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Abstract

Recent interest in sedentary behavior and technological advances expanded use of watch-size accelerometers for
continuous monitoring of physical activity (PA) over extended periods (e.g., 24 h/day for 1 week) in studies conducted in
natural living environment. This approach necessitates the development of new methods separating bedtime rest and
activity periods from the accelerometer recordings. The goal of this study was to develop a decision tree with acceptable
accuracy for separating bedtime rest from activity in youth using accelerometer placed on waist or wrist. Minute-by-minute
accelerometry data were collected from 81 youth (10–18 years old, 47 females) during a monitored 24-h stay in a whole-
room indirect calorimeter equipped with a force platform covering the floor to detect movement. Receiver Operating
Characteristic (ROC) curve analysis was used to determine the accelerometer cut points for rest and activity. To examine the
classification differences, the accelerometer bedtime rest and activity classified by the algorithm in the development group
(n = 41) were compared with actual bedtime rest and activity classification obtained from the room calorimeter-measured
metabolic rate and movement data. The selected optimal bedtime rest cut points were 20 and 250 counts/min for the waist-
and the wrist-worn accelerometer, respectively. The selected optimal activity cut points were 500 and 3,000 counts/min for
waist and wrist-worn accelerometers, respectively. Bedtime rest and activity were correctly classified by the algorithm in the
validation group (n = 40) by both waist- (sensitivity: 0.983, specificity: 0.946, area under ROC curve: 0. 872) and wrist-worn
(0.999, 0.980 and 0.943) accelerometers. The decision tree classified bedtime rest correctly with higher accuracy than
commonly used automated algorithm for both waist- and wrist-warn accelerometer (all p,0.001). We concluded that cut
points developed and validated for waist- and wrist-worn uniaxial accelerometer have a good power for accurate separation
of time spent in bedtime rest from activity in youth.
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Introduction

Accelerometry has been frequently used for the measurement of

time spent in activities performed at various intensities and for the

prediction of physical activity (PA) related energy expenditure [1–

4]. Accelerometer applications range from clinical interventional

trials [5,6] to epidemiological studies [7–9]. Recent technological

advances such as watch size devices with high data storage

capacity allows capturing PA for extended monitoring period (e.g.

24 hours per day for 7 days). This increasingly popular ‘‘24/

7’’approach can lead to more detailed assessments of individual’s

PA amount and patterns, which is particularly relevant because of

the rapidly growing interest in sedentary behavior and sleep

patterns and their relationship to health in children and

adolescents [10–13].

The first step in the 24-hour accelerometry data analysis is

assessing a person’s compliance with the monitor wearing

instructions using a wearing/nonwearing algorithm such as

proposed by Choi et al. [14] or Troiano et al. [7]. The next

step is to discriminate bedtime rest from activity that include

sedentary behaviors and activity usually classified as light,

moderate, and vigorous PA intensity categories [15]. Tradition-

ally, activity time is scored using information from a self-report

[16], or more objectively using signals from accelerometers

equipped with a light sensor, an inclinometer, or an event button.

Validity and limitations of these methods were described elsewhere

[17].

An alternative approach is to use an automated algorithm that

classifies accelerometer wear time into the bedtime rest and

activity categories using a decision tree that uses empirically

determined cut points from the accelerometer output, i.e. counts.

These procedures include scoring algorithms for assessing sleep

such as a device-specific algorithm developed in a group of adults

(n = 20) and children (n = 16) by Sadeh et al. using polysomno-

graphy (PSG) as a reference standard [18]. A similar algorithm for

assessing sleep using Actigraph GT1M accelerometer was

developed in a group of 15 children (10–11 years old) using sleep

diaries and another accelerometer as a reference standard [19].
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Recently, Wrzus and colleagues have proposed an algorithm to

identify sleep in a natural environment based on body posture

classification [20]. The strength and limitation of using accel-

erometry to assess sleep have been described and summarized

elsewhere [21]. These algorithms, however, were developed

specifically to assess sleep rather than bedtime rest which might

include other than sleep forms of bedtime rest such as lying and

viewing television or short naps. Further improvements to the

existing algorithms are needed to automate the determination of

bedtime rest and activity from the accelerometry data. These new

or improved algorithm(s) should be applicable to clinical and

epidemiologic studies conducted in various populations assess

physical activity using accelerometry.

