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Abstract
We synthesize several lines of evidence supporting the hypothesis that at least one function of Aβ
is to serve as a part of the acute response to brain hemodynamic disturbances intended to seal
vascular leakage. Given the resilient and adhesive physicochemical properties of amyloid, an
abluminal hemostatic repair system might be highly advantageous if deployed on a limited and
acute basis in young individuals. However, in the aged, inevitable cardiovascular dysfunction
combined with brain microvascular lesions may yield global, chronic hypoperfusion that may lead
to continuous amyloid deposition and consequential negative effects on neuronal viability. A large
body of experimental evidence supports an Aβ rescue function gone astray. Preventing or inducing
the removal of amyloid in Alzheimer’s disease (AD) has been simultaneously successful and
disappointing. Amyloid deposits clearly play major roles in AD, but may not represent the
preeminent factor in dementia pathogenesis. Successful application of AD preventative
approaches may hinge on an accurate and comprehensive view of co-morbidities, including
cardiovascular disease, diabetes and head trauma.

Introduction
A recent report from Alzheimer International projects that if existing trends continue, 115
million individuals worldwide will have Alzheimer’s disease (AD) by 2050 [1]. Despite a
wealth of fundamental discoveries regarding AD pathogenesis, translation of potentially
promising findings into clinically useful treatments has been repeatedly stymied.

Alzheimer’s disease is classically explained by a reductionist pathogenic mechanism
positing amyloid deposition as the primary toxic entity in this dementia. The amyloid
cascade hypothesis was reinforced by the discovery of familial cases of AD caused by
mutations in the amyloid-beta precursor protein (APP) and in the presenilin (PS) genes
which produce abundant amyloid deposition and early-onset dementia. Further support for
the amyloid cascade hypothesis has also been provided by the engineering of transgenic (Tg)
mouse models which mimic some aspects of AD amyloid pathology using mutant human
APP and PS transgenes. Data revealing the significance of amyloid to AD pathology
culminated in the therapeutic disruption of amyloid deposits in Tg mouse models and in AD
patients. Despite the promising results in Tg mice, the successful disruption of amyloid
plaques failed to yield commensurate effects on dementia in clinical trials [2-7].
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Extrapolating Tg mouse model observations directly to humans while neglecting significant
evolutionary and biological differences between the two species may have played an
important role in the lack of success against dementia [8;9]. Despite the clear mitigation of
amyloid plaque pathology in some patients, the striking lack of concurrent effect against
dementia expression suggests the disappointing prospect that we have underestimated the
complexity of the underlying pathology and thereby failed to address critical facets of the
problem. Viewed as a whole, the results obtained with Tg mice and clinical trial experiences
reveal that AD pathology involves more than amyloid accumulation and conquering
dementia demands something more than eliminating amyloid plaque deposits once cognitive
impairment becomes evident. Enticed by the clear abundance of amyloid deposits in AD
brain tissue and vasculature, these neuropathological features have been the dominant target
in therapeutic interventions. However, the fundamental question of why amyloid
accumulates in the elderly brain has yet to be answered.

In this position paper, we explore the possibility that sustained cardiovascular disease or
head trauma leads to amyloid deposition, a process intended to ensure vessel repair and
integrity at specific sites of injury or leakage. However, this vital protective function
becomes inadvertently deleterious when chronically activated in the elderly, creating
excessive amyloid deposits around the brain vasculature and an anti-angiogenic environment
which generates hypoxia/ischemia. In addition, during the aging process, evolving
cardiovascular decline inevitably reduces brain perfusion. Coupled with escalating brain
microvascular damage, these conditions may establish a vicious cycle of anomalous and
excessive vascular amyloid deposition promoting capillary and arteriole wall strangulation
and luminal occlusion, eventually producing blind capillary remnants and free extracellular
amyloid cores which are manifested prior to the clinical onset of the disease [10]. The
concept of amyloid serving as a hemostatic patch for leaky brain microvessels was first
postulated in 1993 by Roher et al. [11] and further advanced by Atwood et al. [12] and
Cullen et al. [13]. Our assumptions are compatible with recent observations postulating a
series of events initiated by hypoxia/ischemia and followed by vascular injury, disruption of
the blood-brain barrier (BBB) and vascular amyloid deposition which is complicated by a
failure in Aβ clearance and potential increase of Aβ up-take from the circulation [14]. These
series of biological events are conducive to neurovascular dysfunction, neuroinflammation
and neurodegeneration [15].

