identifications for each interactor to a probability distribution, which is then used
to estimate the likelihood of a true interaction (2). We validated SAINT on multiple
independent purifications for several kinases and expression levels (fig. S3 and tables S3 to
S5). A final KPI dataset of 1844 interactions between 887 protein partners was generated
from more than 38,000 unfiltered identifications at a stringent SAINT threshold of P > 0.85
(fig. S4 and tables S1 and S2). High-confidence interactions were recovered for 120 protein
kinases (fig. S5; see fig. S6 and table S6 for validation). For a number of kinases, we
demonstrated that associated proteins were substrates in vitro (figs. S7 and S8 and table S7).
Our dataset doubled the number of KPIs obtained in previous low-throughput (LTP) studies
and performed as well as LTP data against an unbiased HTP high-confidence (HTP-HC)
benchmark dataset [fig. S1 (2)]. Clustering of all kinases and phosphatases by their
interaction profiles revealed locally dense regions in the KPI network (Fig. 1A and fig. S9).

The Cdc14 phosphatase formed one of the largest single hubs in the network with 53
interaction partners, including 23 kinases and 5 phosphatases (Fig. 1B, fig. S6, and table
S6). Cdc14 antagonizes mitotic cyclin-dependent kinase (CDK) activity and is activated by
the mitotic exit network (MEN) upon completion of anaphase (3). Many Cdc14 interactors
were shared with its anchor protein Net1 and the nicotinamide adenine dinucleotide
(NAD+)–dependent histone de-acetylase Sir2 that together with Cdc14 form the nucleolar
RENT complex (4). New connections between Cdc14 and other mitotic regulators included
the CDK-inhibitory kinase Swe1, the cytokinesis checkpoint protein Boi1 (5), and two
activators of cytokinesis, Cbk1 and Ace2 (6). Cdc14, Net1, and Sir2 each interacted with the
DNA damage checkpoint kinases Chk1 and Dun1. In support of a role for Cdc14 in the
DNA damage response, we found that ectopic expression of Cdc14 caused sensitivity to the
DNA-damaging agent methylmethane sulfonate (MMS), while a strain defective for Cdc14
function was sensitive to the ribonucleotide reductase inhibitor hydroxyurea (Fig. 1C).
Interactions between the RENT and the nutrient-sensing TOR complex 1 (TORC1) were
supported by the finding that increased Cdc14 activity caused rapamycin sensitivity,
whereas reduced Cdc14 function caused rapamycin resistance (Fig. 1D), suggesting that
Cdc14 may antagonize TOR signaling. Cdc14 also interacted with the energy-sensing
adeno-sine 5′-monophosphate (AMP)–activated kinase (AMPK) Snf1 and its upstream
kinase Sak1; AMPK activates glucose-repressed genes in yeast and is an upstream inhibitor
of TOR activity in metazoans (7). Deregulation of Cdc14 caused a severe defect in growth
on glycerol medium and sensitivity to 2-deoxyglucose (Fig. 1D).

Cdc14 exhibited connections with three different mitogen-activated protein kinase (MAPK)
modules. Interaction of the pheromone MAPK pathway kinases Fus3 and Ste7 with Cdc14
was supported by the finding that constitutive expression of Cdc14 caused partial
pheromone resistance (fig. S10). Cdc14 interacted with the high osmolarity glycerol (HOG)
pathway MAPK kinase Pbs2; consistently, constitutive expression of Cdc14 caused
sensitivity to osmotic stress (Fig. 1E). The HOG pathway is also known to stimulate mitotic
exit (8). The upstream cell wall integrity (CWI) MAPK kinase Bck1 interacted with Cdc14;
a cdc14-3 strain was sensitive to the cell wall stress agent calcofluor white (Fig. 1E). These
CWI interactions extended along each pathway because the conditional MEN alleles
mob1-77 and cdc15-2 exhibited specific synthetic lethal interactions with either slt2Δ or
bck1Δ mutations; this lethality was alleviated by growth on iso-osmotic medium but not by a
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catalytically inactive mutant of Slt2 (Fig. 1F and fig. S10). These data reveal Cdc14 as
nexus for cell cycle, checkpoint, metabolic, and stress signals (fig. S10).

The TORC1 and TORC2 kinase complexes are conserved from yeast to human and control
macromolecular synthesis and polarized morphogenesis, respectively; TORC1 is sensitive to
the macrolide rapamycin, whereas TORC2 is not (9). In the KPI dataset, TORC1 and
TORC2 formed a highly connected subnetwork of 28 interaction partners, including 13
kinases and 4 phosphatases (figs. S6 and S11 and table S6). These connections established
new links between TORC1 and the mitochondrial retrograde (RTG) signaling pathway (10),
which induces genes required for glutamate production (fig. S12). Multiple TORC1 subunits
exhibited previously undocumented interactions with the kinases Fmp48, Nnk1, Npr1, and
Ksp1 (Fig. 2A and fig. S11).