Thus, we hypothesized that the Actigraph monitor placed on

waist or wrist will correctly categorize bedtime rest from activity

(wake) in comparison with data from the whole-room indirect

calorimeter. The primary goal of this study was to develop and

validate a decision tree for classification of bedtime rest and

activity intervals from Actigraph accelerometer counts and

compare its sensitivity and specificity with the actual bedtime rest

or active status determined by a whole-room indirect calorimeter.

The accuracy of the developed decision tree was assessed by

comparing with commonly used Sadeh’s algorithm to predict sleep

and activity from 24-h accelerometry data [18,22,23]. The second

goal was to assess the effect of the monitor placement (waist versus

wrist) on valid bedtime rest and activity classification without using

complementary assessment methods (e.g., sleep diaries) in youth.

These two locations (waist and/or wrist) are the most commonly

used for an accelerometer placement in epidemiological and

clinical studies designed to measure the amount and patterns of

physical activity in a specific study population including youth.

Materials and Methods

All applicable institutional and governmental regulations

concerning the ethical use of human volunteers were followed

during this research, in accordance with the ethical principles of

the Helsinki-II Declaration. The study protocol was approved by

the Vanderbilt University Medical Center Institutional Review

Board. Before the study, participating youth and their parents or

guardians signed a printed informed consent or assent.

Participants
Young healthy volunteers (age 10 to 17 years) were recruited

from the Nashville, Tennessee area using flyers, email distribution,

and word of mouth to a prospective study focused on method-

ological aspects of PA measurement in youth [24]. In the

recruitment process, sex (male vs. female), race (white vs. black),

age (categories), and BMI (categories) were balanced. All

applicable institutional and governmental regulations concerning

the ethical use of human volunteers were followed during this

research, in accordance with the ethical principles of the Helsinki-

II Declaration. Before the study, participating youth and their

parents or guardians signed an informed consent or assent, which

was approved by the Vanderbilt University Medical Center

Institutional Review Board.

Study design and protocol
Study participants (n = 81) spent approximately 24-hours in a

whole-room indirect calorimeter [25] and followed a structured

protocol designed for simultaneous measurements of PA and

energy expenditure. During the entire room calorimeter stay, each

participant wore Actigraph accelerometers mounted on their waist

on the dominant side and dominant wrist. The room calorimeter is

an airtight room with windows and an airtight pass and is

equipped with a toilet, sink, desk, chair, telephone, multimedia,

and exercise equipment. The room assures high-precision

measurements in a controlled environment and semi-naturalistic

conditions (i.e. not wearing a breathing mask), and it allows for

adjusting the intensity of any PA task to the individual’s capability.

The force platform covering the entire living area inside the room

calorimeter is supported by precision force transducers. The force

platform allowed computer-aided measurement (60 times per

second) of body position, displacement, and mechanical forces

with an accuracy of 97% or higher. Technical details of the

indirect calorimeter measurement approach have been reported

previously [25]. The protocol inside the room included a broad

range of activities ranging from light and sedentary tasks such as

eating meals and snacks and self-care activities to moderate and

vigorous PA, such as stretching, jogging and walking on a

treadmill, biking on a stationary bike. During the remaining time

(,5 hours) when no activity was specifically scheduled, partici-

pants were asked to engage in their normal daily routine as much

as possible without specific suggestions. They were instructed to

start a bedtime rest at 10:00 pm and were woken up at 6:00 am.

Bedtime rest was defined as the time spent on a mattress bed when

no significant movement was detected by the force platform.

Participants also recorded their activities in a diary with a detailed

schedule, reporting any episodes of accidental monitor non-wear

intervals and other relevant comments. The study staff reviewed

the diary with each participant after finishing the study. The data

was not used for bedtime rest assessment. Complete data sets were

available for 81 participants and used in the algorithm develop-

ment and validation.

Measures
Physical activity (PA). PA was measured by two Actigraph

GT1M accelerometers (ActiGraph, Pensacola, FL), placed on the

anterior axillary line on the dominant side of the waist and the

dominant wrist. The GT1M monitor (firmware version 6.2.0) is a

self-calibrated uniaxial accelerometer that is generates data in

counts per user-defined epoch length [22,26]. In this study,

acceleration data were collected at a 1-sec epoch and summed as

counts per minute to facilitate time synchronization with

recordings from the room calorimeter and force platform. ActiLife

software version 4.4.1 was used for initializing the monitors and

downloading the data [22].

