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Abstract

Background: Genome-wide association studies (GWAS) identify disease-associations for single-nucleotide-polymorphisms
(SNPs) from scattered genomic-locations. However, SNPs frequently reside on several different SNP-haplotypes, only some
of which may be disease-associated. This circumstance lowers the observed odds-ratio for disease-association.

Methodology/Principal Findings: Here we develop a method to identify the two SNP-haplotypes, which combine to
produce each person’s SNP-genotype over specified chromosomal segments. Two multiple sclerosis (MS)-associated genetic
regions were modeled; DRB1 (a Class Il molecule of the major histocompatibility complex) and MMEL1 (an endopeptidase
that degrades both neuropeptides and B-amyloid). For each locus, we considered sets of eleven adjacent SNPs, surrounding
the putative disease-associated gene and spanning ~200 kb of DNA. The SNP-information was converted into an ordered-
set of eleven-numbers (subject-vectors) based on whether a person had zero, one, or two copies of particular SNP-variant at
each sequential SNP-location. SNP-strings were defined as those ordered-combinations of eleven-numbers (0 or 1),
representing a haplotype, two of which combined to form the observed subject-vector. Subject-vectors were resolved using
probabilistic methods. In both regions, only a small number of SNP-strings were present. We compared our method to the
SHAPEIT-2 phasing-algorithm. When the SNP-information spanning 200 kb was used, SHAPEIT-2 was inaccurate. When the
SHAPEIT-2 window was increased to 2,000 kb, the concordance between the two methods, in both of these eleven-SNP
regions, was over 99%, suggesting that, in these regions, both methods were quite accurate. Nevertheless, correspondence
was not uniformly high over the entire DNA-span but, rather, was characterized by alternating peaks and valleys of
concordance. Moreover, in the valleys of poor-correspondence, SHAPEIT-2 was also inconsistent with itself, suggesting that
the SNP-string method is more accurate across the entire region.

Conclusions/Significance: Accurate haplotype identification will enhance the detection of genetic-associations. The SNP-
string method provides a simple means to accomplish this and can be extended to cover larger genomic regions, thereby
improving a GWAS's power, even for those published previously.
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Introduction events are important for MSS pathogenesis, genetic susceptibility is
critical. Indeed, because genetic susceptibility seems necessary for
MS to develop [9], because the necessary environmental factors
seem to be “population-wide” exposures [9], and because only
about 2% of the population is genetically susceptible to getting MS
[9], genetics 1s, by far, the greatest single determinant of disease. In
addition, this genetic susceptibility to multiple sclerosis (MS) seems
to involve multiple genetic loci [10-16]. This fact has become

Multiple sclerosis (MS) has a complex etiological basis, which
mvolves both the genetic makeup of an individual and their
environmental experiences [1-8]. With regard to the importance
of genetics, it is notable that the life-time risk of disease for an
individual from northern Europe or Canada is about 0.1% [2].
The risk in individuals who have an affected family member
increases in rough proportion to the amount of shared genetic particularly apparent from the very large genome-wide associa-
information between the affected relative and the individual [2-8]. tions studies (GWAS) that have been recently published
Thus, third degree relatives (12.5% genetic similarity) such as first [14,15,17-21].
cousins, have a risk less than 1%; second degree relatives (25%

R . . The largest of these was a multicenter, multi-country GWAS
genetic similarity) such as aunts and uncles have a risk of about 1

mvolving tens of thousands of cases and controls [14,15], which
identified single-nucleotide polymorphisms (SNPs) in about 100
genomic regions that were MS-associated. With notable exception
of some SNPs near the DRB1 locus on chromosome 6, however,
the odds ratios (OR) for almost all of these associations was quite

2% and first degree relatives (50% genetic similarity) such as
siblings, parents, and children of an MS proband have a risk of
approximately 2-5%. By contrast, in monozygotic-twins of an MS
proband (100% genetic similarity) the risk increases to about 25—
30% [2-8]. From this, it is clear that although environmental
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low — i.e., mostly between OR =1.1 and OR =1.2 [14,15]. This
could be due to these other genetic factors having a smaller impact
on MS-susceptibility compared to the DRBI1 locus [14,15].
However, it could also be due to the same SNP being present
on more than one haplotype at a particular locus. If so, this may
reduce substantially the measured OR for the association of a
particular genomic region with the disease [11].

As a result, several haplotype-based approaches have been
explored and are thought to improve the statistical power for
detecting genetic associations, especially for rare causal alleles
[22]. One early approach was a simple algorithm, which identified
individuals who had unambiguous haplotypes of DNA sequences
because they were either homozygous for every nucleotide in the
sequence or because they were heterozygous at only a single site
[23,24]. For unresolved individuals, the algorithm then attempted
to pair the known haplotypes with “novel” haplotypes to produce
the individual’s likely genotype. If such a pair was possible, the
new ‘“novel” haplotype was presumed to be present in the
population. Despite the simplicity of this method, however,
probabilistic approaches (using maximum likelihood estimation
or Bayesian analysis) have become the preferred method for
identifying likely haplotypes [25-28]. In part, this has been due to
expressed concerns that the simple algorithm yields haplotypes,
which depend upon the order of data entry [25-27], that it
depends upon the presence of homozygotes or single site
heterozygotes to get started [24-27], that it identifies only the
minimum number of haplotypes [26,27], that it is more sensitive to
departures from Hardy-Weinberg equilibrium (HWE) than other
methods [27], and that it results in more errors compared to
probabilistic approaches [27].

Nevertheless, the simplicity of the approach is notable and it
seems likely that refinements in the method might overcome many
of these concerns. It is the purpose of this paper to explore the
utility of using an alternative analysis method to define the
haplotypes that are present at a particular genetic locus within the
population and to test the ability of such specific haplotypes to
detect disease-associations.

Materials and Methods

Study Participants

The study cohort has been described in detail previously [21].
Briefly, the cohort was assembled as a prospective multicenter
effort, which began in 2003. Three MS centers participated both
in patient recruitment and in the collection of biological
specimens. Two of the centers (Vrije Universiteit Medical Center,
Amsterdam; and University Hospital Basel) were in Europe and
one (University of California, San Francisco) was in the United
States (US). This study consisted primarily of patients with a
northern-European ancestry. Although all clinical MS-subtypes
were included, most had a relapsing-remitting (RR) onset. The
diagnosis of RRMS (or other subtypes of MS) was made utilizing
internationally recognized criteria [29,30]. All participating
centers used identical inclusion and diagnostic criteria. Control
subjects were matched with cases by age and gender. The
Committee on Human Research at each of the participating
centers approved the protocol and informed consent was obtained
from each study participant.