The Role of Cardiovascular Disease, Diabetes and Head Trauma in AD
The cardiovascular system is pre-eminent in the development of the brain maintenance of its
vital functions. The brain consumes a disproportionate share of total oxygen and metabolic
resources. By age 80, the human heart and vessels have beaten, stretched and contracted
about 3 billion times to propel approximately 200 million liters of blood through the
vasculature. This situation may explain why AD rates expand almost exponentially with
advancing age in parallel with an increased incidence of morbidity and mortality resulting
from cardiovascular disease [16-21]. As time elapses, the cumulative harmful effects of
wear and tear on cardiovascular function become more apparent. This is well illustrated by a
significant decline in cardiac output and cardiac index with advancing age [22;23].
Numerous cross-sectional and longitudinal studies, using various imaging and ultrasound
techniques, have shown that in AD there is an statistically significant reduction in total and
regional cerebral blood flow when compared to age matched controls [24-32].
Echocardiographic investigations demonstrated that AD subjects exhibited a statistically
significant diastolic dysfunction revealed by increased transmitral vortex formation time
[33]. Likewise, duplex Doppler carotid ultrasound showed a consistent and significant
decrease in diastolic flow along the path of the carotid artery in AD patients, suggesting a
loss of arterial elastic capacity [34]. These parameters can be construed as risk factors for
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pathologic brain aging and, by extension, potential harbingers of AD. Aging imposes
alterations in both the intracranial resistance of arterioles and capillaries [35-39] thus
reducing cerebral blood flow and inducing cognitive dysfunction [40;41]. Recent
hemodynamic studies using transcranial Doppler ultrasound confirmed decreased arterial
mean flow velocity and increased pulsatility index in probable AD patients compared to
non-demented controls [34], revealing that diffuse microvascular pathology, increased
arterial rigidity and vascular resistance contribute to overall cognitive decline.

Brain hemodynamic alterations due to severe stenosis and hardening of the neck and
intracranial arteries will impact brain perfusion while promoting lacunar infarcts and
strokes. By age 80 atherosclerosis of the circle of Willis, carotid and vertebral arteries is
widespread. These arteries exhibit a significantly increased degree of atherosclerosis in AD
subjects compared to age-matched controls [42]. Chronic hypoxia/ischemia can lead to gross
disruption of the BBB integrity [43-45], conditions that may be accentuated by hypertension
and diabetes. These prevalent and progressive pathologies eventually exert negative effects
on energy metabolism and neuronal transmission that are detrimental to memory and
cognition.

Hypertension is an important risk factor for AD due to its microangiopathic effects on the
brain [21;46] and its relationship to brain microhemorrhages [47]. This condition affects
approximately 25% of the adult population in the USA [48], and increases to 60-65% in
those older than age 65 [21;49]. As a highly perfused organ offering low resistance to blood
flow, hypertension will ultimately elicit difficult-to-repair vascular injuries and irreversible
structural and functional damage in the brain [50;51]. With aging, systolic and pulse
pressure increases result in endothelial cell tearing, breaches in the BBB, smooth muscle cell
disruption, small arterial dilations, vascular fragility, lipohyalinosis and fibrinoid necrosis
[52]. As age advances, there is a direct relationship between stiffening of large elastic
arteries and brain microvascular disease [50] as well as with increased pulse pressure and
pulse velocity which are correlated to cognitive decline [53].