Movement-related mechanical work (Watt/

min). Mechanical work was measured using a force platform

covering the room calorimeter floor that has been shown to

measure accurately and reproducibly horizontal and vertical

mechanical work and was sensitive to pressure changes caused by

a person’s movement during activity and bedtime rest [27].

Energy Expenditure (kcal/min). Energy expenditure dur-

ing the entire period (,24-h) was calculated minute-by-minute

from measured rates of oxygen (O2) consumption and carbon

dioxide (CO2) production using Weir’s equation [28]. The

accuracy of our metabolic chamber for measuring energy

expenditure by routine alcohol combustion tests was 99.260.5%

(mean 6 SD) over 24 hours and 98.662.1% over 30 minutes

[25]. The system detects reliably short-term changes in metabolic

rate to 2.7% over 30 min and 0.6% over 2 h measurement period.

The resolution of the indirect calorimetry was 2 min and was

extrapolated to 1 min using an automated algorithm [29].

Room calorimeter measured bedtime rest and activity

intervals. Room calorimeter-measured energy expenditure and

the force platform-measured mechanical work threshold values

and plots were used to classify activity minute-by-minute into
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bedtime rest or activity. The classification was performed using an

automatic computer algorithm and verified independently by two

experts in the whole-room indirect calorimeter data analysis (MSB

and LC). Time periods (minutes) for which the difference between

computer classification and the experts consensus was found, the

experts’ assessment was used as an indicator of bedtime rest or

activity. The high degree of agreement was observed for bedtime

rest periods estimate between the algorithm and experts. The

classification was rendered as a binary indicator variable and

synchronized minute-by-minute with the accelerometer recordings

data taking under consideration a 2-min time lag between room

calorimeter and accelerometry. We found this approach more

accurate than information extracted from self-reports. The study

protocol did not include video recording because of concerns

related to children’s privacy during the 24 h room calorimeter stay

expressed by children and parents in our previous studies.

Accelerometry data decision tree development
Selecting criterion values. The key criterion values used in

the decision tree development were cut points for bedtime rest and

activity and time windows. The cut points were generated

separately for waist and wrist worn accelerometers using the

receiver operation curve (ROC) procedure for the determination

of the threshold with optimal sensitivity and specificity [30].

Threshold average was defined as a number of counts/min in any

1-hour time block during the entire monitoring period.

Bedtime rest cut point was defined as the maximum number of

counts/min allowed for bedtime rest in any 1-hour block. The cut-

point was set initially at 50 counts/min (CP0), which was

previously used as a rest cut-point for waist-worn Actigraph model

7164 monitor [31].

Activity cut point was defined as the minimum number of counts

per minute needed for the activity.

Window was defined as an optimal period searched for the

bedtime rest starting and ending points and was set at 60 min [14].

Decision tree development for analysis of minute-by-

minute accelerometer data. An automated decision tree was

developed from manually marked graphed data for the bedtime

rest when there was no other reliable measure. The tree was

designed to find blocks at least 1-hour long with a low average

activity level (less than 50 counts/min) and sporadic very short

periods of activity. The beginnings and ends of these blocks were

marked by transitions to sustained levels of higher activity, as

shown in Figure 1. Averaging across 1-hour blocks attenuated the

effect any spike in activity, while efficiently processing data. The

logic behind the rules was to find periods with minimal activity.

Using these rules, a four stages decision tree was developed

(Figure 2). In Stage 1, the algorithm calculates the average counts/

min for each 1-hour time block for the entire monitoring period

(e.g., 24 h). Next, the algorithm determines if the counts/min

average in the first 1-hour block is lower, equal to, or higher than

the tested lower bedtime rest cut point (CP1) value (Table 1). If the

block average is lower than CP1 (e.g. 200 counts/min for wrist),

the algorithm marks the 1st minute as a temporary beginning of

bedtime rest (TempBRstart) and proceeds to Stage 3. If the block

average is equal to or higher than CP1, the algorithm classifies the

block as activity and proceeds to Stage 2.