Fmp48 is a kinase of unknown function that is associated with mitochondrial subcellular
fractions (11). Consistent with interactions among Fmp48, TORC1, and the RTG inhibitor
Mks1, elevated expression of FMP48 caused a growth defect on nonfermentable glycerol
medium and rapamycin resistance on a fermentable carbon source (Fig. 2B). Overexpression
of FMP48 caused abnormal mitochondrial morphology (Fig. 2C) and repression of genes
encoding tricarboxylic acid cycle enzymes, electron transport chain components, and
subunits of the adenosine 5′-triphosphate (ATP) synthase (Fig. 2D). Fmp48-associated
kinase activity was specifically increased by rapamycin treatment (Fig. 2E), suggesting that
Fmp48 relays TORC1 signals to the RTG pathway and mitochondrial function.

The uncharacterized kinase Ykl171w, renamed Nnk1 for nitrogen network kinase,
associated with all TORC1 subunits (fig. S11) and with Gdh2, the NAD+-dependent
glutamate dehydrogenase that catalyzes deamination of glutamate to α-ketoglutarate and
ammonia (12). Gdh2 was phosphorylated by Nnk1 complexes in vitro (Fig. 2F), and a
gdh2Δ strain was resistant to rapamycin when grown on glutamate as the sole nitrogen
source (Fig. 2G), whereas overexpression of NNK1 conferred hypersensitivity to rapamycin
(Fig. 2H). Nnk1 also interacted with the TORC1 effector Ure2, which regulates the nitrogen
catabolite response by sequestering the transcription factor Gln3 in the cytoplasm (12).
Overexpression of NNK1 induced rapid nuclear accumulation of Gln3 (Fig. 2I) and
increased transcription of Gln3 target genes (Fig. 2J), suggesting that Nnk1 activity
antagonizes the Ure2-Gln3 interaction. The expansive TORC1 network also included other
nutrient-sensing kinases (Npr1, Snf1, Gcn2, and Ksp1; fig. S11) (13), transcription-
associated kinases (Tra1 and Tpk2), MAPK module components (Bck1 and Kdx1), cell
cycle kinases (Ime2, Mih1, and Clb2-Cdc28), an mRNA splicing kinase (Sky1), and a
ribosome biogenesis kinase (Rio2). These findings underscore the central role of TOR in
cell growth.

In a global protein interaction network constructed from the KPI, LTP, and HTP-HC
datasets (2), kinase-kinase (K-K) interactions were significantly enriched compared to all
other kinase interaction partners (P < 3 × 10−6) and collectively formed a highly
interconnected K-K network (Fig. 3A, figs. S13 and S14, and table S8). Consistent with a
trans-kinase phosphorylation network (14), we assigned 607 phosphorylation sites on 98
kinases (fig. S15 and table S9). This K-K network was extremely robust to fragmentation by
hub deletion (Fig. 3B) and was far less modular than previous less-complete K-K networks
[fig. S16 (2)]. Within the global network, kinases had a significantly higher centrality
compared to nonkinase nodes [P < 10−16 (2)], suggesting that kinases might unify cellular
regulation. To test this idea, we identified dense clusters of interactions (cliques or
complexes) in the global interaction network, then determined the extent of clique cross-
connection by kinase interactions. More than 80% of the proteome was interlinked by
kinases in this manner (fig. S17), a significantly larger fraction than in random networks [P
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< 10−8 (2)]. The potential for kinases to co-regulate otherwise separate functions was further
revealed by the diversity of Gene Ontology (GO) biological processes associated with
kinase interaction partners (Fig. 3C and fig. S18). The multifunctionality of kinases, as
defined by associated GO terms, was markedly increased by the KPI dataset (Fig. 3D).