Diabetes is an additional important risk factor for AD because of its vascular pathological
repercussions and impact on energy metabolism [54-57]. By age 60 years and older, about
23% of Americans have diabetes [58]. A large body of research supports the contention that
diabetes is more frequent in patients with AD [59-61]. Diabetics face a considerably higher
risk of developing cardiovascular disease, hypertension, atherosclerosis and obesity [57;62]
as well as brain microvascular changes leading to dysfunctional BBB associated with
hypoperfusion and cognitive deficiencies [63-65]. It has been suggested that sporadic AD
should be classified as type-3 diabetes due to insulin resistance and reduced expression of
insulin and insulin-like growth factors in the AD brain [54-57;62].

Acute head trauma is a risk factor for AD development [66-68]. In comparison to the
general population, AD and other memory loss-related diseases are 19- and 5-fold more
frequent in National Football League players 30-49 and 50 plus years of age, respectively
[69]. Both APP and amyloid-beta (Aβ) levels increase after acute brain injury [70-73],
suggesting an acute phase protein response involved in brain salvage function. The capacity
of Aβ to produce vasoconstriction [74;75], coupled with its potent anti-angiogenic activity
[76;77] and the ability of the Aβ peptides to act as metal chelating agents [78-80] may
reduce the generation of deleterious reactive species [81;82] from extravasated hemoglobin-
bound iron [83;84] resulting from concussive microhemorrhages. Thus, while amyloid
deposition may increase the probability of surviving acute brain injury, it also confers a
threat for future dementia development. Despite evidence for clearance of trauma-associated
Aβ [12], even minute remnants of vasculature-associated deposits could act as seeding
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templates for the future propagation of widespread amyloid pathology analogous to the
chain reaction expansion characteristic of prion diseases [85].

In summary, cardiovascular dysfunction, common in middle age and elderly individuals,
whether due to hypertension, intrinsic cardiac diastolic and systolic failure, lost of vascular
compliance, atherosclerotic stenosis/thrombosis, brain diffuse microvascular disease and/or
damaged BBB will eventually cause brain hypoxia/ischemia. These perturbations could be
synergistically aggravated by respiratory disease, diabetes or by concussive head trauma. A
disturbed microvasculature will need to be efficiently repaired to maintain the integrity of
the BBB and an efficient blood flow to prevent energy metabolism failure and ultimately
dementia.

Amyloid as a vascular repair mechanism
From a structural viewpoint, amyloid filaments exhibit high mechanical strength, are highly
insoluble and resistant to degradation [86;87]. In addition, amyloid filaments are plastic,
have cement-like bonding properties [86] and readily interact with the extracellular matrix
[88] as well as with a reduced turnover suitable for vascular injury repair. Animal cements,
based on amyloid polymerization aid in wound healing, maintenance of tissue integrity and
exhibit biochemical processes analogous to blood clotting [89;90]. An abluminal amyloid
molecular lattice would permit continued vascular blood flow while sealing breaches in the
BBB [11;12]. This putative function would prevent the classical coagulation cascade from
blocking the lumen of the capillaries and arterioles [12]. Moreover, Aβ may also act as an
anti-microbial peptide capable of inhibiting and entrapping invading bacteria that otherwise
could have harmful consequences for brain survival [91].

The above properties suggest that amyloid deposits may act as dynamic hydrophobic,
insoluble sealants to halt vascular leakage due to vascular disease, trauma or intrinsic
agingfailure of the brain vasculature [11;12] as well as serving as an acute phase protective
function by sequestering excess heme, iron and other metal ions [92;93]. Blood components
and their breakdown products free in the brain tissue have grave functional and pathological
consequences as amply illustrated by the effects of hemorrhagic stroke [94] and brain edema
[95]. Hypothesizing a brain-specific microvascular repair mechanism has important
pathophysiological implications. A breached BBB will permit the infiltration of plasma
proteins directly into the parenchyma or the creation of overt microhemorrhages. Small
vascular lesions resulting in blood permeation into the neuropil are documented in AD by
imaging techniques [96] and histological studies [97]. High levels of thrombin and matrix
metalloproteinase-2 participate in the disruption of the BBB [98-101]. Hemin can generate
oxidative stress through the production of superoxide and hydroxyl radicals by redox-active
iron moieties resulting in membrane peroxidation attack, reduction of NADPH and depletion
of glutathione levels [102]. Morphological studies have demonstrated a physical overlap
between heme deposits and vascular-associated amyloid cores in the AD brain [13;103]. In
brief, the grave consequences of extravasated plasma proteins and free-hemoglobin in the
brain parenchyma, produced by a breached BBB and brain microhemorrhages, may be
remediated by amyloid deposition.