Stage 2 and 3 determine beginning or end of each bedtime rest

period. The algorithm initially searches the non-rolling 1-h

averages to identify a window in which the change occurred and

then searches minute-by-minute through the identified window to

detect the minute the change occurred. In Stage 2, the algorithm

compares the remaining 1-h blocks average counts/min calculated

in Stage 1 to CP1 and searches for a 2-hour block in which 1st hour

average is equal or higher than CP1 and the 2nd hour average is

lower than CP1. After finding a 2-h block, the algorithm searches

upstream from the block’s end for the first two consecutive 1-min

intervals with counts higher than CP0 (50 counts/min). The 1st

minute after the 2nd minute of the interval marks the beginning of

bedtime rest (TempRstart). If no two consecutive 1-min intervals

higher than CP0 are found, the 1st min of the 2-hour block is

marked as the beginning of the bedtime rest. The algorithm allows

for the theoretical possibility that the condition (i.e., counts (p1-

1).50 and counts (p1).50) is never met and creates an additional

box in the flow chart. Both boxes find a start time of the bedtime

rest but use different methods to achieve this goal. The ‘‘left’’ box

marks the beginning of the bedtime rest from a block meeting a

condition (p1-1,50 and p1,50). If this procedure should fail, the

‘‘right’’ box marks the 1st min of the block as a start time of the

bedtime rest. In Stage 3, the algorithm compares the average

counts/min in subsequent 1-h blocks to CP1 until it finds first 2-

hour block in which 1st hour counts/min average is lower than

CP1 and the 2nd hour count average is equal or higher than CP1.

When the block is identified, the algorithm searches the block

downstream for first two consecutive 1-min intervals with counts/

min higher than CP2 (e.g. 3,000 counts/min for wrist). The minute

before the 1st minute of the 2-min interval is marked as a

temporary bedtime rest end (TBRend). If no such 1-min intervals

are found, the last minute of the 2-hour block is marked as a

bedtime rest end (TBRend).

In Stage 4, the algorithm examines the length of the temporary

bedtime rest period. If the period is shorter than 1 hour, the

temporary bedtime rest end (TempBRstart) is discarded, and the

period is marked as activity. If the bedtime rest is equal or longer

than 1 hour, this period is marked as bedtime rest. The next

minute (TBRend+1) is marked as activity, and the algorithm repeats

Stage 2 with the remainder of the data in the dataset.

Commonly used computer algorithm. Automated com-

puter algorithm originally developed by Sadeh [18] was used to

assess bedtime rest. Minute-by-minute accelerometry data were

rendered as a binary indicator of ‘‘sleep’’ or ‘‘wake’’ [23].

Data analysis
The subjects were allocated to developmental and validation

groups using the coin flipper feature on publicly available website

Random.org. For each participant in the development group, the

entire monitoring period (,24 h) classified by the decision tree

algorithm, as either bedtime rest or activity was compared minute-

by-minute to the bedtime rest or active status obtained from the

room calorimeter. Time intervals (minutes) different from the

corresponding room calorimeter value (0 vs.1 or 1 vs. 0) were

categorized as false positive or false negative. The Receiver

Operating Characteristic (ROC) curves were plotted with various

cut points as a function of sensitivity and specificity in discrim-

inating bedtime rest from activity. Sensitivity was defined as the

probability of correctly classifying bedtime rest period and

specificity was defined as the probability of correctly classifying

activity period based on the room calorimeter-determined rest and

activity status. Specificity and sensitivity were considered equally

important. The area under each cut point (AUC) in the ROC

curve is the product of sensitivity and specificity. The AUC was

used to evaluate overall performance of each algorithm threshold

condition. For each combination of two cut points, medians of

sensitivity, specificity, and the AUC were calculated across subjects

in the development data set. The medians were used to plot the

ROC curves. The optimal cut points obtained from the

development set were used in testing of the validation set. The

2-fold validation method was used based on a relatively large

Separating Bedtime Rest from Activity Using Accelerometry
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sample size (n = 40 and 41) in the development and validation sets,

respectively. The final data set and program are available from the

corresponding author (MSB) upon request.

Statistical analysis
Wilcoxon signed rank test was used to test the difference in the

indices between selected threshold conditions. Data from waist

and wrist accelerometers were analyzed separately. Bedtime rest

calculated using decision tree and commonly used algorithm

(Sadeh’s) were compared using the Wilcoxon signed rank test since

the outcomes distributions were skewed. Results are presented as

means or medians, standard deviations (SD), and ranges. The

programming language R version 2.13.0 [32] was used to develop

and implement the decision tree and algorithms and to perform

the statistical analyses.

Results

Participants’ characteristics
There were no differences (all P.0.05) in personal character-

istics between the development and validation sets (Table 1).

Decision tree parameters
A representative plot illustrating accelerometry recordings from

the 24-stay in the room calorimeter is presented in Figure 1.