Genotyping and Quality Control

The genotyping and quality control methods utilized for the
analysis of this cohort have been previously described in detail
[21]. Briefly, genotyping was done at the Illumina facilities using
the Sentrix HumanHap550 BeadChip. This analysis resulted in
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genotype information about 551,642 SNPs in 975 cases and 882
controls. DRB1#1501 genotyping was performed using a validated
gene-specific TagMan assay [21] and was only undertaken for
participants from the US.

Genetic Loci

Although several of the MS-related genetic loci were screened
preliminarily (including an intergenic region), two loci were
selected for detailed analysis, both of which had been previously
associated with MS in a large GWAS [14]. The first locus was the
DRBI locus on Chromosome 6, for which the susceptibility allele
(DRB1#¥1501) is known [19,31-33]. DRB1 encodes a protein (a
Class II molecule of the major histocompatibility complex), which
binds foreign peptides derived from extracellular proteins for
presentation to thymic derived lymphocytes (T-cells). It is
expressed on the surface of antigen presenting cells such as
dendritic cells, bone marrow derived lymphocytes (B-cells) and
macrophages. This locus was picked because, for the US
population, both the DRB1*1501 status and the SNP-information
was available. The other locus (MMELI1) on Chromosome 1 was
chosen because it was the first non-DRB1 MS-associated gene
listed by the International Consortium [14]. MMELI is a member
of the membrane (M13) metallo-endopeptidase family and is
involved in the degradation of both neuropeptides and B-amyloid
[34]. As it might potentially relate to MS risk, however, the
function of this protein is not well defined.

Statistical Methods

To simplify program development, only eleven SNPs were used
from each genomic region. The choice of eleven SNPs was
arbitrary. Preliminary exploration demonstrated that the method
could define haplotypes using anywhere between 3 and 24 SNPs
although, in theory, there is no upper limit to the method as long
as there are a sufficient number of homozygotes and single-site
heterozygotes in the population. Nevertheless, for the purpose of
this study, the eleven SNPs were chosen because they flanked both
the most significantly associated SNP and the putative gene of
interest (Figure 1). Each SNP was labeled sequentially from (n1) to
(nl1) based on its chromosomal location (Table 1; Figure 1). The
eleven SNPs, which were analyzed at the DRBI locus, did not
include the four tagging SNPs (rs3129934, rs9267992, rs9271366,
and rs3129860) identified previously [21] because these particular
SNPs were not available in this dataset. Moreover, the MMELI

A

n5-n6 n9-n11
n1-n4 n7 n8
111 - - [ 1l

DRB1
B
n6-n7 n9-n10

n1 n2 n3 n4 n5 n8 n11
Ll gy | |l | 111

MMEL1

Figure 1. The positioning of the different SNPs used for the
SNP-string analysis relative to the putative gene of interest for
the DRB1 locus (A) and the MMEL1 locus (B).
doi:10.1371/journal.pone.0090034.g001
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region was not identified as MS-associated by this earlier study
[21].

The DRBI cluster spans a length of 160.7 kilobases (kb) of DNA
and the MMELI cluster spans 228.6 kb (Table 1). Of note, both
clusters have a large gap in SNP-coverage of approximately
137 kb between SNPs (n7) and (n8). For each SNP-cluster, the
SNP-information for each individual was converted into an
ordered set (the subject-vector) of eleven ternary numbers (0, 1,
or 2) based on whether they had zero, one or two copies of a
particular SNP-variant for each sequential SNP in the cluster
(these SNP-variants were designated according to the number of
copies of the minor allele - in the control population - at each
location). For example, the 5% subject in the database had the
DRBI subject-vector of (20001111110), which indicated that he
possessed 2 copies of (nl), 0 copies of (n2), 0 copies of (n3), and so
forth. Because, essentially, all SNPs in the genome are binary,
these subject-vectors are composed of two haplotypes, which either
do or don’t have a particular SNP variant at each of the SNP
locations. For the purpose of the present analysis, SNP-strings
were vectors, defined as those specific ordered sets of eleven binary
numbers (0 or 1), representing the two haplotypes (over the entire
cluster span), which combined (added) to produce each observed
subject-vector.

As with Clark’s method [23,24], those SNP-strings that were
unambiguously present in the population were identified in two
ways. The first was to identify all subject-vectors, which consisted
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Table 1. SNPs used for the SNP-String Analysis.

Gene Label SNP* Chromosome Location Distance*

DRB1
nl 1s2239804_(G) 6 32519501 —63315.36
n2 rs7192_(T) 6 32519624 —63192.36
n3 s2395182_(G) 6 32521295 —61521.36
n4 rs3129890_(C) 6 32522251 —60565.36
n5 rs9268832_(T) 6 32535767 —47049.36
n6 rs6903608_(C) 6 32536263 —46553.36
n7 rs2395185_(T) 6 32541145 —41671.36
n8 rs477515_(T) 6 32677669 94852.64
n9 1s2516049_(G) 6 32678378 95561.64
n10 rs556025_(A) 6 32678858 96041.64
nll 1s2858870_(G) 6 32680229 97412.64

MMEL1
nl rs2234167_(A) 1 2522390 —99877.36
n2 rs6667605_(T) 1 2534942 —87325.36
n3 rs734999_(T) 1 2545378 —76889.36
n4 rs3748816_(C) 1 2558908 —63359.36
n5 rs12138909_(T) 1 2570900 —51367.36
né rs11590198_(A) 1 2584062 —38205.36
n7 1s3890745_(G) 1 2585786 —36481.36
n8 rs4648499_(A) 1 2722807 100539.64
n9 rs4648356_(A) 1 2732322 110054.64
n10 rs2377041_(A) 1 2736485 114217.64
nll rs10909880_(C) 1 2750961 128693.64

*Nucleotide base (of the pair at each SNP), which is coded as having 0, 1, or 2 copies, is shown in parentheses.

*Distance from the center of each SNP-cluster. The DRB1cluster spans 160.7 kb and includes a gap of 136.5 kb between SNPs (n7) and (n8). The MMEL1 cluster spans

228.6 kb and includes a gap of 137.0 kb between SNPs (n7) and (n8).

doi:10.1371/journal.pone.0090034.t001

entirely of zeros (0s) and twos (2s). These individuals must be
homozygous for the same SNP-string. For example, the 6" subject
in the database had a DRBI1 subject-vector of (02202200000),
which indicated that she possessed two copies of the
(01101100000) SNP-string. The second method was to identify
all individuals who were single SNP-heterozygotes (i.e., had
subject-vectors consisting of all Os and 2s except for having a 1 at a
single SNP location). These individuals must have identical SNP-
strings except for the single location where one SNP-string had a 0
and the other had a 1. For example, the 147™ person in the
database had a DRBI subject-vector of (20000022221), which
could only arise from the combination of the SNP-strings
(10000011110) and (10000011111). In this manner, a list of most
common SNP-strings in the population was compiled (Figure 2).
Moreover, the relative frequency of the homozygous representa-
tion of each SNP-string in the cases and controls provides an
estimate of the underlying SNP-string frequency in each popula-
tion (Figure 3).