The deleterious effects of excessive amyloid deposition
Vascular amyloid deposition ultimately evolves into a devastating condition resulting in
progressive hypoxia/ischemia, failure in energy metabolism and permanent brain injury
[97;104]. It is tempting to speculate that these consequences manifested in the aging brain
are the ultimate tradeoff for a pathway selected through evolutionary processes to safeguard
vascular continuity in younger individuals, but becomes progressively destructive under
physiologic conditions in the elderly [105].
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Microscopic examination of whole-mounted vascular specimens revealed that in AD, the
cortical microvascular network harbors abundant fibrillar amyloid deposits at different
degrees of condensation (Figure 1). At higher magnification, some microvessels appear
constricted, particularly at sites surrounded by large cores of fibrillar amyloid [11;13].
Continuous Aβ accretion around the microvessel wall should generate increasing pressure
on the expanding deposit, eventually occluding the vascular lumen. Conceivably, luminal
occlusion is followed by degeneration and disappearance of the vessel wall, leaving
insoluble amyloid cores apparently ‘floating’ free within the brain parenchyma entirely
detached from the remaining vascular stumps (Figure 2). The chemical composition and
post-translational modification similarities between microvasculature-attached and ‘free’
amyloid plaque Aβ peptides, rich in insoluble Aβ42 with abundant post-translational
modifications [11;106-108] as well as the tenacious association of developing amyloid
deposits with the brain vascular walls support this tenet. In advanced vascular amyloidosis,
heavy amyloid deposition within the cortical arteries’ periarterial spaces compromises
interstitial fluid removal from the white matter, dilating the periarterial spaces (etat criblé)
[109-111]. Retention of interstitial fluid and poisonous metabolic waste may negatively
compound the severe demyelination present in two-thirds of patients with AD [109].
Furthermore, it may also explain gross ventricle enlargement, a nearly universal signature of
this type of dementia. From a hydrodynamic point of view, relentless enlargement of the
ventricles will drastically compress the white matter, thereby promoting degeneration of this
tissue.

Global therapeutic implications of amyloid removal
Immunotherapy has disrupted amyloid plaques in humans and Tg animal models. Although
amyloid deposition creates noxious conditions and amyloid plaques have been correlated
with AD dementia, this association is relatively weak [112;113]. The remarkable physical
impact of immunotherapy coupled with the striking lack of corresponding effect on
dementia suggests that amyloid plaques are not the sole or perhaps even primary pathogenic
factor of AD.

The postmortem data from immunotherapy trial subjects reveal that although the disruption
of amyloid plaques has been dramatic in some cases, the elimination was not total and
persistent remnants may still harbour toxic Aβ peptides or other noxious molecular species
[2;3;114]. In addition, plaque removal cannot reverse a legacy of destroyed vascular
elements or neurons. The inability of Aβ immunization to totally eradicate amyloid plaques
coupled with the failed or slow exit of amyloid from the brain [2;3;114] due to a congested
vasculature means that the amyloid hypothesis per se has yet to be tested rigorously.
Furthermore, additional findings suggest that amyloid plaques might reconstitute swiftly as
soon as antibody levels decline [3]. Taken together, these observations strongly suggest that
to avoid amyloid toxicity, applying interventions on a preventative rather than a therapeutic
basis may be more efficacious.