Bedtime rest and activity cut points for the waist-worn

accelerometer. The area under curve for the ROC curves

drawn using the medians of sensitivity and 1-specificity for

bedtime rest cut points from 10 to 30 counts/min, and activity

cut points from 400 to 600 counts/min are in Figure 3. The

bedtime rest cut points from 20 to 30 counts/min in combination

with activity cut points 400 or 500 counts/min resulted in the

median AUC.0.8 and the medians of sensitivity and specificity

.0.88 (Table 2).

Bedtime rest and activity cut points for the wrist-worn

accelerometer. The area under the ROC curves drawn using

the medians of sensitivity and 1-specificity for bedtime rest cut

points from 100 to 300 counts/min and activity cut points from

2,500 to 3,500 counts/min are in Figure 4. The bedtime rest cut

points from 250 to 300 counts/min in combination with activity

cut point 3,000 counts/min resulted in the median AUC.0.89

and the medians of sensitivity and specificity .0.94 (Table 2).

Optimal cut points
Sensitivity increased and specificity decreased with the increase

of the cut point values for both bedtime rest and activity. The

optimal bedtime rest cut point (CP1) was 20 counts/min for the

waist and 250 counts/min for the wrist-worn accelerometer. The

optimal cut points for activity (CP2) were 400 and 3000 counts/

min for the waist and the wrist-worn accelerometer, respectively.

Comparison between development and validation sets
Sensitivity, specificity, and AUC were no different (all p.0.05)

for both development and validation data sets for accelerometer

worn either on the waist or wrist (Table 3).

Comparison of the decision tree and commonly used
algorithm (Sadeh’s)

Accuracy of the decision tree to classify correctly bedtime rest

was significantly higher than commonly used automated algorithm

for both waist- worn (0.827 and 0.432, p,0.0001) and wrist-worn

accelerometer (0.924 and 0.808, p,0.0001). The data are

presented in Table 4.

Discussion

In this study, we developed and validated a decision tree

algorithm to separate bedtime rest and activity periods using waist

Figure 1. Representative data plot for one participant (17 years old male) from a 24-h stay in the room calorimeter. The solid line
represents Actigraph recordings (counts/min), and the thick horizontal dash line represents average counts/hour. The insets are representative
periods in which transition from activity to bedtime rest (A) and from bedtime rest to activity (B) occurred.
doi:10.1371/journal.pone.0092512.g001
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or wrist accelerometer data (minute-by-minute counts) for 10–18

year-old youth. We showed that the proposed cut points for the

accelerometer worn either on waist or wrist could provide .0.90

sensitivity and specificity for correct classification.

The need for establishing bedtime rest and activity cut points is

underscored by a recent progress in accelerometry technology

allowing wearing relatively nonintrusive monitors continuously for

several days. For example, the National Health and Nutrition

Survey (NHANES) is currently measuring physical activity using a

wrist-mounted accelerometer worn for seven days and 24 hours

per day.

The rationale for separating ‘‘bedtime rest’’ from ‘‘activity’’ is a

need for categorizing of 24-h accelerometry data into the activity

intensity categories. This approach is different from commonly

used ‘‘wake hours’’ protocols in which participants are asked to

wear a monitor from ‘‘waking up until going to bed, except during

bathing, showering, and water-related activities.’’ The ‘‘wake

hours’’ protocol approach is causing well-known concerns about

Figure 2. The decision tree for the classification of bedtime rest and activity accelerometer recordings. The decision tree algorithm was
using various sets of cut points for waist and wrist worn accelerometers.
doi:10.1371/journal.pone.0092512.g002
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adherence to the monitor wearing instructions and under or

overestimating time spent in various intensity categories.

In the present study, we used a term ‘‘bedtime rest’’ to define

periods of inactivity longer than 60 minutes and ‘‘activity’’ to

define periods that activity above the established cut point was

detected. In the current mainstream accelerometry literature,

terms used for the ‘‘rest’’ category range from ‘‘sleep’’ to ‘‘sleep-

period time’’ [33]. In addition, daytime rest (e.g., daytime naps) is

usually classified as sedentary activity. We thought that ‘‘bedtime

rest’’ could be a reasonable and at least temporary compromise

between various terms used in the physical activity behavior

literature. It would be beneficial if a consensus of the scientific

community could be reached in the near future as it was with the

term ‘‘sedentary behavior.’’