Cellular processes are controlled by a multi-tude of low-affinity interactions, as often
mediated by short linear motifs embedded in disordered protein regions (15, 16). The KPI
network is highly enriched for disordered regions as compared to the entire proteome [P <
10−16 (2)]. This physical organization may allow the cell to overcome stochastic limitations
in signal propagation, integration, and downstream responses (16). In human cells, kinase-
mediated signaling can readily propagate across pathways (17) and may dictate complex
decisions through a broadly distributed network of effectors (18, 19). Moreover,
phosphorylation-based feedback loops often enable cooperative responses, tuning of
network outputs, and entrained states (20–22). The densely connected and non-modular
architecture of the KPI network suggests that the interaction of many such circuits will
underpin cellular information flow (23).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Cdc14 phosphatase network. (A) Hierarchical two-dimensional clustering of bait interaction
profiles in the KPI dataset. See fig. S9 for full clustergram. Networks for indicated clusters
and other kinases are shown in fig. S19. (B) Cdc14-Net1-Sir2 (RENT) interaction network.
Kinases are in orange, phosphatases in blue, kinase-associated proteins in yellow, and other
proteins in gray. Red connecting lines indicate KPI interactions, gray lines LTP interactions,
and gray dashed lines HTP-HC interactions. Line thickness indicates peptide count of
interaction; node size is proportional to total number of interactions in the KPI dataset. Bold
dashed circle indicates RENT complex and known associated proteins. RAM, regulation of
Ace2p activity and cellular morphogenesis. (C) Sensitivity of a GAL1-CDC14 strain to
0.03% methyl methanesulfonate (MMS) when induced by 0.02% galactose (see fig. S20 for
expression titration) and a cdc14-3 strain to 200 mM hydroxyurea (HU) at 33°C. (D)
Sensitivity of a GAL1-CDC14 strain to either rapamycin (5 ng/ml) or glycerol medium when
induced by 0.05% galactose. Resistance of a cdc14-3 strain to rapamycin (20 ng/ml) and
sensitivity to 2-deoxyglucose (DG, 100 μg/ml) at 33°C. (E) Sensitivity of a GAL1-CDC14
strain to 1 M sorbitol when induced by 0.05% galactose. Sensitivity of a cdc14-3 strain to
calcofluor white (CFW, 18 μg/ ml) at 33°C. (F) Representative tetrads bearing combinations
of slt2Δ, bck1Δ, cdc15-2, and mob1-77 alleles. Double-mutant spore clones are circled in
yellow; pbs2Δ and tor1Δ served as negative controls.
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Fig. 2.
TORC1 kinase network. (A) Partial network of new TORC1-associated kinases. (B)
Overexpression of GAL1-FMP48 inhibits growth on glycerol and confers rapamycin
resistance. (C) Overexpression of GAL1-FMP48 causes abnormal mitochondrial
morphology as visualized with an Ilv3GFP mitochondrial matrix fusion protein (GFP, green
fluorescent protein). DIC, differential interference contrast. (D) Genome-wide expression
profiles of GAL1-FMP48 and GAL1-MKS1 strains induced with 0.2% galactose. RTG-
responsive (orange), mitochondrial (red), stress-responsive (green), and Gln3/Gcn4-
responsive (blue) genes are marked. (E) Fmp48FLAG or Sch9FLAG complexes were
immunopurified from cells grown in the presence or absence of rapamycin (200 ng/ml) for
30 min, then incubated with [33P]-γ-ATP, and radiolabeled species were resolved by SDS–
polyacrylamide gel electrophoresis. Nonregulated Sch9-associated activity served as a
negative control. (F) Immunopurified Nnk1FLAG complexes were incubated with [33P]-γ-
ATP, then denatured, and radiolabeled Gdh2 species were repurified with antibody to
hemagglutinin (HA). (G) A gdh2Δ strain is rapamycin resistant when glutamate is the sole
nitrogen source. (H) Expression of GAL1-NNK1 in 2% galactose confers sensitivity to
rapamycin (5 ng/ml). (I) Expression of GAL1-NNK1 in 2% galactose for 1 hour causes
nuclear accumulation of Gln3GFP. (J) Expression of GAL1-NNK1 in 0.2% galactose for 1.5
hours specifically induces Gln3 target genes. Color bar indicates fold increase (red) or
decrease (green) relative to empty vector control.
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Fig. 3.
A kinase-kinase (K-K) network connects the proteome. (A) Combined K-K interaction
network derived from the KPI, LTP, and HTP-HC datasets. Interactions from known kinase
regulatory subunits and paralogs were collapsed into single nodes (table S8). The reduced
network contains 156 interactions between 75 kinases, 66 of which contain documented
phosphorylation sites (table S9). Colors indicate fraction of GO Super-Slim biological
processes assigned by interaction partners of each kinase (2). (B) Nodes in the combined K-
K network were deleted in decreasing degree order. Characteristic path length and largest
residual connected component were normalized to initial values. K-K networks derived from
KPI and LTP+HTP-HC datasets were used as controls. (C) Clustering of GO Slim
biological processes associated with kinase interaction partners. Full clustergram is shown in
fig. S17. (D) Multifunctionality of kinase associations. Ratio indicates number of GO Slim
biological processes per kinase normalized to all processes (2).
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