If amyloid deposits perform a vascular rescue function or simply accumulate steadily with
age and produce localized damage, specifically removing them may inadvertently promote
BBB breaches. However, explaining this assumption as the consequence of the simple
removal of an essential vascular patch [12] is not straightforward. Microhemorrhages are
frequently observed in AD patients [97], implying that the unchecked accumulation of
vascular amyloid can itself be intrinsically destructive. Postmortem examinations of
AN-1792-immunized individuals revealed that vascular amyloid deposits were partially
refractory to immune disruption [2;114;115]. In some AD patients, vascular amyloid may
have increased as a consequence of immunotherapy [2;114;115]. Amyloid-β immunotherapy
has induced deleterious side effects such as microhemorrhages [115-118], as well as
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vasogenic edema and aseptic meningoencephalitis (reviewed in: [119]) in some recipients.
In these patients, it is possible that essential amyloid depositional processes in the
vasculature were active when therapy commenced and the removal of functional amyloid
“scabs” [12] breached the vessels directly or created failure-prone areas. Recognizing that
amyloid accumulation may precede the onset of dementia by a substantial margin [10;120]
and the empiric discovery that patient ApoE genotype exerts considerable influence over the
type and emergence of lesions, suggest that careful patient selection, precise treatment
timing and individual titration of immunotherapy may be essential for optimal efficacy.

An additional complication of Aβ immunotherapy is its potential interference with the
coagulation cascade, a complex and highly conserved hemostatic mechanism that repairs
injured blood vessels. Multiple, interdependent proteins participate in a chain of events
terminating in the formation of an adhesive clot, mainly made of platelets and cross-linked
fibrin. Although a well functioning coagulation cascade is essential for survival, the
requirements for vascular integrity maintenance and repair in the brain may be more
stringent than those of peripheral organs. The brain is an exceptional organ with finely tuned
electrical activities generated by neurons assisted by glial cells that need to be maintained in
a semi-secluded molecular compartment secured by the integrity of the BBB. While rapid
coagulation mediates vascular recovery in many organs, severe microvascular damage
within the brain may follow a fundamentally different response strategy to ensure adequate
blood flow while minimizing the prospect of neuronal injury.

In AD, a breached BBB would release fibrinogen into the extracellular space of the brain
microvasculature where it will contact Aβ peptides. In addition, damaged endothelial cells
produce thrombin [121]. Recent in vivo and in vitro experiments demonstrate that the
interaction between these two molecules results in altered thrombosis and fibrinolysis and
generates lysis-resistant clots that may contribute to vascular constriction, brain
hypoperfusion and neuroinflammation [122;123].

It is important to recognize that the production and distribution of Aβ is not restricted to the
brain [124]. The long-term effects of chronic immunotherapy administration on vital cell
signaling pathways and the coagulation system are not known. The available data suggest
that potential interactions between protease nexin-2 (PN-2), an APP molecule carrying a
Kunitz-type serine protease inhibitory domain, and anti-Aβ antibodies may have negative
effects on the coagulation cascade resulting in thrombosis. Although antibodies against Aβ
are directed against amino acid sequences within the Aβ peptide, the possibility of
interactions with APP in patients undergoing immunotherapy remains open. Intriguingly, in
recent clinical trials several AD patients treated with bapineuzumab, a monoclonal antibody
against the N-terminal domain of Aβ, developed deep venous thrombosis (3.2%) or
pulmonary embolism (0.8%), while none of these coagulation cascade-associated adverse
events occurred in the placebo branch [125]. For comparison, acute venous
thromboembolism has an annual incidence of about 1-2 cases for 1000 individuals in the
general population [126;127]. The observation that Aβ immunotherapy in AD patients and
APP Tg mice induces microhemorrhages [115;116;118;128] further suggests that the normal
coagulation cascade may be perturbed. This may be a manifestation of PN-2 inhibition,
steric hindrance effects or conformational changes induced by high titers of circulating anti-
Aβ antibodies. Protease nexin-2 blocks the IXa, Xa and XIa factors and tissue factor:factor
VIIa in the prothrombinase complex cascade, supporting the hypothesis that PN-2 functions
in the focused regulation of the coagulation process at sites of vascular injury [129]. The net
effects of such induced alterations may be more profound in the periphery, but unfortunately
no data exist to settle the matter.
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Summary statement and conclusions
The supreme challenge is to set the impressive knowledge regarding brain Aβ biochemistry
into a larger physiological context that takes account of established AD systemic co-
morbidities such as cardiovascular disease and diabetes. This is no small task since the
normal function(s) of APP/Aβ, an evolutionarily-conserved molecule, remains nebulous.
Several lines of evidence suggest that at least one function of Aβ might be as a part of the
acute response to brain vascular trauma and degeneration intended to seal capillary and
small vessel leakage. A brain vascular repair system mitigating ischemia/hypoperfusion
might be highly advantageous deployed on an acute basis in young individuals. However, in
the aged, inevitable cardiovascular dysfunction combined with microvascular lesions may
yield chronic conditions that are misinterpreted as requiring repair which promotes a self-
synergizing global cascade of insidious vascular occlusion and ultimately negative effects on
cognition. Although amyloid deposits deployed in the acute response to brain vascular
trauma are apparently reversed, especially in younger more functionally vigorous
individuals, past head injuries are a recognized risk factor for AD development, suggesting
that the salvaged regions of the brain harbour potential nucleation sites that may promote
amyloid propagation in the future.