A new challenge in the process of analyzing continuous

accelerometry data (24 h) is to differentiate rest from sedentary

behavior [34]. Modest improvement in the accuracy of bedtime

rest versus sedentary behavior classification has the potential to

improve our knowledge of the relationships between PA, PA-

induced energy expenditure, and related health outcomes. Thus,

the proposed approach might be especially important in popula-

tion-based studies in which the sedentary behaviors and sleep

patterns are often linked to health consequences and longitudinal

risks for chronic diseases.

In this study, we used a decision tree approach to separate

activity periods from bedtime rest periods, and the ROC approach

for determining cut points that yielded the least misclassifications

of bedtime rest. The ROC curves that generated an optimal

bedtime rest cut points ranged from 20 to 30 counts/min for waist

and 250 to 300 counts/min for wrist. The selected optimal cut

points with the highest AUC were 20 counts/min for waist and

250 counts/min for wrist. The selected optimal cut points for the

activity with the highest AUC were 500 counts/min for waist and

2,500 counts/min for wrist. The performance of the classification

model was similar between the development and validation sets.

The study has several strengths. The room calorimeter data

allowed us to discriminate between bedtime rest and - activity

including sedentary behavior using objective measurements of EE

and mechanical work. We used a relatively large group (n = 81) of

male and female youth 10 to 17 years old with BMI ranging

from16 to 40 kg/m2. Random selection of the development and

validation sets allowed a robust performance of the model. We did

not find significant differences in criteria for the cut points’

selection between males and females. Although the differences

between males and females may emerge in larger studies, our

results do not suggest a need for gender-specific algorithms in

youth. However, it has been recognized that children and

adolescents have different patterns of physical activity than adults

(e.g. short bursts of vigorous activity). It has been shown also that

age-specific algorithms might result in more accurate assessment of

Table 1. Characteristics of study participants.

All participants (n = 81) Development Sample (n = 40) Validation Sample (n = 41) p valuea

Age (years) 13.4462.19 (10 to 17) 13.2362.15 (10 to 17) 13.6662.23 (10 to 17) 0.38

Height (m) 1.6160.09 (1.39 to 1.87) 1.6060.10 (1.39 to 1.79) 1.6260.09 (1.43 to 1.87) 0.69

Weight (kg) 67.48619.47 (38.6 to 129.5) 66.60619.13 (38.8 to 129.5) 68.33620.00 (38.6 to 125.7) 0.36

Body mass index [BMI] (kg/
m2)

25.7865.93 (16.32 to 44.03) 25.7765.85 (16.32 to 44.03) 25.7966.07 (16.40 to 38.54) 0.98

BMI percentileb 83.81620.75 (5.48 to 99.80) 85.56618.77 (14.69 to 99.80) 82.11622.62 (5.48 to 99.59) 0.46

Sex

Female 47 22 25

Male 34 18 16

Ethnicity

African American 22 10 12

White 58 30 28

Hispanic 1 0 1

Values are presented as mean 6 standard deviation and (range).
a-two-sample t-test,
b-BMI percentile – Body Mass Index (BMI) percentile calculated from the Centers for Disease Control (CDC) BMI-for-age growth charts.
doi:10.1371/journal.pone.0092512.t001

Figure 3. Waist-worn accelerometer data for the development
group showing tradeoff between sensitivity and specificity.
Each circle represents sensitivity (y-axis) and 1 – specificity (x-axis),
calculated using ROC analysis for a curve (not shown) of a respective set
of cut points. The solid circle [N] in the inset represents the selected
optimal cut points (counts/min) for bedtime rest (CP1) and activity (CP2).
The corresponding values are in Table 2 (bold). The solid square [&]
represents Sadeh’s algorithm (Table 3) and the solid triangle [m]
represents the validation set (Table 4).
doi:10.1371/journal.pone.0092512.g003
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physical activity than equations/algorithms not using age as a

factor.

The study has some limitations. We used a uniaxial Actigraph

that has been recently replaced by the triaxial models. However, it

has been documented that, despite apparent differences between

the uniaxial and triaxial accelerometers in the total number of

counts for some vigorous activities, differences did not impact the

activity intensity classification and indicated that the monitors

were comparable when assessing sedentary behavior in youth [35]

and older adults [36]. Applicability of our decision tree to other

accelerometers (e.g. Actical, RT3) should be tested in future

studies. The standardization of activity bouts performed in a room

calorimeter may not accurately represent individuals’ habitual

daily PA patterns. Youths usually perform mixed and combined

movements in their normal activities of daily living and different

characteristics of the same activity can be observed from the same

person. This could include variations in sleep patterns, rest and

some sedentary behaviors, causing misclassification of bedtime rest

as activity.