Once the list of these unambiguous “identified” SNP-strings
was compiled, the observed subject-vectors were decomposed into
those combinations of the unambiguous “identified” SNP-strings,
which could (potentially) have produced the observed subject-
vector. For each person, one of three outcomes was possible. First,
it might be the case that there was only one (unique) combination
of two unambiguous “identified” SNP-strings, which could give
rise to the observed subject-vector (Figure 2). Second, it might be
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Figure 2. Graphical depiction of the SNP-string method presented here (see text). Subject-vectors (strings of Os, 1s, and 2s) are searched
for homozygous and single-site heterozygus individuals (A). These “unambiguous” combinations are decomposed into their constituent
“unambiguous” SNP-string combinations and then a list of all the unambiguous SNP-strings that have been “identified” is compiled (A). Following
this, the entire subject-vector list is decomposed into the possible combination categories (B). The “indeterminate (unique)” decompositions are used
to “identify” additional SNP-strings, which are then added to the “identified” SNP-string list (B and C). The entire decomposition is then repeated until
either no further SNP-strings can be added to the “identified” list or more than 4 decompositions have taken place. The final list are considered
“identified” SNP-strings (C and D). Unique decompositions (of “identified” SNP- strings) and unambiguous combinations are used to calculate the
allellic frequencies used for resolving the “conflicted” decompositions (E). Following this, a list of all possible addtional “novel” SNP-strings is
compiled from the “indeterminate (conflicted)” decompositions (F). This list is then combined with the “identified” list to make the “complete” SNP-
string list (F) and the decomposition repeated. By definition, using this “complete” list, every subject-vector will be either an unambiguous
combination or a unique or conflicted decomposition. Allellic frequencies are recalculated from the unique decompositions and unambiguous
combinations and these frequencies used to resolve the conflicted decompositions. Those SNP-strings that never selected (i.e., have a zero final
frequency) are then dropped from the “complete” list and the decomposition repeated until all SNP-strings on the “complete” list have a non-zero
final frequency (G). In the final step, persons with uncommon alleles (selected in less than 9 individuals) are then reassessed for alternative possible
combinaitions with “novel” SNP-strings, these novel SNP-strings are added to the “complete” list, and the process described above is again repeated
until all SNP-strings on the “complete” list have a non-zero final frequency and the SNP-string composition of every subject-vector has been selected.

doi:10.1371/journal.pone.0090034.g002

that there was more than one combination of two unambiguous
“identified”” SNP-strings, each of which could give rise to the same
observed subject-vector. In this second case, the decomposition of
the observed subject-vector was said to be “conflicted” (Figure 2).
And third, it might be that there was no combination of
unambiguous “identified” SNP-strings, which could give rise to
the observed subject-vector. In this last case, an additional “novel”
(not unambiguously identified) SNP-string (or strings) must be
present in the population.

Because all such “novel” SNP-strings are (presumably) low in
frequency compared to the unambiguous “identified”” SNP-strings,
it 1s very likely that, when they occur, they will be heterozygous
with one of the unambiguous “identified” SNP-strings. In many
cases, two or more “‘novel” SNP-strings could, potentially, have
combined with an unambiguous “identified” SNP-string to
produce the same observed subject-vector. In these cases, the
“novel”” SNP-string, which actually underlies the observed subject-
vector was sald to be in an “indeterminate” (conflicted)
combination (Figure 2). In these circumstances, every such
“legitimate” haplotype (i.e., one which consisted of a string of
zeros and ones) was added to the growing list “possible”
alternative haplotypes. The SNP-strings underlying a subject-
vector could also be “indeterminate” if the observed subject-vector
could only be formed by the combination of two “novel” SNP-
strings. In some cases, however, only a single possible “novel”
SNP-string could be combined with an unambiguous “identified”
SNP-string to produce the observed subject-vector (Figure 2).
These were referred to as “indeterminate” (unique) combinations
(Figure 2). In these cases, it is very likely that the “novel” SNP-
string (so identified) actually occurs in the population. Therefore,
after searching each “indeterminate” subject-vector for these
unique “novel” SNP-strings, this set of newly-discovered “novel”
haplotypes was added to the set of unambiguous “identified” SNP-
strings to form a new list of “identified” SNP-strings. Then the
entire set of observed subject-vectors was again decomposed using
this new “identified” SNP-string list. After compiling this new
“identified” SNP-string list, the decomposition of the subject-
vectors into their constituent SNP-strings was repeated. As
expected, compared to the first decomposition using only
unambiguous “identified” SNP-strings, this decomposition result-
ed in a greater number of conflicts being found.

Additional rounds of the same procedure were repeated until no
further SNP-strings could be added to the “identified”” SNP-string
list or until more than 4 iterations were performed. Generally,
however, this process was complete after 2 or 3 cycles. After
screening ~25,000 subject-vectors using this procedure, only one
individual had a genotype (subject-vector) which could not be
decomposed into a pair of haplotypes, in which at least one of the
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pair was an “‘identified” SNP-string. This single individual,
therefore, must either have had a heterozygous state with two
unidentified “novel” SNP-strings or an error was made in their
genotyping.

For the present analysis, whenever the SNP-string identification
was conflicted, these conflicts were resolved based on the relative
probabilities of the different allelic combinations in the population.
These probabilities, in turn, were estimated from the SNP-string
frequencies for all non-conflicted identifications (Figure 2; Table 2).
For example, the 7™ person in the database had a DRBI subject-
vector of (11111011110). This could have arisen from the
combination of either the (a7-a8) or the (al3-a20) SNP-strings.
The probability of the latter combination (determined from the
non-conflicted identifications in the whole population), however,
involves two very rare SNP-strings compared to the former
(Table 2) and, in this case, there is 50-fold difference in likelihood.
Consequently, this particular conflict was resolved in favor of the
(a7-a8) combination. In rare cases, there was little difference in
likelihood between possible haplotype pairs although, more
commonly, the likelihoods differed by an order of magnitude (or
more) between pairs. Therefore, for the purposes of the present
analysis method, all conflicts were always resolved in favor of the
most likely SNP-string combination.

We also generated a so-called “complete’” SNP-string list. To do
this we combined the lists of “possible” and “identified” SNP-
strings, which had been compiled during the above analyses. We
then decomposed the subject-vectors using the entire combined
list. Again conflicts were resolved using the product of the
estimated frequencies derived from the non-conflicted SNP-string
identifications. For the “novel” SNP-strings, we assigned each the
nominal estimated frequency of half the smallest possible
frequency for an “identified” SNP-string (i.e., half of one divided
by the number of unambiguous or non-conflicted SNP-strings in
the population). Following the development of this “complete” list,
the decomposition was repeated. Again, if a particular SNP-string
was never observed in a non-conflicted combination, the estimated
frequency was taken half the smallest possible frequency.
However, for every SNP-string that was observed in a non-
conflicted combination, its estimated frequency was taken as that,
which had actually been observed. Using this “complete” list,
100% of the subject-vectors could be resolved into haplotypes.
Following this “complete” analysis, those “novel” SNP-strings,
which accounted for more than 1% of the non-conflicted
identifications, were added to the final “identified” SNP-string
list. Also, using this “complete” list, the decomposition was redone
iteratively, eliminating those haplotypes that were never selected
(i.e., which had a zero-frequency in both cases or controls), until all
remaining haplotypes on the “complete” list had a non-zero final
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doi:10.1371/journal.pone.0090034.g003

frequency and 100% of the subject-vectors could be decomposed
into their constituent haplotypes (Figure 2).