Confronting hypothesis with data, it seems likely that the long-prevailing view of AD
pathogenesis may be too limited. The brain is heavily dependent on cardiac output and the
functional integrity of the arterial and venous networks. The brain is unique among the
organs in its extreme perfusion demands, energy requirements and strictly maintained
biochemical separateness from the circulatory system. Considering the brain and its age-
related AD in isolation, we may have overlooked the fact that all aspects of brain function
ultimately depend on the cardiovascular system and adequate energy metabolism. The
genesis of dementia is multifactorial and heterogeneous; its mitigation may be a complex
undertaking as well.
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Figure 1. Alzheimer’s disease whole-mount preparations of isolated microvessel-associated
amyloid deposits stained by thioflavine-S
A) A tuft of cortical microvessels walls revealed as detergent (SDS) insoluble cross-linked
extracellular matrix remnants demonstrating a wide range of amyloid core deposits
intimately associated with the basal lamina. The early amyloid deposits are small, flat and
ellipsoidal. In more advanced deposits, the amyloid deposits become spherical and
completely surround the vascular wall. The continuous accretion of fibrillar Aβ onto the
surface of the amyloid sphere by glial cells may eventually obliterate the microvessel,
thereby compromising blood supply. B and C) Tufts of capillaries and arterioles with
numerous amyloid cores attached to the vascular basal lamina. Note that in some instances
the spherical amyloid cores are sparse while in other instances they are distributed in a
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rosary-like succession. For detailed technical information and interpretation see reference
[11]. Figure A reproduced with permission from the Publisher: Proceeding of the National
Academy of Sciences, USA. Magnification: A = 100X; B = 200X; C = 400X.
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Figure 2. Spatial associations between amyloid plaque cores and microvessels in AD cortical
areas
A) Digital image of entorhinal cortex of amyloid deposits stained with anti-Aβ (red) and
microvessels (brown) stained with anti-collagen IV monoclonal antibody demonstrating the
association between the two structures. B, C and D) These images demonstrate the close
relationship between amyloid plaques and the cerebral microvessels. In some instances, the
vessel is surrounded by the amyloid plaque or the amyloid plaque appear to be ‘floating’
free in the neuropil surrounded by remnant vascular stumps. For complete technical
description and interpretation of data for A, B, C and D see Cullen et al 2006 [13]. Figures
A, B, C and D reproduced with permission from the Publisher: Elsevier Inc. E) Electron
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micrograph showing a core of amyloid attached to the surface of a cortical microvessel. The
wisps of amyloid fibrils are inter-digitated with the extracellular matrix and cellular debris.
F) As amyloid deposition advances, the swollen remnants of the blood vessel are entrapped
at the center of an amyloid core. G) Once the blood vessel is totally obliterated and the
vascular stumps retract, a dense core of radiating amyloid fibrils represent the ultimate
permanent lesion. Magnification: E = 5500X; F = 5500X; G = 2500X.
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