The accuracy of the decision tree could be likely improved by

using an automated search for thresholds and cut points. The

manual method we used integrated a combination of rounded

values from a range expected for bedtime rest and activity. It is

possible we could have achieved greater accuracy by using non-

rounded values, but the accuracy would not likely have practical

significance (e.g. 47 vs. 50 counts/min). The manuscript presents a

sample of the most relevant combinations tested (Table 2) and a

larger dataset is available in Supplemental data available upon

request.

The bedtime rest cut-point was set initially at 50 counts/min.

We have chosen this value because it is an established cut point for

rest/inactivity for children and adults [31,35]. An examination of

the data around marked transitions from activity to bedtime rest

confirmed that epochs below 50 counts/min were predominantly

associated with bedtime rest (data not shown).

Table 2. Medians for the area under curve (AUC), sensitivity, and specificity for various cut points (counts/min) tested in the
development sample set using Receiver Operating Characteristic (ROC) curves for accelerometer worn a waist or wrist during a
,24-h stay in a whole-room indirect calorimeter.

Waist Wrist

CP1 (counts/
min)

CP2 (counts/
min) AUC ± SDa Sensitivityb Specificityc

(CP1) (counts/
min)

CP2 (counts/
min) AUC ± SDa Sensitivityb Specificityc

10 400 0.83260.174 0.902 0.962 150 3500 0.89860.078 0.969 0.965

10 500 0.84760.175 0.922 0.962 175 2500 0.91560.084 0.961 0.983

10 600 0.84760.160 0.922 0.962 175 3000 0.92260.077 0.976 0.983

15 400 0.85960.149 0.928 0.959 175 3500 0.90960.072 0.981 0.964

15 500 0.85960.152 0.958 0.959 200 2500 0.92060.080 0.976 0.983

15 600 0.86060.148 0.958 0.954 200 3000 0.92960.076 0.982 0.982

20 400 0.85660.150 0.947 0.946 200 3500 0.92860.071 0.991 0.964

20 500 0.87260.154 0.983 0.946 225 2500 0.92460.069 0.981 0.982

20 600 0.87060.149 0.985 0.933 225 3000 0.92960.065 0.997 0.980

25 400 0.85260.150 0.961 0.924 225 3500 0.92860.061 0.998 0.964

25 500 0.86160.156 0.996 0.924 250 2500 0.94360.066 0.996 0.980

25 600 0.85560.152 0.996 0.908 250 3000 0.94360.063 0.999 0.980

30 400 0.85660.154 0.976 0.913 250 3500 0.93960.066 1.000 0.964

30 500 0.85660.157 0.996 0.909 275 2500 0.94360.066 0.996 0.980

30 600 0.85460.154 0.996 0.901 275 3000 0.93460.061 1.000 0.978

Bolded values are optimal cut points for bedtime rest (CP1) and activity (CP2).
a- Area under the ROC curve calculated as sensitivity multiplied by specificity before data were rounded;
b- defined as the probability of correctly classifying bedtime rest period;
c- defined as the probability of correctly classifying activity period.
doi:10.1371/journal.pone.0092512.t002

Figure 4. Wrist- worn accelerometer data for the development
group showing tradeoff between sensitivity and specificity.
Each circle represents sensitivity (y-axis) and 1 – specificity (x-axis),
calculated using ROC analysis for a curve (not shown) of a respective set
of cut points. The solid circle [N] in the inset represents the selected
optimal cut points (counts/min) for bedtime rest (CP1) and activity (CP2).
The corresponding values are in Table 2 (bold). The solid square [&]
represents Sadeh’s algorithm (Table 3) and the solid triangle [m]
represents the validation set (Table 4).
doi:10.1371/journal.pone.0092512.g004
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The decision tree developed in this study did not attempt to

assess sleep, which is most likely included in the bedtime rest

category. The sleep assessment requires a specific measurement

approach and/or algorithm. First automated sleep scoring

algorithm was developed by Sadeh and colleagues [18]. The

Sadeh’s algorithm was recently used for estimating sleep time in

free-living children wearing waist-warn accelerometer and the

results were compared with results from a wrist-worn accelerom-

eter [19]. However, the algorithm required a diary to evidence the

bed and wake time intervals and individual manual replacement of

data-point by researcher’s estimates drawn from raw data [19].