Following, this penultimate decomposition, we reassessed those
individuals who carried haplotypes that were found in fewer than 9
individuals. For these individuals, we created a new “possible”
haplotype list, consisting of all of those “legitimate” alternative
haplotypes, which could have combined with an “identified”
haplotype to form the observed subject-vector and, thus, could
have substituted for the very rare haplotype, which had been
selected by the above procedure. The number nine was chosen
because, for haplotypes having this expected number of observa-
tions (or more), there is greater than a 99.9% chance (Poisson
distribution) that, at least, one example would have been found in
the data. Also, the inclusion of a greater number of haplotypes on
the “possible” list only serves to make the inadvertent exclusion of
a rare (but present) haplotype less likely. The new list of “possible”
haplotypes was added to the final “complete” list and, once again,
the decomposition was redone iteratively, eliminating those
haplotypes that were never selected, until all remaining haplotypes
on the final “complete” list had a non-zero final frequency and
100% of the subject-vectors were decomposed. For both the
DRBI and MMELI loci, this last iterative decomposition made no
difference to the final “complete” SNP-string list. The final SNP-
string frequencies (Table 3) were calculated following this last
“complete” decomposition and following the final selection
process.

We compared our method of phasing to the commonly-used
SHAPEIT-2 method, which has been validated on several large
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datasets [35]. The details of this method are described elsewhere
[35,36,37]. Briefly, the SHAPEIT-2 method combines features of
SHAPEIT [36] and Impute2 [37] to enhance performance.
SHAPEIT uses a Markov model to separate the haplotype-space
for a given individual [36] from the set of all possible haplotype
pairs consistent with a person’s genotype. Transition probabilities
are estimated in local windows of a given size with a “surrogate
family” approach used to select the set of templates with the
smallest Hamming distances because those at short distances
presumably share recent ancestry with the individual under
consideration [37]. The SHAPEIT-2 method has been shown to
be superior to several other methods based on its performance
using several large-sample, whole-chromosome data sets from a
range of SNP genotyping chips [35].

For the purposes of our analysis, we compared the haplotype
predictions using the two phasing methods. The actual haplotype
frequencies in the population were estimated in three manners.
The first (Figure 3), was to determine the most frequent haplotypes
based on the number of homozygotes in the sample population.
Because both the case and control populations are at HWE, at
least with respect to the DRBI locus (9), the different haplotype
frequencies can be estimated as the square root of the homozygotic
frequencies [9,38]. This method is independent of which phasing
method is used. The second method was to use the haplotype
frequencies, estimated from all non-conflicted haplotypes found
using the phasing method presented in this study (Tables 2 and 3).
These frequencies were estimated jointly, combining cases with
controls, although they are presented separately in Table 2. The
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Table 4. SNP-Strings “identified” by the SNP-String Analysis*.

SNP-Strings

DRB1 Locus

Label Unambiguous SNP-Strings Label Additional SNP-Strings
al 00000000000 al9 10000010010
a2 01101100000 a20 10000010000
a3 10000100000 a2l 10000011101
a4 01011000000 a22 00000011101
a5 01010000000

a6 10000011111

a7 10000011110

a8 01111000000

a9 10011100000

alo 10001100000

all 01001000000

al2 01011100000

al3 01111001110

al4 00000010000

al5 01100100000

alé 00000011110

al7 01101000000

al8 10000000000

MMEL1 Locus

Label Unambiguous SNP-Strings Label Additional SNP-Strings
al 01110110101 al7 00000101000
a2 01110010101 al8 01111010001
a3 00000000010 al9 01010000001
a4 11100001001 a20 00000001000
a5 01111010101 a2l 11000000010
a6 00000101001 a22 00010110101
a7 00000001001 a23 01110000011
a8 00000000011 a24 11110010101
a9 11100001000

alo 01110110100

all 01100001001

al2 01111010100

al3 11100000010

al4 01010000000

al5 01100000010

alé 00100000010

doi:10.1371/journal.pone.0090034.t004

third method was to estimate haplotype frequencies as predicted
by the SHAPEIT-2 output. All three of these methods provided
substantially similar estimates for the relative frequencies of the
most common haplotypes (Figure 3; Tables 2 and 3). We analyzed
discrepancies between SHAPEIT-2 and our phasing algorithm by
using these predicted allele frequencies to estimate the likelihood of
individual phasing predictions (defined as the product of frequen-
cies of the two phased haplotypes identified) by each algorithm.
Subjects were then grouped into homozygous carriers, hetero-
zygous carriers and non-carriers of a particular SNP-string and

PLOS ONE | www.plosone.org

*Only “identified” SNP-strings are displayed in the Table (see text). Other “novel” SNP-strings, which had a frequency that rounded to 0 and are not included.

tested for differences in the SNP-string distribution between
patients and controls. ORs were calculated separately from
homozygous and heterozygous frequencies (with non-carrier
frequencies as reference) and the significance of any distribution
shift assessed by a Chi Square test with 1 degree of freedom. These
were compared to similar calculations for the SNPs considered
individually and, in the case of the DRBI locus, to the same
calculations for the actual distribution of the DRB1*1501 allele.
Because the European and American data were acquired
independently and in different geographic regions but were

April 2014 | Volume 9 | Issue 4 | €90034



SNP-Strings

otherwise similar, these two data sets were used separately to assess
the replicability of any findings. Only the American data
contained both the SNP-status and the DRB1*1501 status so that
only this data could be used to correlate SNP-haplotypes with a
known susceptibility genotype.

Results

The results of the SNP-string analysis are presented separately
for the DRB1 and the MMELLI loci.

The DRB1 Cluster
Demographic data. For the DRBI locus 18 SNP-strings
were “identified” unambiguously in the population and another 3

were “identified” by the secondary analysis (Table 4). One further

PLOS ONE | www.plosone.org

10

Table 5. Families of “identified” SNP-Strings.

DRB1 Locus

Label Family #1 Label Family #3

a6 10000011111 al 00000000000

a7 10000011110 a3 10000100000

ale 00000011110 a9 10011100000

a2l 10000011101 al0 10001100000

a22 00000011101 al4 00000010000
al8 10000000000

Family #2 al9 10000010010

a2 01101100000 a20 10000010000

a4 01011000000

a5 01010000000 Family #4

a8 01111000000 al3 01111001110

all 01001000000

al2 01011100000

al5 01100100000

al7 01101000000

MMEL1 Locus

Label Family #1 Label Family #3

a3 00000000010 al 01110110101

a6 00000101001 a2 01110010101

a7 00000001001 a5 01111010101

a8 00000000011 al0 01110110100

al7 00000101000 all 01100001001

alé 00100000010 al2 01111010100

a20 00000001000 al5 01100000010

a22 00010110101 al8 01111010001
a23 01110000011

Family #2

a4 11100001001 Family #4

a9 11100001000 al4 01010000000

al3 11100000010 al9 01010000001

a2l 11000000010

a24 11110010101

doi:10.1371/journal.pone.0090034.t005

SNP-string was added to the “identified” list because its observed
frequency was 2% following the “complete” analysis using all
“possible” and “identified” SNP-strings (Table 2). Of these 22
“identified” SNP-strings, however, only (al), (a2), (a3), (a4), (ab),
and (a7) were present in sufficient numbers to have more than 1
homozygous individual (Figure 3). SNP-strings (a9) and (al3) were
homozygous in 1 individual each. The “complete” SNP-string list
included an additional 10 SNP-strings, although only two of these
- (00000011111); or (a23) and (01010100000); or (a32) - were
selected in more than a single individual. Moreover, each of these
10 additional SNP-strings on the “complete” list had a final
estimated frequency, which rounded to zero.

Of the 1857 participants in this study, 54 had missing data in
the DRBI region and, therefore, their subject-vectors could not be
constructed. Of the remaining 1803 subjects, 652 (36%) had

April 2014 | Volume 9 | Issue 4 | 90034
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Table 9. Contingencies for HLA DRB1* Status and (a2)-haplotype Status from SNP-String Phasing Method*.

SNP-string (a2) Status

HLA DRB1*1501 Status

0-Copies 1-Copy 2-Copies
0-Copies 573 6 0
1-Copy 5 264 0
2-Copies 0 0 39

Correlation of (a2)-haplotype status with HLA DRB1*1501=0.981.

doi:10.1371/journal.pone.0090034.t009

unambiguous SNP-string identifications. Also, using the final
“complete” SNP-string list for the decomposition, 1,084 of the
DRBI1 SNP-strings identifications were non-conflicted, whereas
719 were conflicted. Of the conflicted identifications, however,
only selected SNP-strings were involved in the conflict. Thus, for
example, the (a2) SNP-string was involved in only 256 of the
conflicts. All subject-vectors could be explained either as a
combination of two of the 22 “identified” SNP-strings or as a
combination of a “novel” SNP-string with one of the 22
“identified” SNP-strings. In no circumstance, was there a need
to postulate two “novel” SNP-strings to explain any subject-vector.
Thus, for the 3,606 haplotypes present in the study population, the
set of “identified” SNP-strings set (see Table 4) was sufficient to
explain 3,597 or 99.8% of the haplotypes, which are present in the
population. In addition, this set was adequate to explain
completely all but 20 (98.9%) of the subject-vectors. The
“complete” set of SNP-strings was sufficient to explain 100% of
the subject-vectors.

In addition, the SNP-strings found at the DRB1 locus seemed to
be related evolutionarily. Thus, these SNP-strings could be divided
into four apparent “families” (Table 5), which are related in the
sense both that they each share certain structural features in
common and that every family member can be derived by the
change of a single SNP (0 to 1 or vice versa) from some other
family member (i.e., each member had a Hamming distance of 1
from some other family member). For example, family #1 all had
zeros for SNPs (n2-n6) and had ones for SNPs (n7-n9). Family #2
all had zeros for SNPs (n1 & n7-nll) and a one for SNP (n2).
Family #3 all had zeros for SNPs (n2, n3, n8, n9 & nl1). Family
#4 consisted of a single member (al3), which could have resulted
from a cross-over event between SNPs (n7 & n8) of SNP-strings (a7
& a8) to produce SNP-strings (al3 & a20). If so, this event
occurred within the longest stretch of untagged DNA at this locus
(Figure 1) and interconnects the DRB1 SNP-string families.

Genetic associations. The status of the major susceptibility
allele (DRB1*1501) was known for the US-population. The OR of
disease for having one-copy of this allele was 3.12 (p<<0.0001)
whereas the OR for having two-copies was 9.24 (Table 6). This is
in keeping with the previously reported observation that both the
control populations and the MS populations are in HWE with
respect to the 1501 allele [9]. Thus, the weighting scheme for
homozygous non-carriers, heterozygous carriers, and homozygous
carriers of this allele, at least for the US population, is geometric
(1, w, w2), as it must be for the cases to be in HWE [9,38]. This
type of weighting has also been referred to as co-dominant or
allelic [38]. The frequency of the DRB1*1501 allele in controls
was 10% (Table 2).

Only SNPs (n2, n3, n5, & n6) were positively correlated with
DRBI1*¥1501 status (Table 6). All other correlations were negative
(Table 6). The highest correlation observed was for (n3) and was

PLOS ONE | www.plosone.org
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*Including the change in status for the one subject who was re-typed for DRB1*1501 and found to be heterozygous instead of homozygous (see text).

(r=0.78). The other positive correlations ranged from 0.57 to 0.59
(Table 6). The ORs for possessing 1 copy of these SNPs ranged
from 1.72 to 2.41 whereas, for possessing 2 copies of each SNP,
the ORs ranged from 2.74 to 4.08 (Table 6). All of these
associations were highly significant although the observed ORs
were substantially below those for the actual DRB1*1501 status,
particularly for the homozygous association (see above).

By contrast, the SNP-string analysis provided a much closer
correspondence to both MS status and DRBI1*1501 status
(Table 7). The OR (of disease) for possessing 1 copy of the (a2)
SNP-string was 3.12 whereas for 2 copies of this SNP-string, the
OR was 6.94 (p<<0.0001). The allelic frequency of (a2) in controls
was 12% (Table 3). The (a2) status was also highly correlated with
DRBI1#1501 status (r=0.979) within the US-population where the
DRBI status was known (Table 9). As shown in Table 8, the OR
observed in the US-population for possessing 2 copies of the (a2)
SNP-string was substantially larger (OR =8.95), in keeping with
the known distribution of DRB1*1501 in this population. In
Europe it was somewhat less (OR =5.68) although the difference
was not statistically significant and, in the European population,
the actual DRB1*1501 distribution is not known. By contrast, the
disease risks for heterozygotes from Europe (OR = 3.20) and from
the US (OR =3.05) were quite similar between regions, as were
the allelic frequencies in both cases and controls (Table 3).