Our decision tree does not require either diary or any manual

replacement of data. Nevertheless, future research using data from

accelerometers worn for 24 h/day and several days should test the

decision tree in other age groups and validate it against

polysomnography. Any comparison is likely to be imperfect,

however, because polysomnography provides estimates of sleep

that go beyond inferring rest and activity patterns from

accelerometer movement data [37]. The advantages of accel-

erometry over polysomnography for many clinical and epidemi-

ologic studies include its convenience and the ability to record

activity in free-living. In this study, relative to room calorimeter

minute-by-minute data, the Sadeh’s algorithm overestimated rest

period and included potential sleep episodes outside of the bedtime

rest occurring mostly during daytime hours.

Data were collected for approximately 24 hours and longer

observation periods such as an additional day would provide more

data from daytime activities. However, the feasibility of conduct-

ing studies in the room calorimeter for a period longer than 24-h is

extremely difficult in youth. Nevertheless, longer (e.g. 7-day)

studies in the free-living environment usually require self-reported

bedtime rest and activity time markers obtained typically using a

self-reported measure that is likely less objective and precise than a

room calorimeter.

Physical activity estimates by the decision tree had a level of

error much lower than that considered clinically irrelevant (i.e.,

10%) in physical activity measurement studies [38]. However,

there is no standard established to facilitate interpretation of the

accuracy when estimating bedtime, wake/activity time, or sleep-

period time with accelerometry. In our decision tree, periods of

bedtime rest shorter than 60 min between beginning and end of

the period were categorized as ‘‘activity.’’ This approach could

cause that some periods with very low activity level (e.g., daytime

naps) will be classified as ‘‘activity’’ and in further analysis most

likely as a ‘‘sedentary’’ intensity category.

Despite these limitations, our decision tree can be used to

classify bedtime rest and activity in studies larger than the present

work and to rank the youth according to time spent in physical

activity categories. Obtaining such data has relevance to obesity

and metabolic syndrome among other health concerns, and

Table 3. Comparison of bedtime rest classification from accelerometer placed on waist or wrist in the development and validation
groups with classification obtained using whole- room indirect calorimeter.

Monitor placement Group AUCa Sensitivityb Specificityc p-valued

Waist Developmente, f 0.872 0.983 0.946 .0.05

Validationf 0.859 0.968 0.968

Wrist Developmente, g 0.943 0.999 0.980 .0.05

Validationg 0.923 0.975 0.967

a– Area under the ROC curve calculated as sensitivity multiplied by specificity before data was rounded;
b- defined as the probability of correctly classifying bedtime rest period;
c- defined as a probability of correctly classifying activity period;
d- Wilcoxon signed rank test;
e- automated computer algorithm;
f- cut points were 20 counts/min (bedtime) and 500 counts/min (activity);
g- cut points were 250 counts/min (bedtime) and 3000 counts/min (activity).
doi:10.1371/journal.pone.0092512.t003

Table 4. Comparison of bedtime rest classification from accelerometer placed on waist or wrist calculated using Sadeh’s algorithm
and the decision tree with classification obtained using whole- room indirect calorimeter.

Monitor placement Bedtime rest assessment method AUCa Sensitivityb Specificityc p-valued

Waist Algorithm (Sadeh)e 0.429 0.978 0.437 ,0.001

Decision treef 0.859 0.983 0.946

Wrist Algorithm (Sadeh)e 0.818 0.913 0.928 ,0.001

Decision treeg 0.943 0.999 0.980

a- Area under the ROC curve calculated as sensitivity multiplied by specificity before data was rounded;
b- defined as the probability of correctly classifying bedtime rest period;
c- defined as a probability of correctly classifying activity period;
d- Wilcoxon signed rank test;
e- automated computer algorithm;
f- cut points were 20 counts/min (bedtime) and 500 counts/min (activity);
g- cut points were 250 counts/min (bedtime) and 3000 counts/min (activity).
doi:10.1371/journal.pone.0092512.t004
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therefore it is of significant clinical importance to youth’s health

[39]

In conclusion, we found that the decision tree developed for a

waist- and a wrist-worn uniaxial accelerometer has good power for

accurate separation of time spent in bedtime rest from activity in

youth. Relative to the room calorimeter analysis of the same data,

the decision tree yielded an estimate that was comparably precise.

Application of the decision tree algorithms in population-based

studies may lead to better prediction of time spent in bedtime rest

apart from sedentary and active behaviors. More research should

be conducted to verify our decision tree and/or optimize in studies

with larger sample sizes and across settings with different

populations.
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