In addition, from Table 7, it appears that SNP-strings (al, a3,
a7, & a8) may be protective. Nevertheless, this is an illusion. When
the (a2) SNP-string is removed from the analysis, the apparent
protective effect vanishes. Thus, the protective effect of these SNP-
strings lies in the fact that carriers are less likely to also carry the
(a2) SNP-string.

Closer examination of the 12 individuals who accounted for the
non-perfect correlation of (a2) status with DRB1*¥1501 status
revealed that only five (a2) SNP-string carriers (an a2-a7; an a2
a27; and three a2-a3 heterozygotes) did not also carry the 1501
allele. In addition, one individual (an a2-a2l heterozygote) was
homozygous for the 1501 allele, which implies that the (a21) SNP-
string can also carry this allele. However, the (a21) SNP-string is
very different from the (a2) SNP-string (Table 5). The (a21) SNP-
string is from a separate family and differs from (a2) in 9 out of the
11 SNP-positions (Table 5). It is, therefore, hard to rationalize
(short of invoking some double crossover event or exon-exchange)
whereby this linkage would be possible. Moreover, for every other
(a21)-carrier, this SNP-string either didn’t harbor the 1501 allele
or the individual was both an (a2-a21) and a DRBI1*1501
heterozygote so that, other than in this one instance, it was never
necessary to posit that an (a21) SNP-string harbored the 1501
allele. It seemed plausible, therefore, that an error had been made
in the typing of this subject’s DRB1 status. On this basis, the
typing for this individual was rechecked and, on repeat typing this
individual was found to be a (1501/0701) heterozygote. This
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Figure 4. Concordance of the two SHAPEIT-2 analyses depending upon the SNP- position of the initial SNP used for the haplotype
analysis. The first SHAPEIT-2 analysis predicted the complete haplotypes (across the entire region) starting at SNP-position 1. The second SHAPEIT-2
analysis predicted the complete haplotypes starting at SNP-position 25. The 11-tuple subject-vectors for the principle analysis undertaken here began

at SNP-position 119 (rs2234167), as indicated by the verticle red line.
doi:10.1371/journal.pone.0090034.9g004

change slightly improved the correlation between (a2)-status and
HLA DRBI status (r=0.981). The remaining 6 subjects were
DRBI1#1501 heterozygotes, who lacked the (a2) SNP-string but
included (in part) SNP-strings (a3) or (alO), which seem more
plausible as 1501 carriers from an evolutionary perspective
(Table 5).

The MMEI1 Cluster

Demographic data. For the MMELI locus 16 SNP-strings
were identified unambiguously in the population and another 8 by
the secondary analysis (Table 4). No additional “identified”” SNP-
strings were found following the “complete” analysis using all
“possible” and “identified” SNP-strings. Of these 24 “identified”
SNP-strings, however, only (al), (a3), (a4), (a5), (a7), and (al4) were
present in sufficient numbers to have more than 1 homozygous
individual (Figure 3). SNP-strings (a6), (al3), and (al3) were
homozygous in 1 individual each. Moreover, in the case of this
locus, the (a3) SNP-string was responsible for about 45% of the
identifications in both cases and controls (Figure 3). In the
“complete” SNP-string list, there were an additional 17 SNP-
strings identified although only 4 of these (00000110101,
00100001001, 00000000101, 00100000001) occurred in more
than two individuals. All of these “novel” SNP-strings on the
“complete” list had a final estimated frequency, which rounded to
zero.

Of the 1,857 participants in this study, 10 had missing data in
the MMELLI region and, therefore, the MMELI subject-vectors
could not be constructed. Of the remaining 1,847 participants, 536
(29%) had unambiguous SNP-string identifications. Also, using the
final “complete” SNP-string list for the decomposition, 845 of the
SNP-string identifications were non-conflicted whereas 1,002 were
conflicted. Again, only selected SNP-strings were involved in each
conflict. For example, the (a4) SNP-string was involved in only 271
of the conflicts. All subject-vectors could be explained either as a
combination of two of the 24 “identified” SNP-strings or as a
combination of a “novel” SNP-string with one of the 24
“identified” SNP-strings. In no circumstance, was there a need
to postulate two “novel” SNP-strings to explain any subject-vector.
Thus, for the 3,694 haplotypes present in the study population, the
set of “identified” SNP-strings set (see Table 4) was sufficient to
explain 3,660 or 99.1% of the haplotypes, which are present in the
population. In addition, this set was adequate to explain
completely all but 34 (98.2%) of the subject-vectors. Again, the
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“complete” set of SNP-strings was sufficient to explain 100% of
the subject-vectors.

As was the case for the DRBI1 locus, the MMELI locus also
seemed to consist of related families of SNP-strings although, in
this region, the families are more interconnected and, thus, the
distinction of one family from another was less clear-cut (Table 5).
Nevertheless, family #1 all had zeros for SNPs (nl, n2, & nj).
Family #2 all had ones for SNPs (n1 & n2) and zeros for SNPs (n4
& n5). Family #3 all had zeros for SNPs (nl) and ones for SNPs
(n2 & n3). Family #4 only had two members, which differed from
each other only at SNP (n11).

Genetic associations. The genetic association for each of
the 11 SNPs in the MMELI region are presented in Table 10.
None of the ORs for either 1 or 2 copies of any SNP in this region
were more than marginally significant (Table 10). Nevertheless,
using SNP-strings, there was significant association between the
(a4) SNP-string and MS, with the OR for possessing 2 copies of
this allele being 2.93 (Table 11). Moreover, this was replicated in
both independent subpopulations with the OR in Europe being
2.86 and the OR in the US being 2.96. By contrast, the OR for
possessing 1 copy of this allele was 0.90. Presumably, therefore,
this susceptibility allele acts in an autosomal recessive manner. The
allelic frequency of (a4) in the control population was 11%

(Table 2).

Comparisons with the SHAPEIT-2 Phasing Method
Running SHAPEIT-2 on the same 11-SNP data used by the
SNP-string method and excluding subject-vectors that had missing
data, the two methods were only 61% concordant in the DRBI
region and 75% concordant in the MMELI region. When the two
methods predicted different haplotype combinations to explain a
particular subject-vector, in general, the combinations chosen by
SHAPEIT-2 had substantially lower likelihoods compared to those
predicted by the SNP-string method. Indeed, this was even the
case when estimating the haplotype frequencies based the
SHAPEIT-2 predictions. In addition, to account for all of the
subject-vectors, SHAPEIT-2 predicted the presence of many more
“novel” haplotypes than the SNP-string method, despite the fact
that the smaller set of haplotypes was sufficient to explain 100% of
the subject-vectors. Thus, in the DRBI region the SNP-string
method invoked only 32 haplotypes, compared to 62 haplotypes
using SHAPEIT-2, in order to explain 100% of the genotype
(subject-vector) data. Similarly, in the MMELI region, SNP-string
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method invoked only 41 haplotypes, whereas SHAPEIT-2 invoked
57 haplotypes. In both regions, the additional haplotypes identified
by SHAPEIT-2 were never unambiguously present in the subject-
vector data. Finally, although a highly significant association of the
(a2) haplotype with HLA DRB1*1501 status (r = 0.760) was found
using the SHAPEIT-2 method, the strength of this association was
significantly less (p<<0.0001) compared to that found using the
SNP-string method (r=0.981).

By contrast, when the length of the SNP data included in the
SHAPEIT-2 analysis was increased ten fold (to a span of 2,000 kb
surrounding the 11-SNP sequences used in the above analyses) the
results of the 2 methods were almost identical. Thus, the two
methods were concordant in 99.4% of individuals in the DRBI
region and 99.1% of individuals in the MMELI region. Many of
the discrepancies occurred because the one method included
haplotypes, which were not on the other method’s list. Also,
compared to the SNP-string method, SHAPEIT-2 predicted an
additional 2 haplotypes in the DRBI region and an additional 3
haplotypes in the MMELTI region. In most of these case there is no
way to determine which method is more accurate. In the DRBI
region, for two such individuals, however, there was additional
information. In both individuals, the SNP-string method predicted
the (a2) allele whereas SHAPEIT-2 did not. Only one of these
individuals carried the DRB1*1501 allele. Consequently, provided
these individuals were typed correctly, and assuming that DRBI
status is a good surrogate for (a2) status, each method was correct
only once. For the remaining discrepancies in the DRBI region,
the two methods chose combinations from the same subset of
SNP-strings so that probabilistic comparisons were possible. Using
the haplotype frequencies estimated from the SHAPEIT-2 output,
the SNP-string method predicted combinations were more
probable than the SHAPEIT-2 predictions in every case. In these
circumstances, the ratios of the two probabilities ranged from 1.05
to 619 in favor of the SNP-string method.

Nevertheless, such high agreement between the two methods
was not uniform throughout the 2,000 kb span of DNA but,
rather, was characterized by peaks and valleys of agreement
alternating throughout the span. For example, as noted above, in
the MMELI region, when the 11-SNP sequence of subject vectors
was started at SNP-position 119 (rs2234167) the agreement
between the two methods was 99.1%. By contrast, when the 11-
SNP sequence was begun at SNP-position 100 (rs1129333) the
agreement between the two methods fell to 66.6%. Moreover, in
this region there was, again, a marked disparity between the two
methods in the number of haplotypes needed to explain 100% of
the subject-vectors. Thus, in this region, the SNP-string method
predicted only 120 haplotypes, whereas SHAPEIT-2 predicted the
presence of 173 haplotypes (i.e., using either method, the
variability of haplotypes in this region was 3—4 times the variability
found in a DNA region only 150 kb away). Because the SNP-
string method is based upon only the local 11-tuple subject-
vectors, the outcome of this method depends only upon the
(known) identity of the subject-vectors in the population. By
contrast, because SHAPEIT-2 seemed to perform poorly when the
input was limited to the 11-tuple subject-vectors of interest, it also
seemed possible that SHAPEIT-2 might perform less well
depending upon where (in the genome) the haplotype analysis
was begun. Consequently, we ran the SHAPEIT-2 program
starting at two different genomic locations. The first SHAPEIT-2
analysis began at SNP-position 1 (rs2031709); the second began at
position 25 (rs6603813). The concordance of the predictions from
these two SHAPEIT-2 analyses were then compared for each 11-
tuple across the region (Figure 4). As can be seen from the figure,
the concordance between the two SHAPEIT-2 analyses is very
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similar to the concordance between the two haplotype methods,
being characterized by peaks and valleys of agreement alternating
throughout the span of DNA (Figure 4).

Discussion

Currently, many groups throughout the world conduct GWAS
studies to identify genomic regions that are associated with
complex human diseases [14,15,17-21]. Typically, gene chips are
used to interrogate ~1,000,000 known human SNPs genome-wide
in a sample population. If a SNP or several SNPs in a particular
region are associated with the disease then it is presumed that
some allele of a nearby gene is responsible for the observed
association, thus GWAS are designed to identify genomic regions
of association. The difficulty with this approach, however, is that
the associations are often weak and require thousands of patients
to uncover [14,15]. Moreover, at least for the DRBI locus, each
associated SNP has a much greater allelic frequency compared to
the underlying susceptibility allele, which is an example of
synthetic association [39]. Thus, the allelic frequency for the
DRB1*¥1501 allele in the control population was 10%, whereas for
the four most associated SNPs it ranges from 20% to 37%
(Table 7). Also, unless the SNP is itself produces the associated
genetic abnormality, it may difficult to determine which allele is
responsible for the association. Finally, some probabilistic
approaches to haplotype identification [25-28] depend upon
correlations with the disease and don’t really lead to identifications
of the specific haplotypes, which exist at a given genetic location.
Rather, these methods search the data for clusters of SNPs, which
are (jointly) associated with the disease and, which, therefore,
presumably belong to a particular disease-associated haplotype.
They don’t actually define the haplotype. For example, knowing
that the four SNPs (n2, n3, n5 and n6) tag a haplotype, in this case
the (a2) SNP-string, which is associated with MS, is not the same
as identifying the (a2) haplotype itself and doesn’t permit either
testing of other haplotypic associations or comparing the genetic
makeup of different populations (Table 3). Presumably, many of
these potential difficulties could be mitigated if the two haplotypes
at a given genetic locus could be identified confidently for each
individual.

There is a high degree of confidence in the identity of those
predicted haplotype combinations, which include “identified”
SNP-strings. Thus, the large majority of these “identified” SNP-
strings are present unambiguously and, for the others, their
presence is implicated repeatedly in many different individuals.
The degree confidence in the identity of those combinations that
include “novel” SNP-strings is more tentative because, in most
cases, these are present in only a few individuals, they are never
identified uniquely, and, for the purposes of their selection, they
are ““assigned” a uniform (arbitrarily low) frequency. Nevertheless,
because the vast majority of persons (>98%) have a combination,
which includes 2 “identified” SNP-strings, the phasing method
proposed here identifies, with a high degree of confidence (for the
vast majority of the population), the 2 SNP-haplotypes, which
make up a person’s genotype. Thus, the SNP-string method
mitigates many of the potential problems discussed earlier. First, in
regions spanning approximately 200 kb of DNA, only a limited
number of SNP-strings (SNP-haplotypes) seem to exist within the
case-control populations from Europe and the US (Figure 3;
Table 3). Indeed, as anticipated because both populations were
largely of northern European origin, the frequency distribution of
the different SNP-strings was almost identical in the two groups
(Table 3). Moreover, the identification of the constituent SNP-
string haplotype for each genotype are, for the most part, either
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unambiguous or the unique combination of two “identified” SNP-
strings. Consequently, there is little doubt that these SNP-strings
(so identified) represent the actual haplotypes, which cover the
entire 200 kb segment and, consequently, this method should
facilitate comparisons regarding the genetic make-up different
human populations in specific genetic regions.

Although the analysis presented here represents only two loci,
the same pattern pertained to every locus screened preliminarily
(including MS-associated intergenic genomic regions). Naturally,
the “identified” SNP-strings, likely represent sub-families of
related haplotypes, which have not been separately defined. For
example, only 22 SNP-strings were “identified” at the DRB1 locus
(Table 4), whereas there are known to be hundreds of DRBI
alleles [40,41]. Some of these alleles are either very rare or only
present in non-European ethnic groups [40,41] and might not be
present in our sample. Others, however, likely, share the same 11-
tuple SNP-string. Including a larger number of SNPs in the SNP-
string would permit finer distinctions to be made between alleles.
However, this will also probably decrease the number of
unambiguous SNP-string identifications. Similarly, reducing the
length of DNA covered by an I1-tuple SNP-string will also
increase the allelic separation but may also reduce the number of
unambiguous identifications and the number of “identified” SNP-
strings. Each of these changes could be either good or bad,
depending on which effects predominate. Unquestionably, there-
fore, each of these variables will need to be studied systematically
in order to determine the optimum number of SNPs and the
optimum length of DNA to be included in the analysis.

Second, this SNP-string phasing method seems to overcome
many of the objections to Clark’s original algorithm [25-27]. All
“identified” SNP-strings are either “unambiguous” or they are
unique pairings involving a “novel” with previously “identified”
SNP-string. In addition, each of the SNP-string lists here
developed (i.e., unambiguous ‘“identified”, “identified”, and
“complete”) and the associated haplotype frequencies are derived
from repeated deconstructions of the entire dataset. Therefore,
these lists (and the estimated haplotype frequencies) are indepen-
dent of the order of data entry. Although the method does not
guarantee the presence of “‘unambiguous” SNP-string identifica-
tions in the data, nevertheless, at every locus examined either in
detail or preliminarily (including intergenic genomic regions),
more than 16% of individuals (oftentimes much more) had
“unambiguous” identifications, even when the SNP-string length
was increased from 11 to 24. Also, these unambiguous identifi-
cations, when they are made, are independent of any distribution
effects.

Although the SNP-string method does not directly assume that
the population is in HWE, it does resolve halpotype conflicts based
on the observed frequencies of the different non-conflicted SNP-
strings in the population. Therefore, the method does imply the
random combination of SNP-strings. Nevertheless, at least in the
case of the DRBI locus, the susceptibility allele is known to be at
HWE [9]. Moreover, the fact that the frequency distribution of the
different haplotypes is essentially identical in the European and US
populations (Tables 2 and 3) suggests that each population is in a
similar equilibrium state. However, regardless of the exact
distribution, the combination of two rare “novel” SNP-strings is
still anticipated to be less common than the combination of either
two “identified” or one “novel” plus one ‘“‘identified”” SNP-string.
Thus, only one subject-vector (out of approximately 25,000
screened preliminarily) could not be explained such a combina-
tion, which included, at least, one “identified” SNP-string. This
suggests that the combination of two ‘“novel” SNP strings is
extremely rare, as anticipated if the population were composed of
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random SNP-string combinations. Also, the list of “identified”
SNP-strings, generated by this method, is sufficient to account for
more than 99% of the SNP-strings present in the population.
Thus, the “identified” list may be short but it is also, largely,
complete. Naturally, the “complete” SNP-string list accounts for
100% of the subject-vectors, although most of these additional
SNP-strings were found in only a single individual. Because the
actual phased haplotype information is not available, it is not
possible to test the method directly for errors. Nevertheless, most
of the identifications were either non-conflicted or, when
conflicted, had one particular SNP-string pair, which was far
more likely than the others. In addition, it is noteworthy that the
haplotypes predicted by the SNP-string method in the DNA
region studied here were virtually identical to those predicted by
the SHAPEIT-2 algorithm when the span of DNA included in this
latter analysis was increased 10-fold. This concordance of
independent analysis methods, adds strong support for the notion
that the haplotypes have been correctly identified in the vast
majority of subjects. However, the agreement of the SNP-string
method with SHAPEIT-2 was considerably less in other regions
within the 2,000 kb span (Figure 4). Notably, the regions of
discordance between algorithms occurred in regions where
SHAPEIT-2 was also substantially discordant with itself
(Figure 4). These regions also had especially high SNP-string
variability and it is possible that the SHAPEIT-2 algorithm has
difficulty in such circumstances.

Third, the identification of SNP-strings could be expanded to
provide haplotype information over larger genomic segments. For
example, suppose that the “identified” SNP-string combinations
from two adjacent 11-tuple SNP-string combinations were known.
Thus, suppose that the first combination was (01101100000) plus
(01011010000); and the second was (01010000000) plus
(10000011111). Suppose, further, that the combination of the
overlapping 11-tuple segment, beginning at position 6 of the first
11-tuple, was (10000001010) plus (01000010000). In this case, the
only possible 22 SNP-string haplotype configuration is
(0110110000010000001010) plus (0101101000010000011111).
Using similar (but expanded) logic, such an approach can be
extended to provide haplotype information over increasingly large
segments of the genome. Naturally, there is a need to optimize the
number of SNPs and the length of DNA to be included in each
SNP-string analysis and, no doubt, the method will require other
refinements. Nevertheless, the haplotype information yielded by
such a method would be reproducible and largely accurate over
protracted regions of DNA. Naturally, in the future, next
generation sequencing techniques (e.g., full exome sequencing)
might replace some (or many) of the current phasing methods.
However, even if these methods becomes readily available and can
overcome their own phasing issues, specific methods might fail to
identify disease-associations with intergenic regions, some of which
have already been found in the GWAS published by the
International Consortium [14,15].

Fourth, and most importantly, this method permits considerably
more powerful tests of genetic association. The advantage of this
method over the simple SNP-analysis is underscored by two
examples. First within this dataset, there was no SNP-association
of the MMELLI locus with the MS disease, even for the SNP that
was identified in the much larger GWAS as being highly MS-
associated [14]. Moreover, although highly significant, this
association only had an OR of 1.16 [14]. By contrast, the SNP-
string method, using the same SNP data, was able to detect a
significant and replicable association of this locus with MS and the
OR was considerably higher (2.93). Second, at the DRBI locus,
although there were highly associated SNPs, the highest correla-
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tion with actual DRB1*1501 status was for the (n3) SNP-string,
only modest (<0.78), and had an OR of only 4.08 for the
homozygous association (compared to more than double that for
the actual allele). Moreover, this SNP had a frequency twice that
of the DRB1*1501 allele, so that even for this SNP, less than half
of the alleles tagged were the correct one. By contrast, using the
SNP-string method, the (a2) SNP-string had a correlation with the
DRB1#¥1501 allele of 0.981, had a frequency comparable to that of
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